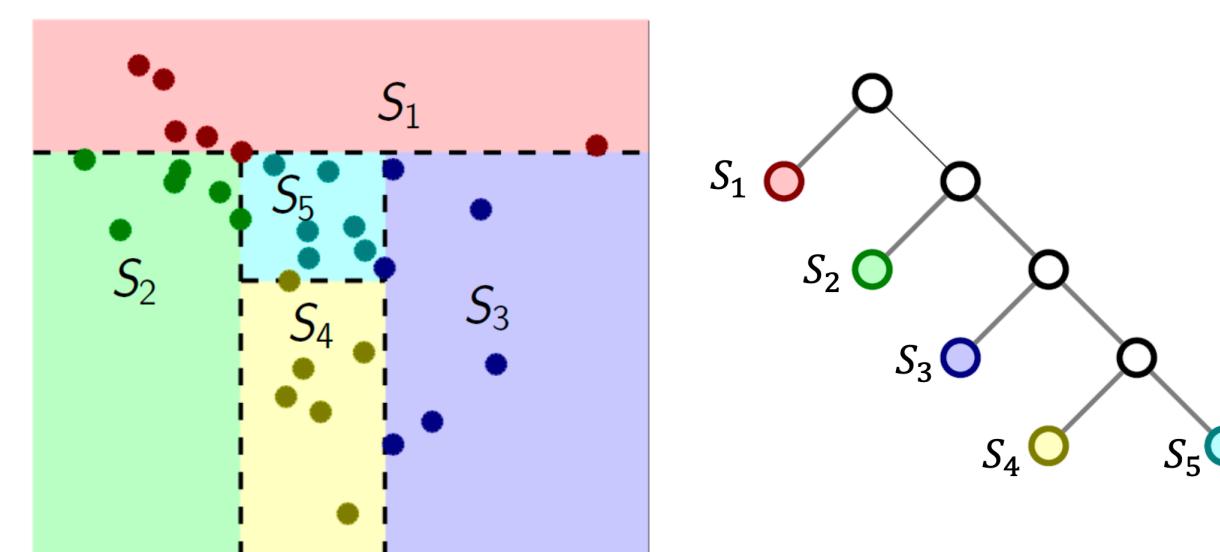


Projeto de Formatura – 2025

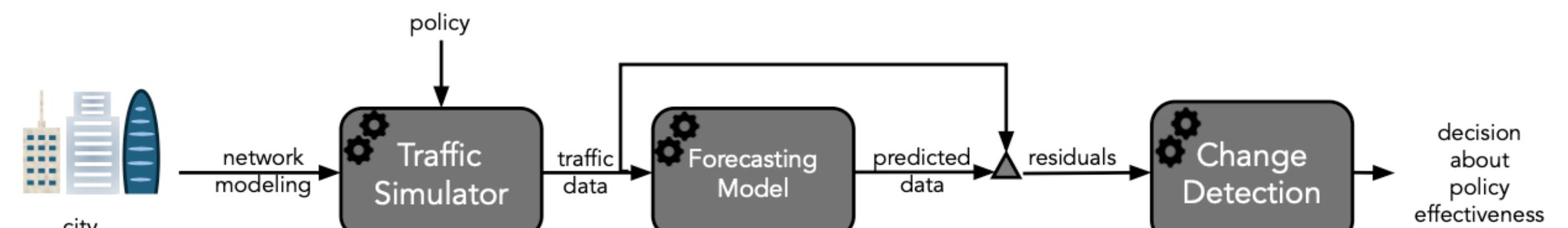
PCS - Departamento de Engenharia de Computação e Sistemas Digitais


Engenharia de Computação

Tema:

Assessing Mobility Policies A Priori: A Change Detection Methodology Using Traffic Simulation

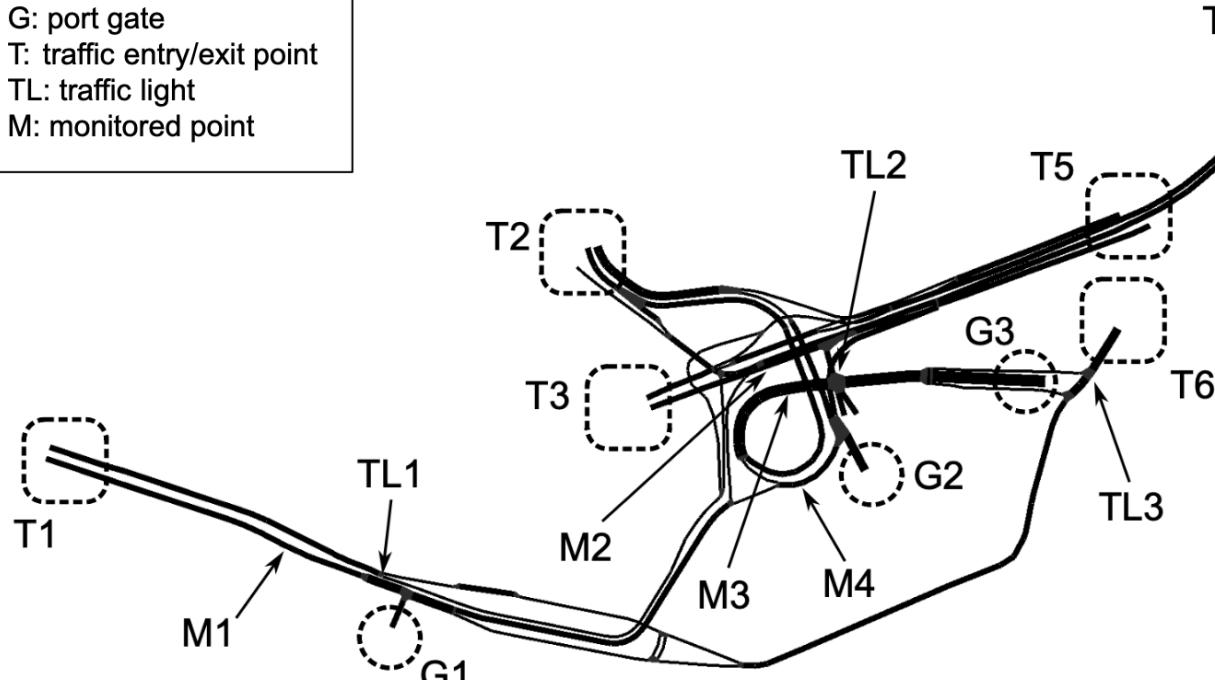
Introduction


- **Traffic management is needed** to mitigate congestion and pollution in large cities, especially near **logistics hubs such as ports**.
- City authorities can enforce **mobility policies**. However, real-world trials are **costly, disruptive and slow**. Also, impacts can be **subtle or demand-dependent**, requiring **statistically robust analysis** beyond simple before/after averages.
- This raises two key questions **before deployment**:
 - **(Q1)** Does a candidate policy actually change traffic conditions in a statistically significant way?
 - **(Q2)** How many days of monitoring are needed to reliably detect this change?
- In this work, we present a new **framework** that combines **microscopic traffic simulation** with **sequential, multivariate change detection** to provide a **statistically robust assessment** of policy effectiveness and time-to-detection before **real-world deployment**.

During **training**, QT-EWMA constructs a **QuantTree** [1] **histogram** by partitioning the data space according to empirical quantiles (adaptive bins with equal probability) \rightarrow estimates $\hat{\phi}_0$.

During **sequential monitoring**, after each new day x_t arrives, we update EWMA-based empirical bin probabilities and declare a change as soon as their deviation from the baseline exceeds a calibrated threshold, providing enough evidence to accept H_1 ($\hat{\phi}_1 \neq \hat{\phi}_0$).

Residual-based approach:



Goal: isolate changes from policy interventions and filter out variability.

Experiments & Results

Genova port-city case study:

Legend:
- G: port gate
- T: traffic entry/exit point
- TL: traffic light
- M: monitored point

Experimental setup:

- 4 monitored **segments**;
- 3 demand **regimes**:
 - A weekdays (congested),
 - B weekends (low demand),
 - AB mixed 70%/30%;
- 3 **policies**:
 - P1 minor retiming TL2,
 - P2 timing all 3 TLs,
 - P3 adaptive control.

Evaluation: For each setup, **1000 Monte Carlo runs** estimate empirical ARL_0 and detection delay, with thresholds calibrated to $ARL_0 = 500$ and **1000 days**, and the empirical ARL_0 from simulations staying close to these targets.

Table 1 - Network-level average detection delay (days) for QT-EWMA on **raw traffic data** ($N = 256$ baseline days). Each cell reports the delay for $ARL_0 = 500/1000$.

Scenario	P1	P2	P3
A – Weekdays (congested)	130.7 / 186.1	22.7 / 27.7	6.4 / 6.9
B – Weekends (low demand)	512.0 / 923.6	290.2 / 535.0	83.0 / 126.8
AB – Mixed (70% A, 30% B)	256.1 / 436.1	61.0 / 87.4	12.1 / 14.0

Table 2 - Scenario A, network-level average detection delay (days) for QT-EWMA on **raw traffic data** **versus** the **residual-based** approach ($N = 256$, $ARL_0 = 500$).

Policy	Raw	QT-EWMA	Residual-approach
P1	130.7	177.3	
P2	22.7	29.7	
P3	6.4	8.6	

Conclusions

- We proposed a new **framework** that combines microscopic traffic simulation with **QT-EWMA** to assess mobility policies **before deployment**.
- In the Genova port-city case study, **stronger policies (P2, P3)** are detected within **few days** in congested regimes, while **mild tweaks (P1)** often remain hard to detect or require very long monitoring.
- The **residual-based approach** preserves ARL_0 control and shows **only modest gains** over the raw detector, acting mainly as a **conservative alternative**.
- **Collaboration:** Politecnico di Milano & CNR Genova; extended at USP.
- **Presented at:** EANN/EAAI 2025 conference.
- **Published in:** Springer LNCS-CCIS [3].
- **Funding:** European Union Next Generation EU – PRIN 2022 PNNR.

References

- [1] G. Boracchi et al., "QuantTree: Histograms for change detection in multivariate data streams", ICML, 2018.
- [2] L. Frittoli, D. Carrera, G. Boracchi, "Nonparametric and online change detection in multivariate datastreams using QuantTree", IEEE TKDE, 2023.
- [3] F. Bagni et al., "Assessing mobility policies by traffic simulation and change detection", EANN/EAAI, Springer, 2025.

Integrantes: Felipe Bagni

Professor Orientador: Prof. Dr. Artur Jordão Lima Correia