

Boeing Research & Technology Europe

NOWcasting

Proof-of-Concept of TAAM Nowcast

Jeppesen / BR&T-Europe

XVII Brazilian Air Transportation Symposium (SITRAER)

São Paulo, October 22nd-24th, 2018

Overview

- Introduction to TAAM
- TAAM Nowcast: Concept and architecture
- TAAM Nowcast applied to arrival time prediction
 - Machine Learning applied to arrival time prediction
 - Model-based vs data-driven predictions: initial comparison

Conclusions

TAAM® Total Airspace and Airport Modeller

A sophisticated fast-time 4-dimensional gate-to-gate simulation model for decision support, planning, design and analysis

- Comprehensive simulation model *functionality*
 - Gate to gate
 - Current paradigm and future concepts
 - Integrated Jeppesen Nav Database

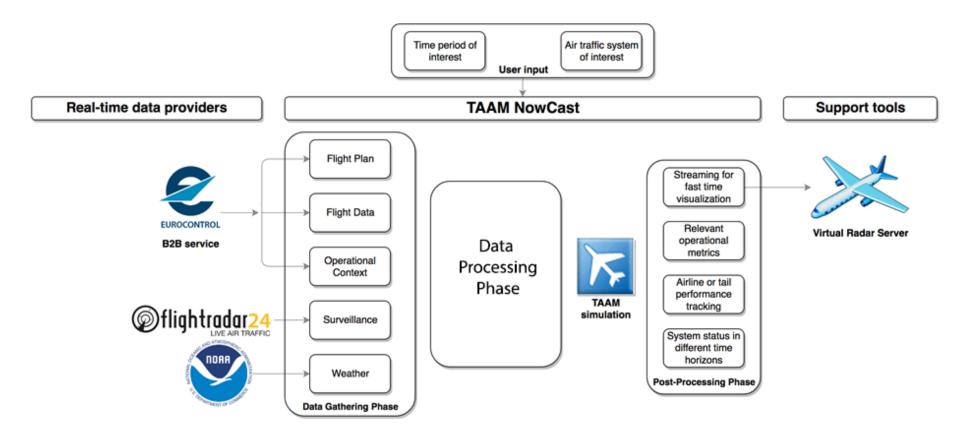
TAAM may be used to simulate aircraft

- departing from an airport
 - pushback, taxi, takeoff roll and SID
- transitioning airspace
 - utilizing appropriate climb rates, flight levels, speeds, and separation criteria
- landing at a destination airport
 - including STAR, landing, taxi, and arrival at gate

- Very high detail
- Complete build / edit / sim/ analysis suite
- Fast time discrete-event engine

Models can be end-to end or can focus on any phase of flight

How Does TAAM Work and How is it used?

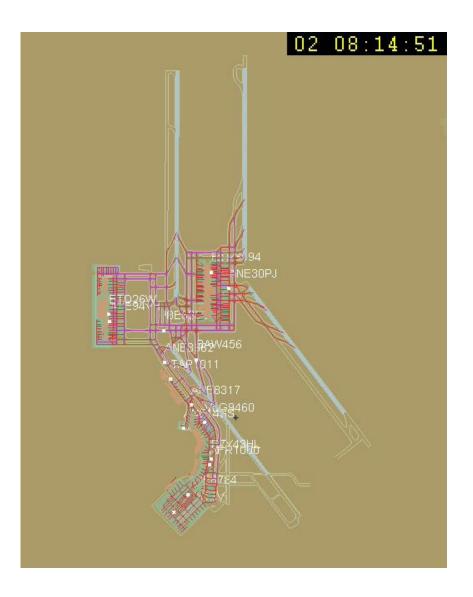

G 20 - wellerthstanjd/22X_Airspace_Redings_0331200	Customer	Problem/Question	TAAM, walls	ri/rimjd/DX_Aispecs_linding
Inder Hidde Aaronautical Un 14978520.0 1	Airline	 -When we open a new city-pair, how should the schedule be modified? -Can we achieve time and cost savings by using different taxi patterns at airport X? -How do we plan for disruptive airport events (construction / cleaning?) -How do modifying flight plans reduce / increase emissions? -What is the best way to plan next season's schedule to minimize disruptions? 		Serva Day: [4] Tens: [7:03:185 Speeck 5:25 Arcraft Sterva Active: 499 Remaining: 2100 Controls Part Hode Tens Step 55 Speeck Linit: Noore W Arcraft Name: W
	ANSP	-How do we maximize usage of current infrastructure? -We want to restructure a TMA –what is the impact? -If we close Airspace X; what is the impact on capacity? -How efficient is the ATM system? -How will a new airport impact the ATM System?		Loode: 0.2 V Shp ShowLoge Arpot Name: V I Locate: 2 V Queues Locate: 2 Queues Locate: 2 Queues Ext of Flights Runway Throughpo Find Sector: V
	Airport	-Should we invest in new infrastructure? -What is the impact of runway closure for repairs / construction / cleaning? -What is the overall efficiency impact of Procedure Redesign? -For a "greenfield" airport, what is the most efficient design? -What is the impact of additional infrastructure at an existing airport?		Route:

TAAM Nowcast Concept

TAAM Nowcast consists of predicting the evolution of an airspace system using TAAM simulation engine driven by real-time data

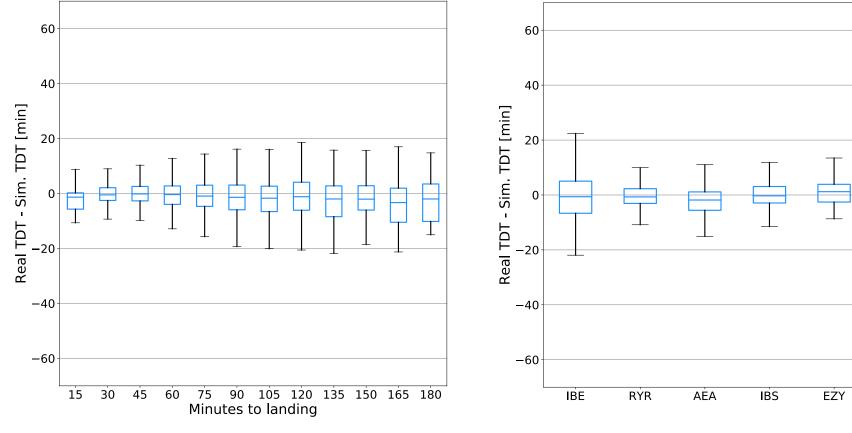
- Potential tool to predict and conduct "what-if" analysis for airline operations
- TAAM Nowcast comprises of the following steps:
 - Create the inputs for the TAAM simulation engine
 - Gather data from different sources (SWIM, third party providers, weather providers, etc) representing the current state of the traffic
 - Process data to create TAAM input data
 - Run TAAM simulation engine
 - Launch simulation and collect results
 - Analyze results
 - Depending on the use case different metrics can be studied and used for decision making: delay, airspace congestion, airport utilization, etc.

TAAM Nowcast Proof-of-Concept Architecture



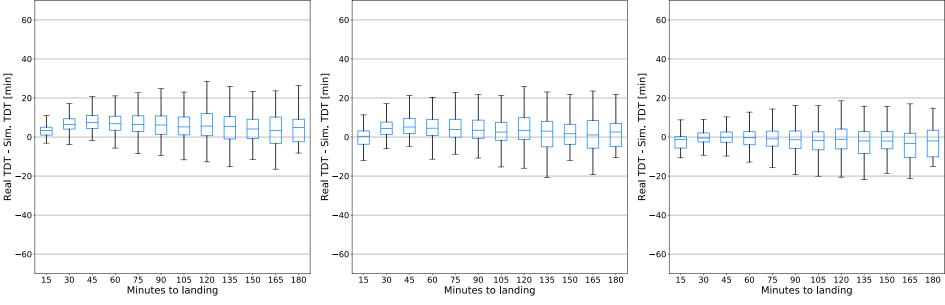
TAAM Nowcast in Action

Example Use Case: Arrival Time Prediction at Madrid Airport


- The use case study focuses on arrival operations at Madrid airport (LEMD)
- The objective is to predict the touchdown time for all flights bound for the airport during a specific time interval
- TAAM Nowcast was run every 30 mins for 5 different days (2018/02/01 to 2018/02/05). In total, 2,054 arrival operations were simulated, amounting to 235 TAAM Nowcast runs and more than 6,123 arrival time predictions
- Prediction results were compared with recorded actuals for different prediction look ahead times

Arrival time prediction: Initial Results

Prediction accuracy results for the main airlines operating at the airport


Accuracy degrades for look ahead times of 2 hours or more. Max errors of . \pm 15 min with look ahead times of less tan 2 hours VLG

Aggregated results ordered by number of movements at the airport (larger to the left)

Arrival time prediction: Sensitivity Analysis

Results shown were obtained by including the full LEMD airport model within the TAAM simulation. A sensitivity analysis was executed to understand how the level of detail of the airport model affects prediction accuracy. Three frameworks were considered:

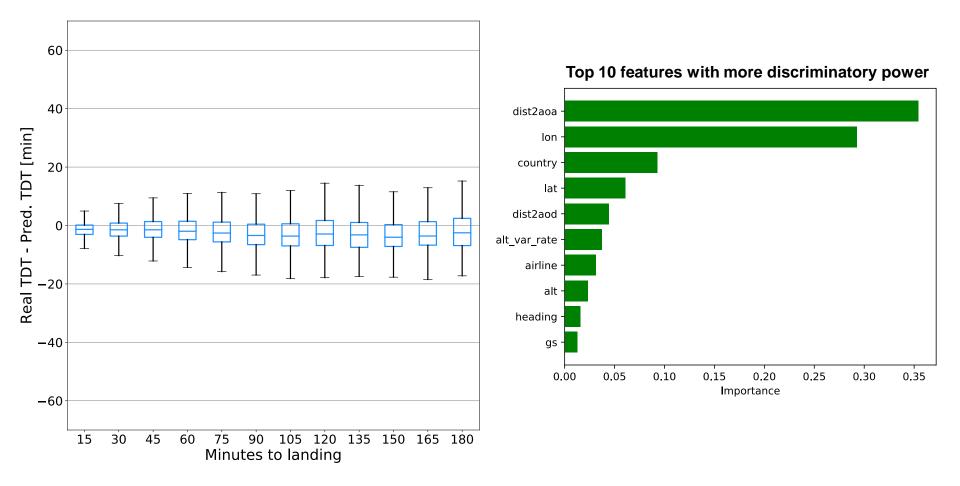
- 1. <u>Airport as a point</u>: Only the airport location.
- 2. <u>Simple airport model</u>: Only airport runways & STARs
- 3. Full airport model: Full airport layout, STARs, basic sequencing and usage rules

Data-driven approach: Machine Learning

Units	Type	Example
-	string	IBE
-	string	B737
-	string	International
-	string	USA
deg	float	45.43616
deg	float	9.28201
nm	float	424.87
nm	float	93.23
ft	int	38000
ft	int	40000
ft/s	int	11
kn	int	453
kn	int	475
deg	int	158
S	int	7360
K	float	273.15
K	float	272.15
%	float	47.6
deg	float	15.6
kn	float	11.2
-	int	4
-	int	22
-	int	12
	- deg deg nm nm ft ft ft/s kn kn deg s K K % deg	-string-string-string-string-stringdegfloat deg float nm float nm float ft int ft int ft int ft/s int kn int kn int kn int K float K float Kn float kn float kn float kn float int int-int

Variable to be predicted	Units	Type	Example
Time left to touchdown	S	int	3478

To benchmark the accuracy of the arrival time predictions obtained with TAAM Nowcast, a machine learning-based approach was implemented and applied to the same scenario

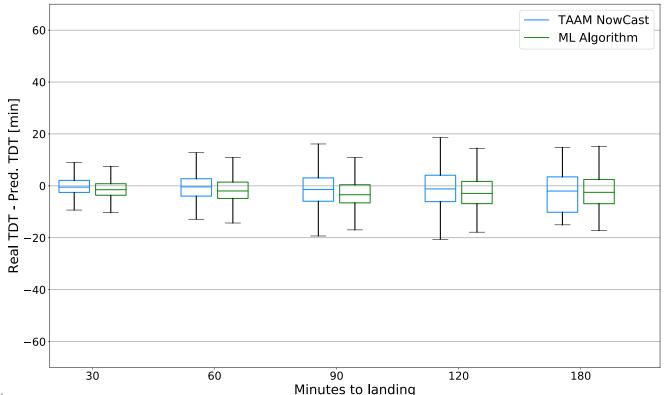

The selected ML algorithm was the **Gradient Boost Machine** (GBM) and the development framework selected is Python + H2O over a 8 node-344 cores cluster

Data for a full year (2017) was used. The training set included **45,623,875** observations, for which a **70-15-15** % train-validation-test split was chosen

The evaluation of the model is performed over the same period defined for TAAM Nowcast (5 days, from **2018/02/01** to **2018/02/05**).

Data-driven approach: Results

Arrival time prediction results for all flights bound to LEMD between 2018/02/01 and 2018/02/05



Deviation bias observed in the results may be removed in further iterations of the machine learning model.

TAAM NowCast vs Machine Learning: pros and cons

Comparison of the results obtained with both methods (in their current development stage) for different look-ahead times

- TAAM Nowcast generally produces more accurate results with less bias for shorter look ahead times
- ML performs marginally better for longer look ahead times

TAAM NowCast vs Machine Learning: pros and cons

TAAM NowCast

- Can provide predictions of full flight trajectory as well as other airspace and airline metrics, not only flight arrival times.
- + **Does not need historical data to run**, so it is easily applicable in different scenarios.
- + **Traceability and understanding** of the operational reasons behind the predictions.
- Frequency of predictions may be limited due to computational requirements (each TAAM Nowcast run took around 5-10 minutes in the current setting).
- Airspace/airport system data and knowledge required for accurate predictions.
- Simulation errors correlated to lack of forecasts for some flights (only a partial model of the World used)

Machine Learning

- + **Predictions** can be obtained **as frequently as** required (very fast model once trained).
- + Accuracy and precision can be further enhanced with more data, considering additional features and/or different algorithms.
- + **Does not required operational knowledge** about the scenario, aircraft performance characteristics, etc
- Limited understanding of the reasons behind predictions results
- Requires large amount of historical data for the scenario of interest
- Specific models have to be trained for each variable to be predicted and scenario for which predictions are required.

Conclusions

- Successful Proof-of-concept of TAAM Nowcast
 - Demonstrated the use of TAAM in a real time context
 - Initial validation in a delay prediction use case
- Initial comparison with data-driven approach
 - State of the art machine learning algorithms applied to delay prediction
 - Historical data used for training
 - Common scenario used for cross-validation
- Comparable performance with limited TAAM parameter tuning
 - TAAM Nowcast predicts not only delay but other airline and airspace metrics
 - ML will require specific training for each scenario and target variable, TAAM produces satisfactory results with limited tuning
- Potential to explore hybrid approaches to refine ("learn") TAAM model rules based on historical data

Thanks for your attention