
Fernanda Namie Takemoto Furukita

Automatized model for mapping existing
bibliography on Amyotrophic Lateral Sclerosis

datasets

São Paulo, SP

2024

Fernanda Namie Takemoto Furukita

Automatized model for mapping existing bibliography on
Amyotrophic Lateral Sclerosis datasets

Final paper presented to the Department of
Computer Engineering and Digital Systems
of the Polytechnic School of the University of
São Paulo to obtain the degree of Engineer.

University of São Paulo – USP

Polytechnic School

Department of Computer Engineering and Digital Systems (PCS)

Supervisor: Prof. Dr. Edson Satoshi Gomi

São Paulo, SP
2024

This work is dedicated to my family, whose support made me believe I could become an
Engineer.

Acknowledgements

Throughout this whole work, I was lucky enough to be assisted by numerous
professionals. Their support certainly enriched the knowledge that I was able to obtain
from this project. Working in such an interdisciplinary environment has allowed me to
develop not only my skills in computer science, but also in biology and medicine.

Firstly, I would like to thank Professor Edson Gomi, Anne-Sophie Rolland and
Amaël Broustet, who guided me during the writing of this document as my supervisors
and ensured that I had an enriching experience. I extend my gratitude to David Devos,
who provided clinical advice, and to Cecile Bordier, our functional MRI specialist whose
expertise was crucial at the beginning of my work. Additionally, I am thankful to Dr.
Véronique Danel-Brunaud for allowing me to attend consultations with Amyotrophic
Lateral Sclerosis patients, giving me direct insight into the challenges posed by the disease.

Finally, I am equally grateful to my family and friends, whose unwavering support
has been instrumental since I decided to embark on this journey. I cannot thank you all
enough for being such an important part of my life.

Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that affects both upper
and lower motor neurons, causing motor and extra-motor symptoms. Currently, there is
only one recommended treatment for ALS, which indicates the need for new prognostic
biomarkers that could pave the way for novel therapies. Several studies aim to prove the
value of technology to develop models capable of predicting the evolution of the disease in
each patient. However, in order to apply Machine Learning techniques in these cases, data
is necessary. Given the difficulty in finding available and accessible datasets containing
different types of data, such as clinical, genetic and imaging, the present work proposes to
create a platform centralizing information in academic papers that have used or presented
ALS data so information on existing databases and on previous work can be more easily
found. To do so, an automatized pipeline is used for analyzing articles found in Google
Scholar in the domain by applying Natural Language Processing techniques and, then, the
data gathered is made available by an API and displayed in a user interface. As a result,
out of 980 articles, 675 were processed, obtaining 57.11%, 53.87% and 53.77% of accuracy
for classifying, respectively, databases, data types and amounts of data by the end of the
study.

Keywords: Amyotrophic Lateral Sclerosis, Datasets, Natural Language Processing, API,
Web Development.

List of Figures

Figure 1 – Pipeline specifying steps aimed by the graduation project. . . 17
Figure 2 – Main symptoms of ALS. 20
Figure 3 – ALS onset sites. 20
Figure 4 – Example of POS tagging. 25
Figure 5 – Example of shallow parsing. 25
Figure 6 – Google Scholar inspection for obtaining class names of each

item displayed in its page. 31
Figure 7 – Triple Modular Redundancy. 33
Figure 8 – Error in Google Scholar. 45
Figure 9 – Home Page in the developed User Interface. 45
Figure 10 – Databases Page in the developed User Interface. 46
Figure 11 – Summary Page in the developed User Interface. 46
Figure 12 – Comparison between T1 and functional MRI. 59
Figure 13 – Illustration of n-dimensional simplexes. 60
Figure 14 – Representation of the intuitive idea behind persistent homology. 61
Figure 15 – Comparison between barcode plot and persistence diagram. . 61
Figure 16 – Example of the Persistence Landscape representation. 62
Figure 17 – Example of the Persistence Image representation. 62
Figure 18 – General pipeline aimed by the study. 64
Figure 19 – Flowchart showing data selection from PULSE for the devel-

oped pipelines. 65
Figure 20 – Workflow applied by fMRIPrep for preprocessing fMRI. 67
Figure 21 – The rsfMRI pipeline . 72
Figure 22 – The T1 pipeline . 73
Figure 23 – Connectivity Matrices for a healthy control and ALS patients. 75
Figure 24 – Persistence representations for rsfMRI. 76
Figure 25 – Clustering results for dimension H0. 77
Figure 26 – Clustering results for dimension H1. 77
Figure 27 – Clustering results for dimension H2. 77
Figure 28 – Clustering for classifying healthy controls vs. ALS patients in fMRI. 77
Figure 29 – Preprocessed T1-w MRI. 80
Figure 30 – Persistence representations for T1-w MRI. 81
Figure 31 – Clustering results for dimension H0. 82
Figure 32 – Clustering results for dimension H1. 82
Figure 33 – Clustering results for dimension H2. 82

Figure 34 – Clustering for classifying healthy controls vs. ALS patients in
T1. 82

List of Tables

Table 1 – Survival prediction accuracy using clinical and imaging dataset. 23
Table 2 – Comparison between the chosen NLP models. 34
Table 3 – TMR Accuracies for each type of information and for different

subgroups of abstracts. 47
Table 4 – Libraries used for Persistence Landscapes and Persistence Images. 70
Table 5 – Patients’ characteristics and clinical outcomes gathered at in-

clusion. 73
Table 6 – Results for controls vs. patients classification in fMRI. 78
Table 7 – Results for progression classification in fMRI. 78
Table 8 – Results for onset site classification in fMRI. 79
Table 9 – Results for Regression models in fMRI. 80
Table 10 – Results for controls vs. patients classification in T1. 83
Table 11 – Results for progression classification in T1. 83
Table 12 – Results for onset site classification in T1. 84
Table 13 – Results for Regression models in T1-w MRI. 84
Table 14 – Comparison between accuracies obtained for classification in

fMRI and T1 pipelines. 86

List of abbreviations and acronyms

AI Artificial Intelligence

ALS Amyotrophic Lateral Sclerosis

ALSFRS Amyotrophic Lateral Sclerosis Functional Rating Score

ALSFRS-R Amyotrophic Lateral Sclerosis Functional Rating Score Revised

ALSOD Amyotrophic Lateral Sclerosis Database

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

BIDS Brain Imaging Data Structure

BOLD Blood-Oxygen Level Dependent

CATI Centre d’Acquisition et de Traitement automatisée de l’Image (Image
Acquisition and automated Treatment Center)

CORS Cross-Origin Resource Sharing

CSF Cerebrospinal Fluid

DTI Diffusion Tensor Imaging

ECAS Edinburgh Cognitive and Behavioural ALS Screen

fMRI functional Magnetic Resonance Imaging

FVC Forced Vital Capacity

GM Gray Matter

HMC Head-Motion Correction

LLM Large Language Model

ML Machine Learning

MRI Magnetic Resonance Imaging

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

PCA Principal Component Analysis

PD Persistence Diagram

PI Persistence Image

PL Persistence Landscape

PRO-ACT Pooled Resource Open-Access ALS Clinical Trials

PTM Pre-Trained Model

ROI Region of Interest

rsfMRI resting state functional Magnetic Resonance Imaging

SDC Susceptibility Distortion Correction

SVM Support Vector Machine

STC Slice-Timing Correction

TDA Topological Data Analysis

TDM Text and Data Mining

WM White Matter

Contents

1 INTRODUCTION . 15

2 CONCEPTUAL ASPECTS . 19
2.1 Amyotrophic Lateral Sclerosis . 19
2.1.1 Prognostic Models for Predicting ALS Evolution using Clinical Data 21
2.1.2 Prognostic and Diagnostic Models using MRI Data 22
2.2 ALS Databases . 23
2.3 Natural Language Processing . 24
2.3.1 Introduction to NLP . 24
2.3.2 NLP’s Current State . 25
2.3.3 NLP Applications . 26
2.4 Legal implications . 26

3 METHODS . 29
3.1 Article collection . 29
3.2 Text preprocessing . 31
3.3 Data characterization . 33
3.4 Data provision . 36
3.5 User interface . 40

4 RESULTS . 45

5 ANALYSIS AND EVALUATION . 47

6 FINAL CONSIDERATIONS . 49

BIBLIOGRAPHY . 51

Appendix . 57
A Previous Work . 58
A.1 Introduction . 58
A.2 Objectives . 63
A.3 Methodologie . 64
A.4 Results . 73
A.5 Conclusion . 84

B Inclusion and non-inclusion criteria for each of the groups included
in the cohort PULSE . 87

C Bash code for running fMRI preprocessing 87
D Python code for confound regression and functional connectivity

matrices computation . 88
E Container definition for confound regression and functional connec-

tivity matrix computation . 93
F Bash Script for adding SliceTiming to json files with fMRI acquisition

parameters . 96
G Bash Script for preprocessing T1 images 98
H Container definition for T1 preprocessing 100
I Python code for functions used in TDA and in Model Training . . . 104
J Python code for functions used in Clustering 116
K Results for all representations in control vs. patient classification

from the rsfMRI pipeline . 120
L Results for all representations in progression classification from the

rsfMRI pipeline . 121
M Results for all representations in onset classification from the rsfMRI

pipeline . 122
N Results for all representations in regression from the rsfMRI pipeline123
O Results for all representations in control vs. patient classification

from the T1 pipeline . 124
P Results for all representations in progression classification from the

T1 pipeline . 125
Q Results for all representations in onset classification from the T1

pipeline . 126
R Results for all representations in regression from the T1 pipeline . . 127

15

1 Introduction

This project is composed of two main parts. The first was previously completed as
my final project at École Centrale de Nantes, and the second is my graduation project at
Escola Politécnica da USP. Analyzing the results that were obtained in the first instance
of the proposed work, the next steps can be established for the project presented by this
document. More details about what has been accomplished prior to this project can be
found in Appendix A.

To introduce the subject, Amyotrophic Lateral Sclerosis (ALS), a rare and fatal
neurodegenerative disease with no curative treatment, is characterized by motor deficits,
but also cognitive disorders that are often overlooked and appear before or after the
onset of motor symptoms. The etiology of ALS is unknown, depending on genetic and
environmental factors. While the progression of the disease varies considerably from one
individual to another, it generally deteriorates rapidly, resulting in a life expectancy
generally of 3 to 5 years after diagnosis. Treatments aim to improve quality of life and
prolong survival rather than provide a cure, enhancing the importance of identifying
biomarkers for ALS and developing predictive models for disease progression.

The research proposed previously involves the analysis of medical images, in
particular different magnetic resonance imaging (MRI) modalities, such as T1-weighted
MRI, diffusion MRI (DTI) and functional MRI. By using pipelines to process MRI
images and apply topological data analysis (TDA) and machine learning (ML) techniques,
it was sought to evaluate the efficacy of the topological analysis in refining imaging
characterization. TDA involves calculating the persistent homology of connectivity matrices,
converting them into persistent images, and then feeding them into a machine learning
model. In essence, the aim of such venture was to understand the effects of the TDA
by developing a model capable of predicting the progression of ALS over time using
information from medical imaging.

To do so, the PULSE cohort was used as source of data. It is a closed French
dataset created by the Lille University Hospital including ALS cases and healthy controls
from different centers. The study accompanied patients through several sessions, so some
of them presented at least two Magnetic Resonance Images separated by a period of time
(3, 6 or 12 months apart), which allowed us to have a longitudinal analysis.

Two main pipelines have been explored: the fMRI pipeline and the T1 pipeline. An
overall good accuracy (93% in average) was obtained for the Random Forest model in the
fMRI pipeline for classifying patients as fast or slow progressors of the disease. However,
this result is considered preliminary, given that only 13 patients were available for this

16 Chapter 1. Introduction

particular experiment, which is a very small sample to test the model with. In this case,
solely patients that presented images for both M000 (inclusion) and M006 (6 months after
inclusion) were included.

The main difficulty during this analysis was the lack of sufficient data to validate
results. Even though there were results that were considerably positive and others that
were remarkably negative, it was not possible to affirm by the end of the study if the models
did truly work or not, since there was such few data available that fit into the requirements
established. In addition, no public datasets containing the target MRI modalities in ALS for
at least two sessions were found. Therefore, external validation could not be accomplished
either.

According to (STEINBACH et al., 2018), in regards to the lack of datasets with a
larger number of subjects, better replication and patient characterization, studies in the
domain have been limited. This is due, also, to the highlighted heterogeneity associated
with ALS, which enhances the need for more comprehensive datasets to characterize all of
the disease phenotypes. It arguments in favor of data sharing so a global cohort may be
finally created.

In this context, considering the difficulties in finding existing datasets for Amy-
otrophic Lateral Sclerosis, a new need was detected. A platform containing centralized
information on studies that have been conducted using different ALS data would certainly
be helpful to understand which datasets are available in the academic field, and which
analyses have been made in the past. In such manner, we establish the objective for the
next steps of the work hereby presented. From an automatized and scalable model that
is capable of analyzing extensive amounts of academic papers related to ALS datasets,
information concerning type and amount of data may be collected and displayed in a
simple user interface.

To do so, a new pipeline is proposed to achieve such goal, composed of five main
steps, shown in Figure 1. It includes collecting articles related to ALS datasets and basic
information, such as title, authors, DOI, among others using webscraping techniques;
processing its texts; characterizing the datasets from each article with Natural Language
Processing (NLP) models; creating an Application Programming Interface (API) and a
user interface for making the information available. Chapter 3 describes the methodology
adopted to develop the solution.

17

Figure 1 – Pipeline specifying steps aimed by the graduation project.

Having implemented the processing above, in order to evaluate the obtained results,
the only encountered manner of ensuring the accuracy of data characterization using
NLP techniques is by manually checking the given answers. Therefore, the final outcomes
presented in Chapter 4 are analyzed in Chapter 5 using as metric the amount of information
considered correct after human intervention, i.e. reading each abstract. Finally, Chapter 6
concludes the project and suggests how it can be improved in the future.

19

2 Conceptual Aspects

2.1 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by its
heterogeneity, affects progressively and irreversibly both upper and lower motor neurons,
leading to motor and extra-motor symptoms, as shown in Figure 2. The manifestation of
ALS varies significantly depending on the site of onset (Figure 3). Patients with spinal-onset
ALS typically experience muscle weakness, whereas those with bulbar-onset ALS often
present with dysarthria (difficulty with speech) and dysphagia (difficulty swallowing).
Additionally, up to 50% of ALS patients develop cognitive and/or behavioral impairments
as the disease progresses, which underscores its classification as a neurodegenerative rather
than a purely neuromuscular disorder.

The cause of ALS is largely unknown (∼85%), with only a minority of cases
explained by genetic mutations (10-15%). The following genes are responsible for up
to 70% of familial ALS cases: C9orf72, TAR DNA-binding protein (TDP-43), Cu/Zn
superoxide dismutase (SOD1), and Fused in sarcoma (FUS). Environmental and lifestyle
factors, such as exposure to cyanobacterial blooms, physical activity, and smoking, have
also been investigated as potential contributors to ALS susceptibility (Hardiman et al.,
2017 (HARDIMAN et al., 2017)).

ALS remains a rare disorder; however, its incidence increases with age, and its
prevalence is expected to grow as global life expectancy rises (Feldman et al., 2022
(FELDMAN et al., 2022)). It is more common among populations of European descent
and individuals aged 60 to 79 years.

Diagnosis follows the El Escorial (Brooks et al., 2000 (BROOKS et al., 2000)) and
Airlie House criteria, but there is no definitive test for ALS. Clinical investigation is essential
to exclude other possible causes and confirm disease progression. For patients with a family
history of ALS and presenting symptoms, genetic testing may be included. Conditions
that mimic ALS, such as multifocal motor neuropathy, axonal motor predominant chronic
inflammatory demyelinating polyneuropathy, spinobulbar muscular atrophy, and inclusion
body myositis, often complicate and delay diagnosis.

20 Chapter 2. Conceptual Aspects

Figure 2 – Main symptoms of ALS.

Image extracted from Hardiman et al. (2017) (HARDIMAN et al., 2017).

Regarding treatment, over 50 different drugs have been tested, but only Riluzole
is currently recommended and extends survival by approximately three months after
18 months of treatment compared to placebo. It has no significant effect on muscle
strength and its mechanism is poorly understood. Common adverse effects of Riluzole
include elevated liver enzymes and fatigue, but it is generally considered safe. In addition,
symptomatic treatments may be indicated to improve patients’ quality of life due to the
aggressive progression of ALS.

Figure 3 – ALS onset sites.

There are two main onset sites: spinal (A) and bulbar (B). Image extracted from Swinnen and
Robberecht (2014) (SWINNEN; ROBBERECHT, 2014).

Current research is actively seeking diagnostic and prognostic biomarkers for
Amyotrophic Lateral Sclerosis (ALS) to enhance the understanding of disease progression
and improve treatment strategies. Identifying reliable biomarkers could be instrumental
in stratifying patients for clinical trials, aiding the development of new therapies, and
assessing their effectiveness. Among the biomarkers discovered, levels of neurofilament
light chain (NfL) and phosphorylated neurofilament heavy polypeptide in cerebrospinal

2.1. Amyotrophic Lateral Sclerosis 21

fluid (CSF) are noteworthy, as they are currently utilized for differential diagnosis and
prognosis of ALS. Additionally, corticospinal tract degeneration observed in MRI scans
has shown promise as a diagnostic biomarker. Advancements in structural and functional
MRI techniques are expected to uncover new diagnostic biomarkers, with changes in
brain connectivity emerging as a potentially valuable tool for ALS biomarker development
(Feldman et al., 2022 (FELDMAN et al., 2022)).

As to what concerns prognosis, it is highly variable for Amyotrophic Lateral Sclerosis.
The ALS functional rating score (ALSFRS), the most commonly clinical scale measuring
the disease progression, is a score starting at 48 and decreasing with the appearance
of physical disabilities. Among biochemical markers of prognosis for the disorder are
serum urate, serum creatinine, serum chloride and increased serum. In addition, worsening
respiratory function indicates short survival. A considerable amount of statistical and ML
models have been proposed for early ALS diagnosis and prognosis, predicting the disease’s
evolution, however even the best ones still retain uncertainty. Some of the developed
models are described as follows.

2.1.1 Prognostic Models for Predicting ALS Evolution using Clinical Data

Recent research has explored a wide range of methods, including Machine Learning,
Deep Learning, and statistical data analysis, to predict the progression of ALS. These
approaches encompass both supervised and unsupervised models, each aiming to improve
the accuracy and reliability of ALS progression predictions. For example, in the study
by Hothorn and Jung (2014) (HOTHORN; JUNG, 2014), a random forest algorithm
was trained using clinical data from the DREAM-Phil Bowen ALS Prediction Prize4Life
Challenge, which covered a three-month period. The results, however, were not particularly
encouraging.

The most effective predictor for the future ALSFRS slope turned out to be the
past ALSFRS slope, which merely confirmed findings from previous studies. The only
variable identified as a strong candidate for predicting ALS progression was the disease
onset site, underscoring its potential significance in prognosis. Due to these limitations,
subsequent studies have proposed new models in the hope of achieving better accuracy
and more reliable predictions in ALS prognosis.

Tang et al. (2019) (TANG et al., 2019) propose comparing model-based (linear
models) and model-free (machine learning based) techniques for predicting the evolution
of the ALSFRS score over time. Clustering was also attempted for grouping patients
according to phenotype using unsupervised machine learning methods. The longitudinal
patient data was also extracted from the Prize4Life Challenge Data accessed in 2016,
which included 8000 patients and 200 clinical features tracked over 12 months at the time.
For both cases, model-based and model-free, prediction was only moderately successful.

22 Chapter 2. Conceptual Aspects

Correlation between observed changes in ALSFRS scores and the predictions were around
0.427 and 0.545. In relation to the clustering, reliable and consistent partitions were
observed, however the study concludes that new biomarkers are still necessary aiming to
improve such progression predictions using machine learning.

On the other hand, the algorithm developed by Elamin et al. (2015) (ELAMIN
et al., 2015) was able to reliably predict prognosis in ALS patients by determining a
prognostic index to separate the patients in three risk groups (low, medium or high risk).
To identify which clinical data should be considered in the computation of the index,
Kaplan-Meier methods and Cox proportional hazards regression were implemented. Data
corresponded to an Irish cohort, which was used in training applying cross validation, and
an Italian cohort for external confirmation.

Additionally, a recent systematic review (Tavazzi et al., 2023 (TAVAZZI et al., 2023))
analyzed 15 studies on patient stratification, 28 on prediction of ALS progression and 6 on
both stratification and prediction based on artificial intelligence and statistical methods.
The results show that the ALSFRS and ALSFRS-R scores were the main prediction targets,
so it was certain that we would test our models for predicting disease progression using
the ALSFRS score. Also, among the most often found methods were K-means, hierarchical
and expectation-maximisation clustering for stratification and random forests, logistic
regression, the Cox proportional hazard model and deep learning techniques for prediction.
Nonetheless, deep learning has not yet been established as superior to traditional methods,
even though it could have potential for prediction applications. Therefore, it led us to
believe that it is worthy testing supervised and unsupervised methods, but not deep
learning in this case.

2.1.2 Prognostic and Diagnostic Models using MRI Data

Other studies have been proposed to explore the usage of MRI Data as the input of
model training methods either along with clinical or the imaging alone. Two examples that
used clinical and MRI data combined were presented by Schuster et al. (2017) (SCHUSTER;
HARDIMAN; BEDE, 2017) and Van Der Burgh et al. (2017) (van der Burgh et al., 2017).
They all found better performance of their models when using both clinical and imaging
datasets than separately (Table 1).

For Schuster et al. (2017) (SCHUSTER; HARDIMAN; BEDE, 2017), MRI data
corresponded to features calculated from surface-based morphometry and diffusion tensor
white matter parameters. It included precentral/paracentral gyri for cortical thickness and
superior/inferior corona radiata, anterior/posterior limbs of the internal capsule, cerebral
peduncles and genu/body/splenium of the corpus callosum for white matter. As for Van
Der Burgh et al. (2017) (van der Burgh et al., 2017), T1-weighted and diffusion-weighted
images were used to determine structural connectivity matrices and brain morphology

2.2. ALS Databases 23

data.

Study Accuracy clinical data Accuracy MRI data Accuracy both data
Survival prediction (mortality
within 18-months) (SCHUSTER;
HARDIMAN; BEDE, 2017)

66.67% 77.08% 79.17%

Survival category (short, medium or
long) (van der Burgh et al., 2017)

68.8% 62.5% 84.4%

Table 1 – Survival prediction accuracy using clinical and imaging dataset.

Schuster et al. (2017) (SCHUSTER; HARDIMAN; BEDE, 2017) and Van Der Burgh et al.
(2017) (van der Burgh et al., 2017) obtained similar accuracy percentage, and best when clinical

and MRI data were combined.

In a diagnostic context, rather than prognostic, the study by Kushol et al. (2023)
(KUSHOL et al., 2023) introduces a Vision Transformer (ViT) architecture to differentiate
ALS patients from healthy controls. The study utilizes a combination of T1-weighted,
R2*, and FLAIR images sourced from multi-center datasets. The results of this approach
are overall positive, as the framework presents better accuracy (88%) than other deep
learning-based techniques.

This high level of accuracy, when combined with the prognostic outcomes derived
from MRI and clinical data, underscores the potential of magnetic resonance imaging
as a valuable biomarker for ALS. These findings support the aim of the present project,
reinforcing the idea that MRI could play a critical role in both diagnosing ALS and
understanding its progression.

2.2 ALS Databases
Research on ALS has resulted in the conception of different databases related to

the disease. However, very few datasets are publicly available and only under approval
of user request. In addition, most accessible published data only include genetic and/or
clinical features, but no imaging. This is due to the fact that Amyotrophic Lateral Sclerosis
is a disease classified as rare, representing around 3 cases per 100,000 individuals in
European populations, where it is the most incident (HARDIMAN et al., 2017). Other
than that, given motor symptoms’ rapid aggravation in ALS patients, it is difficult to
demand dislocation so imaging exams may be accomplished and also complicated to obtain
exploitable images when quality depends on the minimization of movement during the
data collection.

Among known ALS datasets, there is the Amyotrophic Lateral Scleroris Database
(ALSOD), the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database
and Answer ALS Data Portal. ALSOD was first published in 1999 and later updated in
2008. It stores the mutation points in the SOD1 amino acid sequence that characterize
individuals affected by Amyotrophic Lateral Sclerosis. New features that were added more

24 Chapter 2. Conceptual Aspects

recently, such as new identified mutations on SOD1 and supplying more detail to patient
information, have helped explaining ALS phenotypes. Until 2008, there were 50 reported
users and data from 97 patients from Asia, Europe and North America (WROE et al.,
2008).

PRO-ACT is composed by clinical trials data regarding over than 8,600 subjects.
It includes demographics, family histories and longitudinal clinical and laboratory data,
which encompasses the ALSFRS-R score and Vital Capacity. By 2014, it was the largest
public dataset concerning clinical trials data on ALS, aiming to provide enough statistical
power for new researches on the disease. (ATASSI et al., 2014)

Answer ALS Data Portal is still in the process of data collecting and its goal
consists in becoming the widest clinical and omics dataset concerning ALS to help in the
global development of new treatments and the search for a cure. Currently there has been
more than 1,200 participants and 110T of data points for several sessions (NEUROMINE,
).

It is very helpful for studying prognosis that both PRO-ACT and Answers ALS
Data Portal present longitudinal data. All three are public, but can only be downloaded by
submitting a form for requesting the data and being approved after analysis. Additionally,
none of them have declared to have collected any imaging modalities from patients.

2.3 Natural Language Processing

2.3.1 Introduction to NLP

Natural Language Processing (NLP) is a technique developed in the field of
Artificial Intelligence (AI) that combines both natural human languages and computers.
Its origins trace back to the early 1950s, defined initially as the joining of computer
sciences and linguistics. The history behind NLP is marked by clear phases, including
machine translation between languages, an AI-driven and semantics-oriented era and a
grammatical-logical stage (FANNI et al., 2023). In the 90s, statistical models for NLP
became specially popular, comprising simple and robust approximations, more rigorous
evaluation, Machine Learning methods and employing large texts in algorithm training.

Some ML techniques are particularly common in NLP development. Support Vector
Machines are applied for classifying inputs into categories. Hidden Markov Models might
be useful to solve problems such as inference, pattern matching and training, and are
extensively used for speech recognition. Conditional Random Fields can be of interest in
predicting the classification for different entities in a passage. N-grams, or sequences of N
items, may have their frequency/distribution calculated. In this case, items refer to either
characters, words or phonemes.

2.3. Natural Language Processing 25

According to (NADKARNI; OHNO-MACHADO; CHAPMAN, 2011), NLP tasks
involve the following steps.

1. Sentence boundary detection: Determine how sentences are delimited.

2. Tokenization: Identify tokens, that is, words or punctuations, within a sentence.

3. Part-of-speech assignment to individual words: Classify tokens grammatically as
pronouns, nouns, verbs, adjectives, etc. An example is presented by figure 4.

Figure 4 – Example of POS tagging.

Extracted from (GOPENAI, 2023)

4. Morphological decomposition of compound words: An important sub-task consists
in converting a word to a root using suffix removal. Crucial in synthetic languages,
such as German and Hungarian.

5. Shallow parsing: Recognition of phrases. An example may be consulted in figure 5,
where a sentence (S) is parsed in noun phrases (NP) and verb phrases (VP).

6. Problem-specific segmentation: Separating texts per segments considered to be
meaningful.

Figure 5 – Example of shallow parsing.

Extracted from (THESSEN; CUI; MOZZHERIN, 2012)

2.3.2 NLP’s Current State

Recently, the language representation model proposed as BERT (Bidirectional
Encoder Representations from Transformers) (DEVLIN et al., 2018b) has gained visibility.
Differently from previous solutions, it reads the sequence of words in both directions, left-
to-right and right-to-left, instead of in only either one of them. In such manner, it is capable

26 Chapter 2. Conceptual Aspects

of learning more about language context and flow and it uses embeddings to compare
results to queries, which is more representative than simple word matching. Nonetheless,
BERT also presents limitations, as large model sizes and presenting a maximum input
length of usually 512 tokens.

Open-source pre-trained models (PTMs) that have deployed BERT can be found
in Hugging Face (JONES et al., 2024), a prominent PTM registry in the NLP community.
Its goal is to promote collaboration, so models may be continuously used and improved.
The platform does not only give access to pre-trained algorithms, but it also provides good
documentation and transparency, helping users to learn and better understand the code
development.

2.3.3 NLP Applications

By converting written and spoken human language into computationally exploitable
data, NLP applications may be categorized in two main types: Natural Language Under-
standing (NLU) for extracting meaning or identifying context from a text and Natural
Language Generation (NLG) for producing human-like texts. It already permeates sev-
eral current applications in computer software and in mobile phones, but also rising in
healthcare. Even though NLP is only starting in hospital environments, it has presented
significantly good results, facilitating and speeding doctors and researchers’ tasks. In-
formation extraction and retrieval are two of the most used applications in the medical
domaine.

Among Natural Language Processing usages in healthcare, there is MedLEE, used
for detecting patients suspected to present tuberculosis and breast cancer; CTakes, which
has been used to evaluate pneumonia diagnosis based on radiology reports; Cogstack, for
information retrieval and extraction implemented in King’s College Hospital in the United
Kingdom (FANNI et al., 2023). IBM has too conducted a medical diagnosis demonstration,
using Watson, its supercomputer famous for its highly parallel hardware (NADKARNI;
OHNO-MACHADO; CHAPMAN, 2011).

Thus, it has proven to be beneficial in biomedical contexts as well, even when
considering relatively large bodies of text. Despite still being limited for diagnosis given its
legal and medical implications, for instance, it can be largely used for collecting important
data and in question answering applications.

2.4 Legal implications
Considering the current context of Generative AI growing usage, laws all around

the world have been readapted to approach cases of Text and Data Mining, also comprising
the application of Webscraping and NLP methods. The act of automatically collecting

2.4. Legal implications 27

online data, referred to as Webscraping, is probably still one of the least defined on how it
stands in copyright legislation. Nonetheless, there are specific cases that have occurred in
the United States and can be analyzed for reference.

According to (ILIN; KELLI, 2024), the case of Doe et al. v. GitHub, Inc. et al.,
22 is an example where the defendants (Microsoft, GitHub and OpenAI) were accused of
what was called as “software piracy". By using scraped data from public code repositories
to train GitHub Copilot, an AI coding assistant, they were alleged to have violated the
open-source licenses, that require crediting the codes’ authors, and GitHub’s terms of
service and privacy policies. This is still an open case in November 2024.

On the other hand, there were cases that were favorable to allowing online data
collection as long as it is publicly available and doesn’t require the acceptance of the
website’s terms of conditions in order to be accessed. In the hiQ Labs, Inc v. Linkedin
Corporation, hiQ was prosecuted for supposedly infringing Linkedin’s User Agreement by
collecting public data from its website. However, The US Federal Court’s decision in the
hiQ v. Linkedin case has stated the following (text extracted from (COURTS, 2022)):

Although there are significant public interests on both sides, the district court
properly determined that, on balance, the public interest favors hiQ’s position. We agree
with the district court that giving companies like LinkedIn free rein to decide, on any
basis, who can collect and use data — data that the companies do not own, that they
otherwise make publicly available to viewers, and that the companies themselves collect
and use —risks the possible creation of information monopolies that would disserve the
public interest.

Regarding Text and Data Mining (TDM), laws are typically more specific. TDM is
composed of identifying text to be analyzed, copying significative amounts of materials,
extracting data and recombination. Since scientific publications in any format are copy-
rightable, applying mining techniques, such as machine learning (COLONNA, 2017), to
academic papers, may be classified as copyright infringement, but it depends.

The argumentation described in (LIPTON, 2020) shows that some academic journal
publishers, e.g. Elsevier and Oxford University Press, provide permission for performing text
and data mining in their content for non-commercial use. In these cases, it is not necessary
to seek permission from publishers individually to reuse their work. In American legislation,
although the fair use doctrine from Paragraph 107 of the United States Copyright Act
varies for each situation, previous decisions have indicated that, when applied for research
purposes, most TDM is classified as fair use.

In Australia, by 2020, the system allows use of copyrighted works in certain
exceptions, as in research and study, for instance. In 2014, the United Kingdom adopted
exemption to text and data mining when it comes to non-commercial research. As it it is

28 Chapter 2. Conceptual Aspects

stated in the amended law ([436], Par. 29A):

. . . the making of a copy of a work by a person who has lawful access to that work
does not infringe copyright if it is made so that that person can carry out a computational
analysis of anything included in that work for non-commercial research purposes.

In other European countries, which encompasses France, Estonia and Germany, it
is also stated by law that, as long as there isn’t commercial intent in the TDM application,
it is legal. For France, specifically, it is important that the data is reproduced only from
lawful sources. Even though Europe has been recently updating copyright law statements,
it is still argued by scholars and policymakers that Europe stands behind United States
on copyright flexibility, delaying advances in data usage.

To conclude, Brazilian law has also been recently rediscussed in light of recent
global changes to legislation. The Federal senate’s PL number 2.338/2023, more specifically
in article 42, only authorizes data access and usage by entities whose mission is connected
to the public’s interest, as for research institutions. It is also clearly stated that, concerning
protected work, TDM must not implicate in the creation of concurring products or that
may impact normal exploration of the used work (SOUZA; SCHIRRU; ALVARENGA,
2024).

29

3 Methods

As described previously in chapter 2, there were 5 main steps that were necessary
for reaching the objectives in this project. Therefore, the following sections are divided
according to the work developed for each step.

3.1 Article collection

At first, it was thought that article collection could be achieved by developing a
Python code as the following. The logic consisted in getting the results in the Google
Scholar website for the query “amyotrophic lateral sclerosis als dataset” per page. Each
page contains 10 different papers and the program iterates throughout the maximum
number of pages possible. After, having as reference the class names for each item displayed
in Google Scholar from the HTML code, which may be obtained by inspecting its page as
represented in Figure 6, basic information on the results could be collected, such as title,
authors, year of publication, access link, among others. In this case, the BeautifulSoup
library was very useful for storing the HTML source codes.

import r eque s t s
from bs4 import Beaut i fu lSoup
import pandas as pd
import re
import c l oudsc rape r

def get_html_from_page (page) :
u r l = f ’ https : // s cho l a r . goog l e . com/ s cho l a r ? h l=pt−BR&

as_sdt=0%2C5&q=amyotrophic+l a t e r a l+s c l e r o s i s+a l s+
datase t&btnG=&s t a r t={page} ’

s c r ape r = c loudsc rape r . c r ea te_sc raper (
browser={

’ browser ’ : ’ chrome ’ ,
’ p lat form ’ : ’ android ’ ,
’ desktop ’ : Fa l se

}
)
re sponse = sc rape r . get (u r l)
soup = Beaut i fu lSoup (re sponse . text , ’ html . pa r s e r ’)
return soup , re sponse . status_code

30 Chapter 3. Methods

def g e t_s cho l a r_a r t i c l e s (soups) :
s c h o l a r_a r t i c l e s = []
for soup in soups :

for e l in soup . s e l e c t (’ . gs_r ’) :
i f len (e l . s e l e c t (’ . gs_rt ’)) > 0 :

s c h o l a r_a r t i c l e s . append ({
’ t i t l e ’ : e l . s e l e c t (’ . gs_rt ’) [0] . text ,
’ t i t l e_ l i n k ’ : e l . s e l e c t (’ . gs_rt ␣a ’) [0] [’

h r e f ’] ,
’ authors ’ : e l . f i nd (" div " , { " c l a s s " : "

gs_a " }) . get_text () ,
’ year ’ : r e . f i n d a l l (r ’ \d+’ , e l . f i nd (" div "

, { " c l a s s " : " gs_a " }) . get_text ()) [0] ,
’ cited_by_count ’ : e l . s e l e c t (’ . gs_nph+␣a ’

) [0] . text ,
’ c i t ed_ l ink ’ : ’ https : // s cho l a r . goog l e .

com ’ + e l . s e l e c t (’ . gs_nph+␣a ’) [0] [’
h r e f ’] })

return s c h o l a r_a r t i c l e s

soup , code = get_html_from_page (0)
i f code == 200 :

nb_of_results = 0
for word in soup . f i nd (’ div ’ , { ’ id ’ : ’gs_ab_md ’ }) .

get_text () . s p l i t () :
i f word . r ep l a c e (’ . ’ , ’ ’) . i snumer ic () :

nb_of_results = int (word . r ep l a c e (’ . ’ , ’ ’))

al l_pages_soups = []
for page in range (nb_of_results) :

html , code = get_html_from_page (page)
i f code == 200 :

al l_pages_soups . append (html)
else :

break

s c h o l a r_a r t i c l e s = ge t_s cho l a r_a r t i c l e s (al l_pages_soups)

3.2. Text preprocessing 31

Figure 6 – Google Scholar inspection for obtaining class names of each item
displayed in its page.

Then, the full texts for each article should be accessed in order to identify further
information on the ALS datasets. To do so, the source links for each one of them would
have to be explored as well. However, most papers are protected by a CAPTCHA system,
intended to differentiate human users from bots trying to access them. In this context, it
prevents the Webscraping methods hereby used from accessing the needed texts.

Several libraries were tested for making the GET request on the articles’ websites,
including the Python standard library requests, selenium (MUTHUKADAN,) along
with a Chrome Driver, cloudflare (CLOUDFLARE-SCRAPE,), httpx (HTTPX. . . ,)
and cloudscraper (PYPI, 2023). Nonetheless, no option worked, receiving the forbidden
code as 403. Other solutions involved using proxies and Anti-CAPTCHA algorithms,
however this could implicate legal issues.

By better studying laws concerning Webscraping, as it was described in Chapter 2,
it was decided that it was best not to automatize the gathering of papers. So, even though
there are tools such as PyPaperBot (FERRULLI,), manual download was the only viable
solution, given blurry legal implications of such automatic collection.

3.2 Text preprocessing
The pypdf library (PYPI, b) was used to read the papers PDF files and provide the

text in Python. Yet, the full texts could not be simply provided to the Natural Language
Processing (NLP) models to be analyzed. An extensive amount of large texts could result
in reaching memory limits and high execution time. Furthermore, NLP models may have
a maximum number of accepted tokens. For such reasons, it was decided to extract the
abstracts from the scientific articles, when possible. To detect the abstracts, two heuristics
were adopted:

• It is assumed that the abstract will be found in the first page of the PDF file. If not

32 Chapter 3. Methods

found in the first page, it is searched for in the second page, which may be the case
when there is a cover page for the article.

• The abstract is supposed to be between the word “Abstract” and “Keywords” or
“Key words". Several articles are constructed as presenting both items.

The implementation in Python, shown below, consists in using regex pattern
identification for finding the beginning of the abstract, indicated by the word “abstract”,
and the end of it, indicated by the word “keywords” or “key words”. If both searches result
in non-empty objects and abstract comes before keywords, the abstract is considered to be
found. First this process is done for the first page, but if it doesn’t succeed, it is attempted
for the second page as well. When the abstract can’t be encountered neither in the first
page, nor in the second page, the full text from the first page is used.

pd f_ f i l e s = [f i l e for f i l e in os . l i s t d i r () i f ’ pdf ’ in f i l e]
for pd f_ f i l e in pd f_ f i l e s :

r eader = PdfReader (pd f_ f i l e)
page = reader . pages [0]
ab s t r a c t = page . ext ract_text () . lower ()
answers = []

ab s t ra c t_s ta r t = re . s earch (r ’ ab s t r a c t ’ , ab s t r a c t)
abstract_end = re . search (r ’ key (\ s ?) words ’ , ab s t r a c t)
print (pd f_ f i l e)
i f abs t ra c t_s ta r t != None :

i f abstract_end != None :
i f (ab s t r a c t_s ta r t . span () [1] < abstract_end . span

() [0]) :
ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span ()

[1] : abstract_end . span () [0]]
else :

ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span ()
[1] :]

else :
ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span () [1] :]

else :
page = reader . pages [1]
ab s t r a c t = page . ext ract_text () . lower ()

ab s t ra c t_s ta r t = re . s earch (r ’ ab s t r a c t ’ , ab s t r a c t)
abstract_end = re . search (r ’ key (\ s ?) words ’ , ab s t r a c t)

3.3. Data characterization 33

i f abs t ra c t_s ta r t != None :
i f abstract_end != None :

i f (ab s t r a c t_s ta r t . span () [1] < abstract_end .
span () [0]) :
ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span

() [1] : abstract_end . span () [0]]
else :

ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span
() [1] :]

else :
ab s t r a c t = abs t r a c t [ab s t r a c t_s ta r t . span ()

[1] :]

3.3 Data characterization

In order to characterize the dataset, Natural Language Processing techniques were
chosen for detecting information automatically in the collected texts. However, as the idea
is to completely automatize the process and human intervention should not be necessary
in order to attest the correctness of the gathered data, a verification system has to be
proposed to avoid misinformation. Thus, it was decided to use the concept of Triple
Modular Redundancy, represented by Figure 7, to reduce errors from this step.

Figure 7 – Triple Modular Redundancy.

Extracted from (TARASYUK; TROUBITSYNA; LAIBINIS, 2010).

In this approach, three different NLP modules are used for analyzing the text.
Considering that there are queries that should be answered by the models given a context,
the modules selected are placed in the Question Answering category. Then, a voter, provided
with the answers given by each model, it decides which answer should be outputted.

The context in each article is the abstract extracted in the previous step. The
queries to be answered are the following: “Which dataset is being used?”, “What kind

34 Chapter 3. Methods

of data is being used?” and “How many subjects in the dataset?”. The three modules
correspond to three different Question Answering NLP models obtained from the Hugging
Face platform, including distilbert/distilbert-base-cased-distilled-squad (SANH et
al., 2019), google-bert/bert-large-cased-whole-word-masking-finetuned-squad
(DEVLIN et al., 2018a) and deepset/roberta-base-squad2 (HAYSTACK,). All al-
gorithms have been selected by presenting a large amount of downloads made by other
Hugging Face users and a high F1-score.

Model Downloads last
month (in Novem-
ber 25th 2024)

F1-score Evaluation dataset Model size

roberta-base-squad2 1,116,795 82.91 SQuAD 2.0 dev set 124M params
bert-large-cased 174,511 83.1 SQuAD v2.0 334M params

distilbert-base-cased 358,553 87.1 SQuAD v1.1 dev set 65.2M params

Table 2 – Comparison between the chosen NLP models.

Although all three use the language representation from BERT, each has its
own training procedure. The roberta model has been trained on question-answer pairs,
which includes unanswerable questions, from SQuAD 2.0. The bert-large-cased model is
pretrained using a masked language modeling objective and trained using Whole Word
Masking, where each masked WordPiece token is predicted independently. DistilBERT
uses the BERT base model as a teacher and is also pretrained on the same database in a
self-supervised manner, but it is smaller and faster.

So, for each NLP module, the following code in Python is run for obtaining the
answers to three questions defined previously.

qu e r i e s = [’Which␣ datase t ␣ i s ␣ being ␣used ? ’ , ’What␣kind␣ o f ␣data␣ i s
␣ being ␣used ? ’ , ’How␣many␣ sub j e c t s ␣ in ␣ the ␣ datase t ? ’]

a l l_answers = {}
for pd f_ f i l e in pd f_ f i l e s :

answers = []
for query in que r i e s :

answers . append (model (ques t i on=query , context=abs t r a c t) [’
answer ’])

a l l_answers [pd f_ f i l e] = answers

The definition of each model is done using the pipeline function provided by the
transformers library from Hugging Face, as shown in the code below.

google_bert = p i p e l i n e (’ quest ion−answering ’ , model=’ google−bert /
bert−large−uncased−whole−word−masking−f inetuned−squad ’)

3.3. Data characterization 35

answers_google_bert = extract_data_from_abstract (pd f_ f i l e s ,
google_bert)

robe r ta = p i p e l i n e (’ quest ion−answering ’ , model=’ deepset / roberta−
base−squad2 ’)

answers_roberta = extract_data_from_abstract (pd f_ f i l e s , r obe r ta)
d i s t i l b e r t = p i p e l i n e (’ quest ion−answering ’ , model=’ d i s t i l b e r t /

d i s t i l b e r t −base−cased−d i s t i l l e d −squad ’)
an swe r s_d i s t i l b e r t = extract_data_from_abstract (pd f_ f i l e s ,

d i s t i l b e r t)

At last, it was necessary to define a voter using heuristics so an answer could be
selected among the three outputs obtained. I decided to compute the compatibility among
the answers provided by each NLP model and, if at least two of the collected information
presented a similitarity of 50% or higher, the longest output, considered to be the most
complete, was chosen. So, if the three answers were more than 50% compatible, the longest
among all three would be selected. If only two answers were more than 50% compatible,
the longest among both would be selected. If there wasn’t enough compatibility among no
pair of answers, none would be selected.

a l l_answers = {}
for f i l e in answers_google_bert . keys () :

answers = []
for i in range (3) :

answer_google_bert = answers_google_bert [f i l e] [i]
an swe r_d i s t i l b e r t = an swe r s_d i s t i l b e r t [f i l e] [i]
answer_roberta = answers_roberta [f i l e] [i]
ra t io_goog le_roberta = fuzz . token_set_rat io (

answer_google_bert , answer_roberta) >= 50
r a t i o_goog l e_d i s t i l b e r t = fuzz . token_set_rat io (

answer_google_bert , an swe r_d i s t i l b e r t) >= 50
r a t i o_d i s t i l b e r t_ r ob e r t a = fuzz . token_set_rat io (

answer_d i s t i l b e r t , answer_roberta) >= 50
i f (rat io_goog le_roberta and r a t i o_goog l e_d i s t i l b e r t and

r a t i o_d i s t i l b e r t_ r ob e r t a) :
answers . append (max([answer_google_bert ,

answer_d i s t i l b e r t , answer_roberta] , key=len))
e l i f (rat io_goog le_roberta) :

answers . append (max([answer_google_bert ,
answer_roberta] , key=len))

e l i f (r a t i o_goog l e_d i s t i l b e r t) :

36 Chapter 3. Methods

answers . append (max([answer_google_bert ,
an swe r_d i s t i l b e r t] , key=len))

e l i f (r a t i o_d i s t i l b e r t_ r ob e r t a) :
answers . append (max([answer_d i s t i l b e r t ,

answer_roberta] , key=len))
else :

answers . append (None)
a l l_answers [f i l e] = answers

The function fuzz.token_set_ratio() from the fuzzywuzzy library in Python
(PYPI, a) was useful for calculating the compatibility among strings. It uses the Levenshtein
Distance as metric, that is, the minimum number of single-characters edits needed for
transforming one word into another, including insertions, deletions and/or substitutions.

Having the modular system ready for functioning, preprocessing along with infor-
mation gathering were executed for every article collected. Next, the results that were
returned were saved on an numpy file format and on an excel file. In order to evaluate the
performance of the voter on filtering bad answers, each paper and the corresponding given
output were manually compared.

3.4 Data provision

In order to make data available and to facilitate further analysis on the obtained
results, it was opted to compile all the information in a DataFrame object from the pandas
library. In a first instance, a CSV file with basic data on the articles was imported. Then,
using the “PDF Name" column, both data from the CSV and data collected using the
NLP models after preprocessing the texts were merged into a DataFrame. The code below
shows how this is written in Python.

df = pd . read_csv (’ r e s u l t . csv ’)
df [’ Database ’] = [None] ∗ len (df)
df [’Data␣Type ’] = [None] ∗ len (df)
df [’Amount␣ o f ␣Data ’] = [None] ∗ len (df)
for pd f_ f i l e in al l_answers . keys () :

d f . l o c [df [’PDF␣Name ’] == pdf_f i l e , [’ Database ’ , ’Data␣Type ’ ,
’Amount␣ o f ␣Data ’]] = al l_answers [pd f_ f i l e] [0] ,

a l l_answers [pd f_ f i l e] [1] , a l l_answers [pd f_ f i l e] [2]
d f . head ()

Then, three different plots were created to help summarizing the distribution of
the obtained data. One for the amount of papers published per year in the given theme,

3.4. Data provision 37

another for the proportion of types of data that were detected (percentage of clinical,
genetic, imaging and others) and classification of datasets by different amounts of data
made available (between 0-100, 101-1000, 1001-10000 and 10001+). The following piece
of code was developed for drawing the plots. The images for the graphs must be saved
locally so they can be properly sent by the API afterwards.

import seaborn as sns
import matp lo t l i b . pyplot as p l t
import i o
from f l a s k import s end_f i l e
from f l a s k import r eque s t

d f_ f i l t e r e d = df [[’Name ’ , ’ Scho lar ␣Link ’ , ’ Year ’ , ’ Authors ’ , ’
Database ’ , ’Data␣Type ’ , ’Amount␣ o f ␣Data ’]]

p l t . y l ab e l (’Count ’)
p l t . x l ab e l (’Amount␣ o f ␣data ’)
p l t . bar (intervals_amount_of_data . keys () ,

intervals_amount_of_data . va lue s () , edgeco l o r=’ black ’)
p l t . s a v e f i g (’AmountData . png ’)

p l t . c l f ()
t o t a l = len (df [’Data␣Type ’] . dropna ())
c l i n i c a l = sum ([(’ c l i n i c ’ in x) for x in df [’Data␣Type ’] . dropna

()])
g en e t i c = sum ([(’ gene␣ ’ in x or ’ g en e t i c ’ in x) for x in df [’

Data␣Type ’] . dropna ()])
imaging = sum ([(’ imaging ’ in x or ’ image ’ in x) for x in df [’

Data␣Type ’] . dropna ()])
o the r s = t o t a l − sum([c l i n i c a l , genet i c , imaging])
data = [c l i n i c a l , genet i c , imaging , o the r s]
keys = [’ C l i n i c a l ’ , ’ Genet ic ’ , ’ Imaging ’ , ’ Others ’]
explode = [0 , 0 , 0 . 3 , 0]
pa l e t t e_co l o r = sns . c o l o r_pa l e t t e (’ v i r i d i s ’)
p l t . p i e (data , l a b e l s=keys , c o l o r s=pa l e t t e_co lo r ,

explode=explode , autopct=’%.0 f%%’)
p l t . s a v e f i g (’DataType . png ’)

p l t . c l f ()
sns . h i s t p l o t (df [’ Year ’] , p a l e t t e=’ v i r i d i s ’)
p l t . s a v e f i g (’ Year . png ’)

38 Chapter 3. Methods

Having all information compiled and the plots generated, it is possible to make it
available externally through an API. In this case, the flask library (FLASK,) in Python
was used. It is important to note that, in order to create the interface, it is necessary to
configure CORS (Cross-Origin Resource Sharing) so it may be accessed by other domains.
There are five paths that are made available, returning different information.

Three functions are relative to the three plots created and described previously.
One method is to make available the general data collected for each article. In this case,
there are variables that may also be included in the request URL to filter the provided data,
such as starting year and ending year, so only papers published between both years are
returned. It is also possible to determine which papers are described by the resulting json
object using the data_type variable. Finally, there’s one path that supplies information
on the amount of papers that were analyzed, including how many there were initially, how
many were downloaded by this study, among others.

app = Flask (__name__)
CORS(app)

@app . route (’ /data ’)
def get_data () :

d f_ f i na l = d f_ f i l t e r e d
data_type = reques t . a rgs . g e t l i s t (’ data_type ’)
s ta r t ing_year = reques t . a rgs . get (’ s ta r t ing_year ’)
ending_year = reques t . a rgs . get (’ ending_year ’)

i f (len (data_type) > 0) :
i f (’ c l i n i c a l ’ in data_type) :

d f_ f i na l = d f_ f i l t e r e d [[(’ c l i n i c ’ in x) i f (x !=
None) else False for x in d f_ f i l t e r e d [’Data␣Type ’
]]]

i f (’ g en e t i c ’ in data_type) :
i f (’ c l i n i c a l ’ in data_type) :

d f_ f i na l = pd . concat ([d f_f ina l , d f_ f i l t e r e d [[(’
gene␣ ’ in x or ’ g en e t i c ’ in x) i f (x != None)

else False for x in d f_ f i l t e r e d [’Data␣Type ’
]]]]) . drop_dupl icates (subset=’Name ’)

else :
d f_ f i na l = d f_ f i l t e r e d [[(’ gene␣ ’ in x or ’

g en e t i c ’ in x) i f (x != None) else False for
x in d f_ f i l t e r e d [’Data␣Type ’]]]

i f (’ imaging ’ in data_type) :

3.4. Data provision 39

i f (’ c l i n i c a l ’ in data_type or ’ g en e t i c ’ in
data_type) :
d f_ f i na l = pd . concat ([d f_f ina l , d f_ f i l t e r e d [[(’

imaging ’ in x or ’ image ’ in x) i f (x != None)
else False for x in d f_ f i l t e r e d [’Data␣Type ’
]]]]) . drop_dupl icates (subset=’Name ’)

else :
d f_ f i na l = d f_ f i l t e r e d [[(’ imaging ’ in x or ’

image ’ in x) i f (x != None) else False for x
in d f_ f i l t e r e d [’Data␣Type ’]]]

i f (s ta r t ing_year != None) :
d f_ f i na l = d f_ f i na l [d f_ f i na l [’ Year ’] > f loat (

s ta r t ing_year)]

i f (ending_year != None) :
d f_ f i na l = d f_ f i na l [d f_ f i na l [’ Year ’] < f loat (ending_year

)]

d f_ f i na l . f i l l n a (’ ’ , i np l a c e=True)
data_json = d f_ f i na l . to_dict (’ r e co rd s ’)
return j s o n i f y (data_json)

@app . route (’ / plot_year ’)
def get_plot_year () :

with open(’ Year . png ’ , ’ rb ’) as fh :
bytes_year = io . BytesIO (fh . read ())
return s end_f i l e (bytes_year ,

download_name=’ plot_year . png ’ ,
mimetype=’ image/png ’)

@app . route (’ /plot_data_type ’)
def get_plot_data_type () :

with open(’DataType . png ’ , ’ rb ’) as fh :
bytes_data_type = io . BytesIO (fh . read ())
return s end_f i l e (bytes_data_type ,

download_name=’ plot_data_type . png ’ ,
mimetype=’ image/png ’)

40 Chapter 3. Methods

@app . route (’ /plot_amount_data ’)
def get_plot_amount_data () :

with open(’AmountData . png ’ , ’ rb ’) as fh :
bytes_amount_data = io . BytesIO (fh . read ())
return s end_f i l e (bytes_amount_data ,

download_name=’ plot_amount_data . png ’ ,
mimetype=’ image/png ’)

@app . route (’ / i n f o_ r e s u l t s ’)
def ge t_ in fo_re su l t s () :

i n f o_ r e s u l t s = {}

columns = [’Name ’ , ’DOI ’ , ’ Year ’ , ’ Journal ’ , ’ Authors ’ , ’
Database ’ , ’Data␣Type ’ , ’Amount␣ o f ␣Data ’]

for column in columns :
i n f o_ r e s u l t s [column] = str (df [column] . i sna () .

value_counts () [0])
i n f o_ r e s u l t s [’ Downloaded ’] = str (df [’ Downloaded ’] .

value_counts () [1])
print (i n f o_ r e s u l t s)
return j s o n i f y (i n f o_ r e s u l t s)

app . run ()

3.5 User interface

To develop the user interface, the REACT framework was selected given that
it is currently a technology extensively used in companies and, more importantly, well
documented. By fetching the information provided by the API written in Python and
described previously, a simple page was created so databases on ALS could be consulted
and filtered and data collected could be summarized by the drawn plots.

In order to fetch the data from the API, the following functions were used. The
UseEffect function was used so data would be updated every time the page was refreshed.

const f e tchPlotYear = async () => {
const r e s = await f e t ch (baseURL + " plot_year ") ;
const imageBlob = await r e s . blob () ;
const imageObjectURL = URL. createObjectURL (imageBlob) ;
setPlotYear (imageObjectURL) ;

3.5. User interface 41

conso l e . l og (imageObjectURL)
} ;

const fetchPlotDataType = async () => {
const r e s = await f e t ch (baseURL + " plot_data_type ") ;
const imageBlob = await r e s . blob () ;
const imageObjectURL = URL. createObjectURL (imageBlob) ;
setPlotDataType (imageObjectURL) ;
con so l e . l og (imageObjectURL)

} ;

const fetchPlotAmountData = async () => {
const r e s = await f e t ch (baseURL + " plot_amount_data ") ;
const imageBlob = await r e s . blob () ;
const imageObjectURL = URL. createObjectURL (imageBlob) ;
setPlotAmountData (imageObjectURL) ;
con so l e . l og (imageObjectURL)

} ;

u s eE f f e c t (() => {
fetchPlotYear () ;
fetchPlotDataType () ;
fetchPlotAmountData () ;

} , []) ;

u s eE f f e c t (() => {
f e t ch (baseURL + " data ")
. then ((r e s) => {

return r e s . j son () ;
})
. then ((data) => {

setDatabasesData (data) ;
setDataToDisplay (data . s l i c e (0 , TOTAL_VALUES_PER_PAGE)) ;

}) ;
} , []) ;

u s eE f f e c t (() => {
f e t ch (baseURL + " i n f o_ r e s u l t s ")
. then ((r e s) => {

42 Chapter 3. Methods

r e turn r e s . j son () ;
})
. then ((data) => {

s e t I n f oRe su l t s (data) ;
}) ;

} , []) ;

Specifically for when data filtering is applied, it was necessary to get values from
input fields placed in the user interface, and only then build the request URL specifying
the selected variables, which included starting year, ending year and type of data. The
following code refers to this specific case.

f unc t i on f i l t e rDa t a () {
var l i n k = baseURL + " data ? " ;
i f (c l i n i c a l) {

l i n k = l i n k + " data_type=c l i n i c a l &";
}
i f (g en e t i c) {

l i n k = l i n k + " data_type=gene t i c &";
}
i f (imaging) {

l i n k = l i n k + " data_type=imaging&";
}
i f (s t a r t ingYear !== nu l l && sta r t ingYear !== " ") {

l i n k = l i n k + " s ta r t ing_year=" + sta r t ingYear + "&" ;
}
i f (endingYear !== nu l l && endingYear !== " ") {

l i n k = l i n k + " ending_year=" + endingYear + "&" ;
}

setCurrentPageNumber (1) ;

f e t ch (l i n k)
. then ((r e s) => {

return r e s . j son () ;
})
. then ((data) => {

setDatabasesData (data) ;
c on so l e . l og (data . l ength) ;
setDataToDisplay (data . s l i c e (0 , TOTAL_VALUES_PER_PAGE)) ;

3.5. User interface 43

}) ;
}

<input className="Databases−togg l e " type="checkbox " onChange
={(e) => { s e tC l i n i c a l (e . t a r g e t . checked)}}/><span s t y l e
={{"padding " : "10px "}} className="Home−text ">Cl in i co s </
span>

<input className="Databases−togg l e " type="checkbox " onChange
={(e) => { se tGenet i c (e . t a r g e t . checked)}}/><span className
="Home−text " s t y l e ={{"padding " : "10px "}} >Geneticos

<input className="Databases−togg l e " type="checkbox " onChange
={(e) => { setImaging (e . t a r g e t . checked)}}/><span className
="Home−text " s t y l e ={{"padding " : "10px "}} >Imagens

To display the data in a table format, the code was the following. It iterates over
the result provided by the API and has as columns Name, Authors, Year, Scholar Link,
Database, Data Type and Amount of Data for each paper.

const DisplayData=dataToDisplay .map(
(i n f o)=>{

return (
<tr>

<td>{i n f o [’Name’]} </ td>
<td>{i n f o [’ Authors ’]} </ td>
<td>{i n f o [’ Year ’]} </ td>
<td s t y l e={{maxWidth : ’300px ’ , wordWrap : ’

break−word’}}><a hr e f={i n f o [’ Scho lar Link
’]} >{ i n f o [’ Scho lar Link ’]} </td>

<td>{i n f o [’ Database ’]} </ td>
<td>{i n f o [’ Data Type ’]} </ td>
<td>{i n f o [’ Amount o f Data ’]} </ td>

</tr>
)

}
)

<tab l e className=" tab l e tab le−s t r i p ed ">
<thead>

<tr>

44 Chapter 3. Methods

<th>Name</th>
<th>Authors</th>
<th>Year</th>
<th>Scho lar Link</th>
<th>Database</th>
<th>Data Type</th>
<th>Amount o f Data</th>
</tr>

</thead>
<tbody>

{DisplayData}
</tbody>

</table>

Then, to present general information on the obtained results and the plots summa-
rizing the data usage from academic work on ALS, the structure below is used.

<div className=’Home−text ’>Dos { i n f oRe su l t s [’Name ’] } a r t i g o s
r e s u l t a n t e s da pesqu i sa no Google Scholar , { i n f oRe su l t s

[’ Downloaded ’] } puderam se r baixados . Dentre e s t e s , foram
co l e t ado s da ta s e t s para { i n f oRe su l t s [’ Database ’] }

a r t i g o s , t i p o s de dados para { i n f oRe su l t s [’ Data Type ’] }
a r t i g o s e quantidade de dados para { i n f oRe su l t s [’ Amount
o f Data ’] } a r t i g o s . In formacoes q u a n t i f i c a v e i s sao
resumidas pe l o s g r a f i c o s a s e gu i r .</div>

<div className="Summary" s t y l e={{ d i sp l ay : " g r id " ,
gridTemplateColumns : " r epeat (3 , 1 f r) " , gridGap : 20 }}>
<div><p className=’Home−text ’>Publ i cacoes co l e t ada s por

ano</p></div>
<div><p className=’Home−text ’>D i s t r i bu i c a o dos t i p o s de

dados co l e tados </p><img s r c={plotDataType} a l t ="/
plotDataType " /></div>

<div><p className=’Home−text ’>D i s t r i bu i c a o da quantidade
de dados nos dataset s </p><img s r c={plotAmountData}

a l t ="/plotAmountData " /></div>
</div>

45

4 Results

In the article collection phase, 980 academic paper titles concerning Amyotrophic
Lateral Sclerosis datasets were consulted in Google Scholar. Even though it indicated
during search that approximately more than 30.000 results had been found, from page 98
and above, the error shown in Figure 8 was outputted.

Figure 8 – Error in Google Scholar.

From the exploitable articles, 666 of them could be downloaded and processed in
the following stages. Among these, it was automatically found information regarding the
used database for 412, the data type for 405 and amount of data for 479. Figures 9, 10
and 11 show the User Interface along with the generated data.

Figure 9 – Home Page in the developed User Interface.

46 Chapter 4. Results

Figure 10 – Databases Page in the developed User Interface.

The plots in Figure 11 represent, respectively from left to right, the amount of
the collected papers published per year in a histogramme, the proportion of data type
detected using the NLP models (imaging, clinical, genetic or others) and the distribution of
amount of data obtained in automatic information gathering, separated by 1-100, 101-1000,
1001-10000 and 10000+.

Figure 11 – Summary Page in the developed User Interface.

47

5 Analysis and Evaluation

The Triple Modular Redundancy was the stage of the study that most demanded
analysis so its performance could be evaluated, consequently it is the focus of this section.
As a first metric, the amount of time that the method took was considerable, resulting in
7h 24m 22s in total. The machine where the code was executed used an Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz as a processor and presented a 16 GB RAM.

Thus, to guarantee larger scalability of this model, perhaps it would be necessary
to test performance in a GPU, for example, in order to evaluate if it performs betters
by profiting of a parallelizable architecture, and seek other solutions to minimize wrong
answers instead of the Triple Modular Rendundancy. By running three different models,
execution time has been triplicated. Another option would be explore other NLP models
that also present high F1-scores but run faster.

Secondly, it was important to determine how accurate the proposed approach is. In
order to assure which answers were valid according to each paper, a manual analysis was
made. So, each paper’s abstract was read in order to assess if the collected information was
correct or incorrect. Table 3 shows percentages of databases, data types and amounts of
data considered to be correctly classified. However, when separating predictions obtained
from articles that didn’t follow the established heuristics for extracting the abstracts and
the ones that followed it, different accuracies were obtained.

Information Total accuracy Accuracy for de-
tected abstracts

Accuracy for unde-
tected abstracts

Database 57.11% 66.67% 30.12%
Data Type 53.87% 57.79% 31.17%

Amount of Data 53.77% 61.14% 55.82%

Table 3 – TMR Accuracies for each type of information and for different sub-
groups of abstracts.

The Fisher’s Exact Test was used to determine if there is statistical difference
between the accuracies for the two sub-populations of predictions - where abstract was
correctly found and where it hasn’t been found. Such test has been selected for this
case, given that it is applicable to binary sequences. The p-values were calculated and
corresponded to 8.54e-06, 1.79e-05 and 8.85e-03 for the tests considering database, data
type and amount of data respectively. As can be observed, using α = 0.01, all are below
the chosen parameter, indicating significant difference between the accuracies.

Therefore, by observing that only 34.09% of the papers had detectable abstracts

48 Chapter 5. Analysis and Evaluation

in the proposed technique, it is possible to imply that improvements in the heuristics
could aid to achieve better results. Other methods, more robust than stating heuristics,
although more computationally costly, might be necessary. Another alternative would be
to manually preprocess the texts and directly extract the abstracts for feeding the NLP
models.

Finally, based on the gathered results, graphs represented in figure 11 presented in
the previous section, summarize some of the characteristics from the papers and the data
that they were classified to have used or to have collected. The plot on the left, indicating
publications per year, shows that most studies have been more recently conducted. A
considerable amount of papers have been published between 2015 and 2024. In addition,
the graphs representing the proportions of collected data type and amount of data allow
us to confirm earlier hypothesis that there are few imaging data and containing large
numbers of participants.

49

6 Final Considerations

From the analysis presented in Section 5, it is possible to affirm that the proposed
method was moderately successful in extracting relevant information on academic papers
regarding existing datasets for Amyotrophic Lateral Sclerosis. By the end of the project,
a platform was developed and could be easily navigated to consult the obtained results.
So it may be concluded that the initial objective, to create a User Interface as source of
information on ALS databases, has been met.

Nonetheless, it could still be improved and further developed by future work. More
than searching for alternatives that could improve abstract detection and models that
perform better in extracting information from scientific texts, new purposes for Natural
Language Processing can be found in this line of work.

As an example, (LUO et al., 2024) has proven the value of Large Language Model
(LLM) training in neurosciences. By using 332,807 abstracts and 123,085 full-text articles
to train what has been called as BrainGPT, Luo et al. have achieved promising results for
applying AI to provide information in the biomedical field.

Given that this project has shown potential for NLP models to gather data and how
number of studies regarding ALS has been growing notably in the last few years, future
work could include gathering papers to build a solid academic database with authors’
permission and train an LLM to work as a chat bot for answering questions concerning the
disease. This could be helpful not only in the scientific community researching the subject,
but also to recently diagnosed patients that are not necessarily from the medical domain.

There is power in collecting and transforming information that is currently accessible
to few to help propagating knowledge. In this context, Natural Language Processing might
be used to minimize disinformation in the initial steps of ALS and turn the process
of diagnosis acceptance less complicated. Thus, there is great potential in future works
regarding this topic.

51

Bibliography

ATASSI, N. et al. The pro-act database: design, initial analyses, and predictive features.
Neurology, v. 83, n. 19, p. 1719–1725, 2014. Citado na página 24.

BLEILE, B. et al. The Persistent Homology of Dual Digital Image Constructions. 2021.
Disponível em: <https://arxiv.org/abs/2102.11397>. Citado na página 71.

BROOKS, B. R. et al. El escorial revisited: Revised criteria for the diagnosis of
amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron
Disorders, Taylor & Francis, v. 1, n. 5, p. 293–299, 2000. PMID: 11464847. Disponível em:
<https://doi.org/10.1080/146608200300079536>. Citado na página 19.

BUBENIK, P. Statistical topological data analysis using persistence landscapes. 2015.
Disponível em: <https://arxiv.org/abs/1207.6437>. Citado na página 62.

BUBENIK, P. The persistence landscape and some of its properties. In: . Abel
Symposia. Springer International Publishing, 2020. p. 97–117. ISBN 9783030434083.
Disponível em: <http://dx.doi.org/10.1007/978-3-030-43408-3_4>. Citado na página 62.

CARRIèRE, M. et al. PersLay: A Neural Network Layer for Persistence Diagrams and New
Graph Topological Signatures. 2020. Disponível em: <https://arxiv.org/abs/1904.09378>.
Citado 2 vezes nas páginas 61 and 70.

CARRIèRE, M. et al. Representations manual. Disponível em: <https://gudhi.inria.fr/
python/latest/representations.html>. Citado na página 70.

CHEPUSHTANOVA, S. et al. Persistence images: An alternative persistent
homology representation. CoRR, abs/1507.06217, 2015. Disponível em: <http:
//arxiv.org/abs/1507.06217>. Citado na página 62.

CHOE, S.; RAMANNA, S. Cubical homology-based machine learning: An application
in image classification. Axioms, v. 11, n. 3, 2022. ISSN 2075-1680. Disponível em:
<https://www.mdpi.com/2075-1680/11/3/112>. Citado 2 vezes nas páginas 60 and 62.

CLEANING Confounders in your Data with Nilearn. 2024. Disponível em: <https://
carpentries-incubator.github.io/SDC-BIDS-fMRI/05-data-cleaning-with-nilearn.html>.
Citado na página 68.

CLOUDFLARE-SCRAPE. Disponível em: <https://github.com/Anorov/
cloudflare-scrape>. Citado na página 31.

COLONNA, L. Legal Implications of Data Mining: Assessing the European Union’s Data
Protection Principles in Light of the United States Government’s National Intelligence
Data Mining Practices. [S.l.], 2017. (Research Paper No. 5). Legal Implications of Data
Mining: Assessing the European Union’s Data Protection Principles in Light of the United
States Government’s National Intelligence Data Mining Practices, Liane Colonna, eds.,
Beställningar, 2016. Disponível em: <https://ssrn.com/abstract=2924541>. Citado na
página 27.

https://arxiv.org/abs/2102.11397
https://doi.org/10.1080/146608200300079536
https://arxiv.org/abs/1207.6437
http://dx.doi.org/10.1007/978-3-030-43408-3_4
https://arxiv.org/abs/1904.09378
https://gudhi.inria.fr/python/latest/representations.html
https://gudhi.inria.fr/python/latest/representations.html
http://arxiv.org/abs/1507.06217
http://arxiv.org/abs/1507.06217
https://www.mdpi.com/2075-1680/11/3/112
https://carpentries-incubator.github.io/SDC-BIDS-fMRI/05-data-cleaning-with-nilearn.html
https://carpentries-incubator.github.io/SDC-BIDS-fMRI/05-data-cleaning-with-nilearn.html
https://github.com/Anorov/cloudflare-scrape
https://github.com/Anorov/cloudflare-scrape
https://ssrn.com/abstract=2924541

52 Bibliography

COMMUNITY, T. S. mannwhitneyu - SciPy API. 2008–2024. Disponível em: <https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html>. Citado
na página 86.

CONTI, D. C. Magnetic resonance imaging. 03 2016. Disponível em: <https:
//www.researchgate.net/publication/299512554_Magnetic_Resonance_Imaging>.
Citado na página 58.

CONTRIBUTORS, B. Brain Imaging Data Structure. Magnetic Resonance Imaging.
Timing Parameters. Disponível em: <https://bids-specification.readthedocs.io/
en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#
timing-parameters>. Citado na página 68.

COOK, P. N4BiasFieldCorrection. 2021. Disponível em: <https://github.com/ANTsX/
ANTs/wiki/N4BiasFieldCorrection>. Citado na página 69.

COURTS, U. F. hiQ Labs, Inc. v. Linkedin Corporation, No. 17-16783. [s.n.], 2022.
Disponível em: <https://law.justia.com/cases/federal/appellate-courts/ca9/17-16783/
17-16783-2022-04-18.html>. Citado na página 27.

DEVELOPERS, T. fMRIPrep. fMRIPrep - Usage Notes. 2016. Disponível em:
<https://fmriprep.org/en/stable/usage.html>. Citado na página 66.

DEVELOPERS, T. nilearn. Schaefer 2018 Atlas. Disponível em: <https://nilearn.github.
io/dev/modules/description/schaefer_2018.html>. Citado na página 68.

DEVLIN, J. et al. BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR, abs/1810.04805, 2018. Disponível em:
<http://arxiv.org/abs/1810.04805>. Citado na página 34.

DEVLIN, J. et al. Bert: Bidirectional encoder representations from transformers. arXiv
preprint arXiv:1810.04805, p. 15, 2018. Citado na página 25.

DLOTKO, P. Cubical complex user manual. Disponível em: <https://gudhi.inria.fr/
python/latest/cubical_complex_user.html>. Citado na página 70.

DOUAUD, G. et al. Integration of structural and functional magnetic resonance imaging
in amyotrophic lateral sclerosis. Brain, v. 134, n. Pt 12, p. 3470–3479, December 2011.
Epub 2011 Nov 10. Citado na página 59.

ELAMIN, M. et al. Predicting prognosis in amyotrophic lateral sclerosis: A simple
algorithm. Journal of Neurology, v. 262, n. 6, p. 1447–1454, June 2015. Epub 2015 Apr 11.
Citado 2 vezes nas páginas 22 and 85.

ESTEBAN, O. et al. fmriprep: a robust preprocessing pipeline for functional
mri. Nature Methods, v. 16, n. 1, p. 111–116, Jan 2019. Disponível em: <https:
//doi.org/10.1038/s41592-018-0235-4>. Citado 2 vezes nas páginas 66 and 67.

FANNI, S. C. et al. Natural language processing. In: Introduction to Artificial Intelligence.
[S.l.]: Springer, 2023. p. 87–99. Citado 2 vezes nas páginas 24 and 26.

FELDMAN, E. L. et al. Amyotrophic lateral sclerosis. Lancet, v. 400, n. 10360, p.
1363–1380, October 2022. Epub 2022 Sep 15. Citado 2 vezes nas páginas 19 and 21.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://www.researchgate.net/publication/299512554_Magnetic_Resonance_Imaging
https://www.researchgate.net/publication/299512554_Magnetic_Resonance_Imaging
https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#timing-parameters
https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#timing-parameters
https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#timing-parameters
https://github.com/ANTsX/ANTs/wiki/N4BiasFieldCorrection
https://github.com/ANTsX/ANTs/wiki/N4BiasFieldCorrection
https://law.justia.com/cases/federal/appellate-courts/ca9/17-16783/17-16783-2022-04-18.html
https://law.justia.com/cases/federal/appellate-courts/ca9/17-16783/17-16783-2022-04-18.html
https://fmriprep.org/en/stable/usage.html
https://nilearn.github.io/dev/modules/description/schaefer_2018.html
https://nilearn.github.io/dev/modules/description/schaefer_2018.html
http://arxiv.org/abs/1810.04805
https://gudhi.inria.fr/python/latest/cubical_complex_user.html
https://gudhi.inria.fr/python/latest/cubical_complex_user.html
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4

Bibliography 53

FERRULLI, V. PyPaperBot. Disponível em: <https://github.com/ferru97/PyPaperBot>.
Citado na página 31.

FLASK. User’s Guide. Disponível em: <https://flask.palletsprojects.com/en/latest/>.
Citado na página 38.

GIOTTO-TDA - CubicalPersistence. 2021. Disponível em: <https://giotto-ai.github.
io/gtda-docs/latest/modules/generated/homology/gtda.homology.CubicalPersistence.
html>. Citado na página 70.

GIOTTO-TDA - gtda.diagrams: Persistence Diagrams. 2021. Disponível em:
<https://giotto-ai.github.io/gtda-docs/0.5.1/modules/diagrams.html>. Citado na página
70.

GOPENAI. Understanding PoS Tagging: An In-Depth Ex-
ploration. 2023. Disponível em: <https://blog.gopenai.com/
understanding-pos-tagging-an-in-depth-exploration-747f981d3514>. Citado na
página 25.

GROLEZ, G. et al. The value of magnetic resonance imaging as a biomarker for
amyotrophic lateral sclerosis: A systematic review. BMC Neurology, v. 16, n. 1, p. 155,
August 2016. Citado na página 59.

GUPTA, A. et al. Accuracy of conventional mri in als. Canadian Journal of Neurological
Sciences, v. 41, n. 1, p. 53–57, January 2014. Citado na página 59.

HARDIMAN, O. et al. Amyotrophic lateral sclerosis. Nature Reviews Disease Primers,
v. 3, p. 17071, October 2017. Erratum in: Nat Rev Dis Primers. 2017 Oct 20;3:17085. doi:
10.1038/nrdp.2017.85. Citado 3 vezes nas páginas 19, 20, and 23.

HAYSTACK. deepset/roberta-base-squad2. Disponível em: <https://huggingface.co/
deepset/roberta-base-squad2>. Citado na página 34.

HD-BET. Disponível em: <https://github.com/MIC-DKFZ/HD-BET>. Citado na
página 69.

HOTHORN, T.; JUNG, H.-H. Randomforest4life: A random forest for predicting als
disease progression. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, v. 15,
n. 5-6, p. 444–452, September 2014. Citado 2 vezes nas páginas 21 and 85.

HTTPX. A next-generation HTTP client for Python. Disponível em: <https:
//www.python-httpx.org/>. Citado na página 31.

ILIN, I.; KELLI, A. Natural language, legal hurdles: Navigating the complexities in natural
language processing development and application. Journal of the University of Latvia. Law,
v. 17, p. 44–67, Oct. 2024. Disponível em: <https://journal.lu.lv/jull/article/view/2064>.
Citado na página 27.

JONES, J. et al. What do we know about hugging face? a systematic literature review
and quantitative validation of qualitative claims. In: Proceedings of the 18th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement. New York,
NY, USA: Association for Computing Machinery, 2024. (ESEM ’24), p. 13–24. ISBN
9798400710476. Disponível em: <https://doi.org/10.1145/3674805.3686665>. Citado na
página 26.

https://github.com/ferru97/PyPaperBot
https://flask.palletsprojects.com/en/latest/
https://giotto-ai.github.io/gtda-docs/latest/modules/generated/homology/gtda.homology.CubicalPersistence.html
https://giotto-ai.github.io/gtda-docs/latest/modules/generated/homology/gtda.homology.CubicalPersistence.html
https://giotto-ai.github.io/gtda-docs/latest/modules/generated/homology/gtda.homology.CubicalPersistence.html
https://giotto-ai.github.io/gtda-docs/0.5.1/modules/diagrams.html
https://blog.gopenai.com/understanding-pos-tagging-an-in-depth-exploration-747f981d3514
https://blog.gopenai.com/understanding-pos-tagging-an-in-depth-exploration-747f981d3514
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/roberta-base-squad2
https://github.com/MIC-DKFZ/HD-BET
https://www.python-httpx.org/
https://www.python-httpx.org/
https://journal.lu.lv/jull/article/view/2064
https://doi.org/10.1145/3674805.3686665

54 Bibliography

KOCAR, T. D. et al. Feature selection from magnetic resonance imaging data in als: A
systematic review. Therapeutic Advances in Chronic Disease, v. 12, p. 20406223211051002,
October 13 2021. Citado na página 59.

KUSHOL, R. et al. Sf2former: Amyotrophic lateral sclerosis identification from
multi-center mri data using spatial and frequency fusion transformer. Computerized
Medical Imaging and Graphics, v. 108, p. 102279, 2023. ISSN 0895-6111. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0895611123000976>. Citado 2
vezes nas páginas 23 and 85.

LILLE Neuroscience & Cognition. Disponível em: <http://lilncog.eu/en/
lille-neuroscience-and-cognition/>. Citado na página 58.

LIPTON, V. Legal issues arising in open scientific data. In: LIPTON, V. J.
(Ed.). Open Scientific Data. Rijeka: IntechOpen, 2020. cap. 10. Disponível em:
<https://doi.org/10.5772/intechopen.91713>. Citado na página 27.

LUO, X. et al. Large language models surpass human experts in predicting neuroscience
results. Nature Human Behaviour, nov. 2024. ISSN 2397-3374. Disponível em:
<https://www.nature.com/articles/s41562-024-02046-9>. Citado na página 49.

MARIA, C. et al. Rips complex user manual. Disponível em: <https://gudhi.inria.fr/
python/latest/rips_complex_user.html>. Citado na página 70.

MUNCH. Teaspoon - Featurization. 2020. Disponível em: <https://teaspoontda.github.io/
teaspoon/F_PD.html>. Citado na página 70.

MURPHY, K.; BIRN, R. M.; BANDETTINI, P. A. Resting-state fmri confounds and
cleanup. NeuroImage, v. 80, p. 349–359, October 15 2013. Epub 2013 Apr 6. Citado 2
vezes nas páginas 59 and 68.

MUTHUKADAN, B. Selenium with Python. Disponível em: <https://selenium-python.
readthedocs.io/>. Citado na página 31.

NADKARNI, P. M.; OHNO-MACHADO, L.; CHAPMAN, W. W. Natural language
processing: an introduction. Journal of the American Medical Informatics Association,
BMJ Group BMA House, Tavistock Square, London, WC1H 9JR, v. 18, n. 5, p. 544–551,
2011. Citado 2 vezes nas páginas 25 and 26.

NEUROMINE. Disponível em: <https://dataportal.answerals.org/home>. Citado na
página 24.

NICHOLS, T. FAST. 2020. Disponível em: <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST>.
Citado na página 69.

PYPI. fuzzywuzzy. Disponível em: <https://pypi.org/project/fuzzywuzzy/>. Citado na
página 36.

PYPI. pypdf. Disponível em: <https://pypi.org/project/pypdf/>. Citado na página 31.

PYPI. Cloudscraper. 2023. Disponível em: <https://pypi.org/project/cloudscraper/>.
Citado na página 31.

https://www.sciencedirect.com/science/article/pii/S0895611123000976
http://lilncog.eu/en/lille-neuroscience-and-cognition/
http://lilncog.eu/en/lille-neuroscience-and-cognition/
https://doi.org/10.5772/intechopen.91713
https://www.nature.com/articles/s41562-024-02046-9
https://gudhi.inria.fr/python/latest/rips_complex_user.html
https://gudhi.inria.fr/python/latest/rips_complex_user.html
https://teaspoontda.github.io/teaspoon/F_PD.html
https://teaspoontda.github.io/teaspoon/F_PD.html
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://dataportal.answerals.org/home
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
https://pypi.org/project/fuzzywuzzy/
https://pypi.org/project/pypdf/
https://pypi.org/project/cloudscraper/

Bibliography 55

SAGGAR, M. et al. Towards a new approach to reveal dynamical organization of the
brain using topological data analysis. Nature Communications, v. 9, p. 1399, 2018.
Disponível em: <https://doi.org/10.1038/s41467-018-03664-4>. Citado na página 62.

SALNIKOV, V.; CASSESE, D.; LAMBIOTTE, R. Simplicial complexes and complex
systems. European Journal of Physics, v. 40, n. 1, p. 014001, 2019. Disponível em:
<https://iopscience.iop.org/article/10.1088/1361-6404/aae790/meta#ejpaae790f2>.
Citado na página 60.

SANH, V. et al. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
In: NeurIPS EMC2 Workshop. [S.l.: s.n.], 2019. Citado na página 34.

SAUL, N. Representations manual. 2019. Disponível em: <https://persim.scikit-tda.org/
en/latest/>. Citado na página 70.

SCHAEFER, A. et al. Local-global parcellation of the human cerebral cortex from
intrinsic functional connectivity mri. Cerebral Cortex, v. 28, n. 9, p. 3095–3114, Sep 2018.
Disponível em: <https://doi.org/10.1093/cercor/bhx179>. Citado na página 68.

SCHUSTER, C.; HARDIMAN, O.; BEDE, P. Survival prediction in amyotrophic lateral
sclerosis based on mri measures and clinical characteristics. BMC Neurology, v. 17, p. 73,
2017. Citado 2 vezes nas páginas 22 and 23.

SICILIANO, M. et al. Edinburgh cognitive and behavioural als screen (ecas)-italian
version: regression based norms and equivalent scores. Neurological Sciences, v. 38, n. 6,
p. 1059–1068, Jun 2017. Disponível em: <https://doi.org/10.1007/s10072-017-2919-4>.
Citado na página 64.

SKAF, Y.; LAUBENBACHER, R. Topological data analysis in biomedicine: A review.
Journal of Biomedical Informatics, v. 130, p. 104082, 2022. ISSN 1532-0464. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S1532046422000983>. Citado 2
vezes nas páginas 60 and 62.

SOUZA, A.; SCHIRRU, L.; ALVARENGA, M. Mineração de textos e dados na pesquisa
em saúde: reflexões sobre direitos autorais. Cadernos de Saúde Pública, v. 40, 05 2024.
Citado na página 28.

ST-ONGE, F. fMRIPrep pre-processing and post-processing - connec-
tivity matrices extraction using a parcellation. Disponível em: <https:
//github.com/brainhack-school2020/stong3_fMRI_processing/blob/master/
fMRIPrep_tutorial/fMRIPrep%20pre-processing%20and%20post-processing%20-%
20connectivity%20matrices%20extraction%20using%20a%20parcellation.ipynb>. Citado
na página 68.

STEINBACH, R. et al. Developing a neuroimaging biomarker for amyotrophic lateral
sclerosis: Multi-center data sharing and the road to a "global cohort". Frontiers in
Neurology, v. 9, p. 1055, December 4 2018. Citado na página 16.

SUDO, T.; AHARA, K. CubicalRipser: Persistent homology for 2D image
and 3D voxel data (and 1D scalar timeseries). 2018. Disponível em: <https:
//github.com/shizuo-kaji/CubicalRipser_3dim>. Citado na página 70.

https://doi.org/10.1038/s41467-018-03664-4
https://iopscience.iop.org/article/10.1088/1361-6404/aae790/meta#ejpaae790f2
https://persim.scikit-tda.org/en/latest/
https://persim.scikit-tda.org/en/latest/
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1007/s10072-017-2919-4
https://www.sciencedirect.com/science/article/pii/S1532046422000983
https://github.com/brainhack-school2020/stong3_fMRI_processing/blob/master/fMRIPrep_tutorial/fMRIPrep%20pre-processing%20and%20post-processing%20-%20connectivity%20matrices%20extraction%20using%20a%20parcellation.ipynb
https://github.com/brainhack-school2020/stong3_fMRI_processing/blob/master/fMRIPrep_tutorial/fMRIPrep%20pre-processing%20and%20post-processing%20-%20connectivity%20matrices%20extraction%20using%20a%20parcellation.ipynb
https://github.com/brainhack-school2020/stong3_fMRI_processing/blob/master/fMRIPrep_tutorial/fMRIPrep%20pre-processing%20and%20post-processing%20-%20connectivity%20matrices%20extraction%20using%20a%20parcellation.ipynb
https://github.com/brainhack-school2020/stong3_fMRI_processing/blob/master/fMRIPrep_tutorial/fMRIPrep%20pre-processing%20and%20post-processing%20-%20connectivity%20matrices%20extraction%20using%20a%20parcellation.ipynb
https://github.com/shizuo-kaji/CubicalRipser_3dim
https://github.com/shizuo-kaji/CubicalRipser_3dim

56 Bibliography

SWINNEN, B.; ROBBERECHT, W. The phenotypic variability of amyotrophic
lateral sclerosis. Nature Reviews Neurology, v. 10, p. 661–670, 2014. Disponível em:
<https://doi.org/10.1038/nrneurol.2014.184>. Citado na página 20.

TANG, M. et al. Model-based and model-free techniques for amyotrophic lateral sclerosis
diagnostic prediction and patient clustering. Neuroinformatics, v. 17, n. 3, p. 407–421,
July 2019. Citado 2 vezes nas páginas 21 and 85.

TARASYUK, A.; TROUBITSYNA, E.; LAIBINIS, L. From formal specification in
event-b to probabilistic reliability assessment. Dependability, International Conference on,
v. 0, p. 24–31, 07 2010. Citado na página 33.

TAVAZZI, E. et al. Artificial intelligence and statistical methods for stratification and
prediction of progression in amyotrophic lateral sclerosis: A systematic review. Artificial
Intelligence in Medicine, v. 142, p. 102588, 2023. ISSN 0933-3657. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0933365723001021>. Citado na
página 22.

TDA with Python using the Gudhi Library. Representing sublevel sets of functions using
cubical complexes. 2021. Disponível em: <https://github.com/GUDHI/TDA-tutorial/
commits/master/Tuto-GUDHI-cubical-complexes.ipynb>. Citado na página 71.

THESSEN, A.; CUI, H.; MOZZHERIN, D. Applications of natural language processing in
biodiversity science. Advances in bioinformatics, v. 2012, p. 391574, 05 2012. Citado na
página 25.

van der Burgh, H. K. et al. Deep learning predictions of survival based on mri in
amyotrophic lateral sclerosis. NeuroImage: Clinical, v. 13, p. 361–369, 2017. ISSN 2213-1582.
Disponível em: <https://www.sciencedirect.com/science/article/pii/S2213158216301899>.
Citado 3 vezes nas páginas 22, 23, and 85.

WASSERMAN, L. Topological data analysis. Annual Review of Statistics and Its
Application, Annual Reviews, v. 5, n. Volume 5, 2018, p. 501–532, 2018. ISSN
2326-831X. Disponível em: <https://www.annualreviews.org/content/journals/10.1146/
annurev-statistics-031017-100045>. Citado 2 vezes nas páginas 61 and 62.

WROE, R. et al. Alsod: the amyotrophic lateral sclerosis online database. Amyotrophic
Lateral Sclerosis: Official Publication of the World Federation of Neurology Research
Group on Motor Neuron Diseases, v. 9, n. 4, p. 249–250, 2008. Citado na página 24.

YEO, B. et al. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. Journal of Neurophysiology, v. 106, n. 3, p. 1125–1165, Sep 2011.
Disponível em: <https://doi.org/10.1152/jn.00338.2011>. Citado na página 68.

ZIPSE, L. et al. When right is all that is left: Plasticity of right-hemisphere tracts in a
young aphasic patient. Annals of the New York Academy of Sciences, v. 1252, p. 237–45,
04 2012. Citado na página 59.

https://doi.org/10.1038/nrneurol.2014.184
https://www.sciencedirect.com/science/article/pii/S0933365723001021
https://github.com/GUDHI/TDA-tutorial/commits/master/Tuto-GUDHI-cubical-complexes.ipynb
https://github.com/GUDHI/TDA-tutorial/commits/master/Tuto-GUDHI-cubical-complexes.ipynb
https://www.sciencedirect.com/science/article/pii/S2213158216301899
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-031017-100045
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1152/jn.00338.2011

57

Appendix

58 Bibliography

A Previous Work

A.1 Introduction

Collaboration Site

The Lille Neuroscience and Cognition Center, led by Doctor L. Buée, comprises
five INSERM-accredited teams in partnership with the University of Lille and the CHU of
Lille. For the first steps of my work, I was part of the Degenerative and Vascular Cognitive
Disorders team, led by Professor D. Devos, which consists of both clinical and pre-clinical
researchers. This team combines neurology, pharmacology, and imaging to focus on the
translational, transnosographic, and multimodal study of cognitive disorders associated
with degenerative processes or neurovascular lesions. For more information about the Lille
Neuroscience & Cognition Center, please refer to their website (LILLE. . . ,).

In this context, my thesis involved developing mathematical analysis on Magnetic
Resonance Imaging (MRI) as a potential prognostic biomarker for Amyotrophic Lateral
Sclerosis (ALS), a neurodegenerative disease with no curative treatment. I thus developed
pipelines that included image processing, Topological Data Analysis (TDA), and Machine
Learning (ML) techniques. The work required interdisciplinary expertise involving special-
ists in imaging, clinical research, and mathematics. Throughout this part of the project, I
was supervised by Dr. AS. Rolland and Dr. A. Broustet, and I collaborated closely with
my partner, Nathan Lesourd.

Magnetic Resonance Imaging

Magnetic Resonance Imaging technology relies on the application of a large mag-
netic field to induce resonance in certain atoms within the patient and the mechanisms
and measurements vary according to the imaging modality. Among the different MRI
techniques are structural MRI (T1-weighted), diffusion tensor imaging, magnetic reso-
nance spectroscopy, iron-sensitive sequences (T2*, R2*, and SWI), and functional MRI
(fMRI). During my internship, as I focus on T1-weighted (T1w) imaging and resting-state
functional MRI (rsfMRI), I will briefly describe these two.

T1-weighted images correspond to structural MRI and reflect the physical organi-
zation of the brain when applied in a neurological context. To generate these images, the
magnetization vector created by the magnetic moments of hydrogen atoms in the brain is
measured as an applied radiofrequency pulse varies. Specifically for T1-weighted imaging,
the signal of interest is the magnetization in the longitudinal plane, which increases over
time after the induced magnetic field is stopped, a process known as relaxation. This
relaxation differs for each tissue based on their water and fat concentration, allowing for
anatomical differentiation of brain regions (Conti, 2016 (CONTI, 2016)).

In contrast, rsfMRI relies on blood oxygen level and is called “resting-state” as the

A. Previous Work 59

patient does not have to perform any specific task during data collection. The measured
signal is the Blood-Oxygen Level Dependent (BOLD) signal, which is based on the principle
that areas with neural activity consume more oxygen, increasing deoxyhaemoglobin
concentration and reducing the BOLD signal (Murphy et al., 2013(MURPHY; BIRN;
BANDETTINI, 2013)).The goal of functional MRI is to map brain activity and statistically
determine which regions are activated together and thus likely connected. Functional images
are composed of several slices taken at different times, making the process highly sensitive
to any patient movement. Figure 12 shows examples of T1-weighted and fMRI images side
by side.

Figure 12 – Comparison between T1 and functional MRI.

(A)T1-weighted MRI; (B, C, D) fMRI. The areas marked in yellow indicate greater activation.
Image extracted from Zipse et al. (2012) (ZIPSE et al., 2012).

Various analyses have been conducted on the use of MRI as a biomarker for ALS.
According to Gupta et al. (2014) (GUPTA et al., 2014), conventional MRI is not yet a
reliable indicator of the disease, remarking the need for definitive biomarkers in the early
stages of ALS, which may be identified through newer neuroimaging strategies, such as
diffusion tensor imaging and functional MRI.

Additionally, studies by Douaud et al. (2011) (DOUAUD et al., 2011) and Kocar et
al. (2021) (KOCAR et al., 2021) have shown that structural and functional images exhibit
alterations in ALS patients, including loss of grey matter volume in the precentral gyrus and
either increased or decreased functional connectivity in the precentral and postcentral gyri.
Douaud et al. (2011) (DOUAUD et al., 2011) noted that increased functional connectivity
was observed in brain regions with decreased structural connectivity. Grolez et al. (2016)
(GROLEZ et al., 2016) concluded that MRI patterns correlate with disease severity,
progression, and duration, although the use of neuroimaging is still limited by the small
number of participants and longitudinal studies.

Topological Data Analysis

Topological Data Analysis (TDA) differs from traditional data analysis by consider-
ing the spatial arrangement of data. Topology, in this context, refers to the mathematical
study of properties preserved through continuous deformations such as stretching or bend-

60 Bibliography

ing. TDA aims to summarize and visualize complex data by incorporating notions of shape
and connectivity, revealing characteristics that may not be apparent in raw data.

Among the methods used in topological analysis, the most common is persistent
homology. This technique uses abstract algebra to detect topological features like connected
components (dimension 0 or H0), holes (dimension 1 or H1), and loops (dimension 2 or
H2), determining whether objects are homologous based on shared features.

To compute persistence, the data is first stored in a simplicial complex, a set of
simplices that adhere to the following rules:

• Every face of a simplex in a complex is in the complex.

• The non-empty intersection of two simplices is a face of each.

Following Salnikov et al. (2019) (SALNIKOV; CASSESE; LAMBIOTTE, 2019),
a simplex is a convex hull of affinely independent points, with faces that are simplices
based on subsets of points. Geometrically, n-simplices are illustrated as shown in figure 13.
Simplicial complexes enable higher-dimensional analogs of edges between more than two
points, unlike standard networks.

Figure 13 – Illustration of n-dimensional simplexes.

Image extracted from Skaf and Laubenbacher (2022) (SKAF; LAUBENBACHER, 2022).

Different simplicial complex implementations have specific applications, that is, the
choice of complex depends on the application. The Vietoris-Rips complex Vϵ, composed of
point subsets with a diameter smaller than a threshold ϵ, is frequently used. The cubical
complex, which uses cubes to compute homology, fits the digital image structure of grids
(Choe and Ramanna, 2022 (CHOE; RAMANNA, 2022)) and is an alternative for processes
requiring significant computational resources.

Once data is represented by a simplicial complex, persistence can be calculated for
different dimensions. Figure 14 exemplifies the computation in dimensions 0 (H0) and 1
(H1). Balls created at each data point grow in radius r. At r = 0, there are n disconnected
balls. As r increases, connected components merge, which is considered as their death,
and eventually all overlap. For the image in figure 14 most to the right, it is possible to
observe a hole that is born. By reaching even larger values of r, the hole will also die.

A. Previous Work 61

Figure 14 – Representation of the intuitive idea behind persistent homology.

Image extracted from Wasserman (2018) (WASSERMAN, 2018).

Persistence is accordingly represented by birth and death coordinates, illustrated in
barcode plots and persistence diagrams exemplified by the figure 15. In the barcode plot,
the connected components correspond to the gray lines and the hole to the red line. Each
barcode represents the moment in time where birth and death occur. In the persistence
diagram, the connected components correspond to the blue points and the hole to the red
triangle, which are placed according to the x-axis (birth) and to the y-axis (death).

The features that are considered the most relevant to characterize the data are
those that survive longer and, therefore, are the ones that are most consistent over different
scales. The ones that persist only for a short period, disappearing quickly, may be classified
as noise or artifacts. In barcode plots, the survival of each feature is determined by the
length of its barcode, while in persistence diagrams what has to be observed is the distance
of the point to the diagonal, where death is equal to birth and survival is null.

Figure 15 – Comparison between barcode plot and persistence diagram.

On the left, the barcode plot calculated for the object represented in the figure 14. On the right,
the persistence diagram. Image extracted from Wasserman (2018) (WASSERMAN, 2018).

However, the resulting persistences cannot be directly input to Machine Learning
models, due to undefined basic operations, including addition and multiplication (Carrière
et al., 2020 (CARRIèRE et al., 2020)). Thus, as a final step of the TDA, it is necessary
to vectorize the persistence diagrams before performing model training. Two options for
vectorization explored throughout the present work were persistence landscapes (PL) and
persistence images (PI).

62 Bibliography

Persistence landscapes map persistence diagrams to a Hilbert space using exact or
discrete approximations. PL may be defined by a sequence of functions λ1, λ2, ...: IR →
IR where each function λk is piecewise linear with slope either 0,1, or -1. Their advantages
include invertibility, that is, loss of none or little information, stability, being parameter-
free and nonlinear and subsequent fast machine learning computations (Bubenik, 2020
(BUBENIK, 2020)). Nonetheless, it may be a large representation. The resulting landscape
has the format shown by the figure 16.

Figure 16 – Example of the Persistence Landscape representation.

Image extracted from Bubenik (2015) (BUBENIK, 2015).

Persistence images map persistence diagrams to integrable functions ρB, then
calculate the integral for each grid box, offering flexibility in feature relevance. Also, when
tested for a classification task, PI distance matrices performed well in terms of accuracy
and of processing time (Chepushtanova et al., 2015 (CHEPUSHTANOVA et al., 2015)).
The final visualization of the persistence image is represented by the figure 17.

Figure 17 – Example of the Persistence Image representation.

Image extracted from Chepushtanova et al. (2015) (CHEPUSHTANOVA et al., 2015).

TDA has been applied across various domains, including the cosmic web, image
analysis, and protein structure characterization (Wasserman, 2018 (WASSERMAN, 2018)).
In the biomedical field, topological analysis has been used for patient subtyping in diseases
like diabetes, aortic stenosis, asthma, oncology, and brain injuries, as well as in medical
imaging (CT, MRI, histology) (Skaf and Laubenbacher, 2022 (SKAF; LAUBENBACHER,
2022)). Specific implementations for functional MRI and Cubical Complexes in image
classification have also been explored (Choe and Ramanna, 2022 (CHOE; RAMANNA,
2022), Saggar et al., 2018 (SAGGAR et al., 2018)).

A. Previous Work 63

In conclusion, TDA has demonstrated significant potential in the diagnosis and
prognosis of human diseases and in the analysis of medical imaging, including magnetic
resonance imaging. The promising results from the cited studies support the hypothesis
that TDA could play a crucial role in identifying biomarkers in MRI data collected from
ALS patients.

A.2 Objectives

The primary objective of the first part of the project was to uncover imaging
biomarkers to monitor disease progression using longitudinal data from a cohort of newly
diagnosed ALS patients. Specifically, my goal was to study the efficiency of applying
Topological Data Analysis to MRI data and determine whether it conducted to a finer
imaging analysis or not. In order to evaluate the resulting precision, different Machine
Learning were to be trained for classifying or predicting disease progression. The images
used to feed our model were collected through a collaborative effort led by Lille University
Hospital, detailed further in section A.3.

To achieve this objective, the following steps were proposed, as illustrated by the
figure 18.

• Preprocessing: This step involves preparing the images for further analysis, in-
cluding corrections, denoising, normalization, and other processes. The specific
preprocessing steps depend on the image modality, as different acquisition mecha-
nisms and representations require different treatments.

• Topological Data Analysis: As discussed in section A.1, TDA involves calculating
persistence diagrams for the preprocessed data for each patient and converting them
into representation objects for use in the next step.

• Model Training: To classify or predict ALS progression in patients, various models
had to be trained using Machine Learning techniques. The final models’ performance
is evaluated and presented in section A.4.

64 Bibliography

Figure 18 – General pipeline aimed by the study.

It is also fundamental that the whole pipeline is reproducible to assure the validation
of the results, robust, portable and well-documented for future maintenance.

A.3 Methodologie

Dataset

The PULSE cohort was created to provide a national French dataset for studying
predictive factors in ALS evolution. Sponsored by the Lille University Hospital, the project
was coordinated by Pr. David Devos. Seventeen ALS expert centers contributed with
longitudinal data on newly diagnosed patients.

The collected data included age, sex, weight, treatments, date of first symptom,
onset site, ALSFRS-R score, ECAS score (Edinburgh Cognitive and Behavioural ALS
Screen) (Siciliano et al., 2017 (SICILIANO et al., 2017)), blood composition, genetic forms
in familial cases, MRI images, etc. For prediction analysis, data were gathered not only at
inclusion but also every three months up to 36 months. The cohort also included three
control groups: a healthy group with blood, a healthy group with MRI, a neurological
group affected by other neurodegenerative diseases. The criteria for patient and control
inclusion in the PULSE cohort is shown in the table B in the Appendix.

As a multicentric dataset, PULSE includes data from various cities in France, such
as Lille, Paris, Tours, Saint-Étienne, Brest, Lyon, Montpellier, Marseille, Nice, Nancy,
Clermont-Ferrand, Caen, St-Brieuc, and Angers. MRI equipment varied across centers,
potentially causing heterogeneity despite a standardized protocol.

The Image Acquisition and automated Treatment Center (CATI) was responsible
for MRI quality control, ensuring imaging quality, absence of artifacts, correct head
positioning, and consistent imaging parameters.

From the 463 participants included in the cohort, I had access to data from 357
PULSE subjects for developing the pipeline. All subjects had MRI collected at inclusion

A. Previous Work 65

(M000), but subsequent sessions (M003, M006, M012) were optional. Consequently, only 19,
33, and 16 patients had MRI available for 3, 6, and 12 months, respectively. Additionally,
some resting-state images were deemed unexploitable during quality control and excluded
from analysis. Clinical data could also be lacking and some participants were not ALS
patients but served as healthy or neurological controls. The flowchart in Figure 19 illustrates
each step of the data selection process until model training.

Figure 19 – Flowchart showing data selection from PULSE for the developed
pipelines.

Using a Python script and an Excel file provided by CATI, which classified each
MRI as unexploitable, borderline, or perfect, I evaluated which patients could be analyzed.
For a longitudinal study, only patients with exploitable MRI from at least two sessions
were selected. Based on this criterion, 26 patients qualified for the rsfMRI pipeline (having
exploitable T1 and rsfMRI for at least two sessions), and 40 patients qualified for the T1
pipeline (having exploitable T1 for at least two sessions).

Execution Environment

The pipelines were tested and executed on a server provided by the University
of Lille. The server runs on an Intel(R) Xeon(R) Silver 4116 CPU operating at 2.10
GHz. This processor has an x86_64 architecture and supports 2 threads per core. Each
socket contains 12 cores, and there are 2 sockets available on the machine. The operating
system installed on the server is Ubuntu 22.04.4 LTS, with the kernel version being Linux
5.15.0-102-generic. The server is equipped with a total of 128 GiB of RAM, providing
ample memory for running computationally intensive tasks.

However, it is important to note that the server does not offer GPU support. As a
result, certain algorithms that could benefit from GPU acceleration were not optimized
during execution. Despite this, the server’s significant CPU and RAM resources were
adequate for executing the developed pipelines and performing the required TDA and
machine learning analyses for ALS patient data.

66 Bibliography

Pipelines

I developed two distinct pipelines: one for rsfMRI and one for T1 images. The
preprocessing steps varied according to the modality being analyzed, which in turn
influenced the topological data analysis conducted for each pipeline. However, the model
training process at the end was the same for both pipelines. Therefore, the following
sections describe the preprocessing and TDA separately for each modality, while the
Machine Learning method is explained jointly for both fMRI and T1.

Preprocessing

rsfMRI

Functional MRI is a modality that is sensitive to non-neural sources of variability,
demanding specific image treatment prior to further analysis, as mentioned in section
A.1. Corrections, such as slice-timing correction (STC), head-motion correction (HMC),
and susceptibility distortion correction (SDC), address artifacts, while co-registration and
spatial normalization tackle anatomical localization of signals. These preprocessing steps
are crucial to ensure that the final outputs of the pipeline reflect neural activity accurately
and are therefore valid for further analysis.

Aiming to provide a robust and convenient tool that includes all the fundamental
steps of fMRI preprocessing, fMRIPrep was developed, as described in Esteban et al.
(2019) (ESTEBAN et al., 2019). Recommended by Dr. Cecile Bordier, it is currently
considered the standard and most reliable workflow for this task. Additional usage notes
and documentation can be found on their website (DEVELOPERS, 2016).

The steps included in fMRIPrep are illustrated in figure 20. Both T1-weighted and
functional images are supplied as input. T1 images undergo intensity non-uniformity cor-
rection (N4BiasFieldCorrection) and skull-stripping (antsBrainExtraction). Subsequently,
spatial normalization through nonlinear registration (antsRegistration) and brain tissues
segmentation (CSF, White matter (WM), and Grey Matter (GM)) are performed. Surface
reconstruction and mask refinement are optional. For fMRI, the pipeline includes estima-
tion of head-motion parameters (mcflirt), STC (3dTshift), and SDC. Finally, the image is
co-registered to the corresponding T1 reference.

A. Previous Work 67

Figure 20 – Workflow applied by fMRIPrep for preprocessing fMRI.

Image extracted from Esteban et al. (2019) (ESTEBAN et al., 2019).

To run fMRIPrep, the following flags were used:

• random-seed 42: Initializes the random seed for the workflow as 42.

• omp-nthreads 1: Declares the maximum number of threads per-process as equal
to one.

• skull-strip-fixed-seed: When declared along with the previous flag, ensures that
skull-stripping does not use a random seed, making the process replicable for future
validation.

A FreeSurfer license is required to execute fMRIPrep, and the directory structure
must follow the BIDS (Brain Imaging Data Structure) specifications. While PULSE already
followed the correct structure, it included files (html, logs, figures, DWI, fmap, tsv files,
etc.) that should not be considered during fMRI preprocessing. To ignore them and ensure
the pipeline functions correctly, a .bidsignore file was defined as follows:

∗ . html
l o g s /
f i g u r e s /
∗_xfm .∗
∗ . s u r f . g i i
∗_boldre f . n i i . gz
∗_bold . func . g i i

68 Bibliography

∗∗/∗dwi∗
∗∗/∗ fmap∗
∗ . t sv

Additionally, each image to be preprocessed had a json file containing the parameters
used during data collection. For performing Slice-Timing Correction, it was necessary
that this file included the “SliceTiming” information, which corresponds to the time each
slice was acquired within each volume (frame) of the acquisition (CONTRIBUTORS,).
Some files lacked this specification, so it was added using a bash script, attached in the
Appendix F.

The outputs from fMRIPrep include the preprocessed functional images and the
estimated confounds. Confounds consist of fluctuations with a potential non-neuronal
origin, which may yield spurious results in functional connectivity. Examples include
motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral
autoregulation, and vasomotion (Murphy et al., 2013 (MURPHY; BIRN; BANDETTINI,
2013)). To clean the images, I used the output estimates from fMRIPrep in confound
regression, implemented in Python following the tutorial in (CLEANING. . . , 2024).

Based on the work by Yeo et al. (2011) (YEO et al., 2011), the selected confound
regressors were: 6 motion parameters (trans_x, trans_y, trans_z, rot_x, rot_y, rot_z),
global signal, cerebral spinal fluid signal and white matter signal. Unlike the tutorial,
derivatives of these confound regressors were not included to avoid losing too much
information in the regression. The first four time points of the images were discarded due
to a strong signal decay artifact at the initial stages of the scan. A low/high pass filter
was applied to eliminate high and low-frequency signals, which might be due to noise and
intrinsic scanner instabilities.

After confound regression, connectivity matrices were calculated for each image.
These matrices are constructed by calculating the connectivity between each pair of
different regions of interest (ROIs) in the brain using preprocessed fMRI. The tutorial in
(ST-ONGE,) served as the basis for this implementation. We chose the Schaefer atlas
((DEVELOPERS,), Schaefer et al., 2018 (SCHAEFER et al., 2018)), with 300 ROIs,
providing a balance between having a significant number of regions and avoiding an overly
demanding posterior analysis. Connectivity measurement was implemented in Python
using the ConnectivityMeasure function from the NiLearn library, with correlation as
the chosen connectivity measure.

Negative values in the resulting matrices, which range from -1 to 1, were considered
as zero since the meaning of negative values for correlation between brain regions is not
yet well understood.

fMRIPrep runs in a Docker container, so environment preparation regarding instal-

A. Previous Work 69

lations was unnecessary except for pulling its image. A Singularity container was defined
with all necessary Python libraries for the steps following image preprocessing, using a
.def file (attached in the Appendix). For building the Singularity images, I created a .yml
file as shown below. It was then sufficient to run the command singularity-compose
build in the folder containing this file.

v e r s i on : " 1 . 0 "
i n s t an c e s :

fmr iprep :
image : docker : // n ipreps / fmriprep : l a t e s t

po s tp r o c e s s i ng :
bu i ld :

context : . / po s tp ro c e s s i ng
r e c i p e : con ta ine r . de f

depends_on :
− fmriprep

In summary, the preprocessing of functional imaging involved fMRIPrep for correc-
tions and spatial normalization, confound regression, and the computation of connectivity
matrices. I applied this procedure to all sessions presented by the 26 patients selected
for the rsfMRI pipeline (as specified in section A.3) and for the 32 controls. In total, 94
matrices (62 for patients + 32 for controls) were calculated. All scripts referenced are
attached in the Appendix Section.

T1

The T1 pipeline focuses on comparing subjects based on the anatomical structure of
the brain. Consequently, the preprocessing steps for T1 images were designed to be minimal
yet effective, ensuring that the output is clean and retains only relevant information.

Based on fMRIPrep, there were three tools that were applied to T1 images:
N4BiasFieldCorrection (COOK, 2021) (ANTs) for intensity non-uniformity correction,
HD-BET (HD-BET,) for skull-stripping and FAST (NICHOLS, 2020) (FSL) for tissue
segmentation. Then, in Python, the input for the TDA was the selection of the voxels
from the corrected and skull-stripped image that corresponded to WM and GM according
to the FAST mask output. All of the required software was containerized in a singularity
image defined by as .def file, specified in the Appendix section.

TDA

rsfMRI

To analyze connectivity matrices derived from rsfMRI, distance matrices are needed.

70 Bibliography

Consequently, we implemented the Vietoris-Rips complex by the Gudhi library (MARIA
et al.,). To obtain the distance matrix, each value X in the connectivity matrix was
converted to 1

X
. For connectivity values that were zero, they were replaced with the

smallest computable positive value to avoid division by zero. This value, according to the
numpy library, is approximately 2.2250738585072014 × 10−308.

The parameter max_edge_length was established as 103, so only the edges of
the graph smaller than the threshold are inserted, and then the complex was stored in
a simplex tree structure, where max_dimension was equal to 3, referring to maximal
graph expansion. Next, using the compute_persistence function, homology_coeff_field was
defined as 2. This means that persistence was calculated solely for three dimensions (H0,
H1 and H2). Such choice balances computational feasibility and interpretability, avoiding
the complexity and computational demands of higher dimensions. The results were stored
in .npz files for efficient retrieval and to avoid re-computation.

Regarding vectorization, several alternatives were tested for Persistence Image and
Persistence Landscape, offered by different Python libraries. The Table 4 explicits which
libraries were tested for each representation.

Library PL tested? PI tested?
PersLay (CARRIèRE et al., 2020) Yes Yes
Gudhi (CARRIèRE et al.,) Yes Yes
Persim (SAUL, 2019) No (output vectors with varying lenghts) Yes for PersImage (PersistenceImager returned empty vectors

for H0)
Teaspoon (MUNCH, 2020) No (output vectors with varying lenghts) No (implements Persim)
Giotto-TDA (GIOTTO-TDA. . . , 2021b) Yes Yes

Table 4 – Libraries used for Persistence Landscapes and Persistence Images.

PI: Persistence Images, PL: Persistence Landscape

T1

For the analysis of T1 images, which focus on directly examining the anatomical
structure of the brain, cubical complexes were deemed more suitable than Vietoris-Rips
complexes. We tested several libraries for constructing and analyzing cubical complexes,
including Gudhi (DLOTKO,), Giotto-TDA (GIOTTO-TDA. . . , 2021a), and Cripser
(SUDO; AHARA, 2018).

Different solutions were explored specifically for cubical complexes due to initial
persistence diagrams displaying unexpected behavior, such as thousands of overlapping
points. This prompted us to ensure that the issue did not stem from the algorithms
provided by the libraries. Ultimately, Gudhi was selected for its consistent performance
in generating uniform persistence diagrams, which aligned with the expected format.
Therefore, the results presented in section A.4 are based on the use of the Gudhi library.

A. Previous Work 71

As explained in Bleile et al. (2021) (BLEILE et al., 2021), there are two different
constructions that can be used for cubical complexes, named V-construction, which repre-
sents voxels by vertices, and T-construction, which represents voxels by top-dimensional
cubes. In this work, T-construction was opted for as it is suggested by the tutorial in the
Gudhi library (TDA. . . , 2021). For calculating the persistence, the parameters used were
homology_coeff_field set to 2 and the minimum persistence value was the default, that is,
zero. The computed persistence diagrams were stored in .npz files for efficient retrieval,
similar to the rsfMRI pipeline.

Concerning the conversion from persistence diagrams to persistence representations,
the exact same libraries that were tested for functional imaging were also used in this
pipeline. The different results are compared in the section A.4.

Model Training

In developing pipelines for both rsfMRI and T1 imaging data, four main categories
of Machine Learning models were tested to classify and predict the ALS disease progression
using TDA vectors derived from neuroimaging data. The implementation in Python can
be found in Appendix I and J.

1. Categorizing healthy controls versus ALS patients: Both clustering and
supervised classification were employed to distinguish healthy controls from ALS
patients. Clustering included applying Principal Component Analysis (PCA) to the
vectors resulting from the TDA and both KMeans and Hierarchical Clustering for
grouping the data. The silhouette and adjusted random scores were used to evaluate
its performance for diagnosis. Supervised classification was tested for Support Vector
Machine (SVM), Random Forest, KNeighbors and Logistic Regression from the
sklearn library in Python. For evaluating such models, accuracy was measured.

2. Classifying ALS patients as fast or slow progressors: Using supervised
classification along with the same models proposed for control vs. patient classification,
I tested accuracy for segregating patients as fast or slow progressors. The input for
the models were the concatenation of the data relatif to sessions M000 (inclusion) and
M006 (6 months after inclusion) for the patients that presented both simultaneously.
In this case, the progression of ALSFRS-R in time was the chosen metric for labeling
the patients. To classify progression as fast or slow, the progression rate was obtained
by using the calculation below.

Progression rate (in month) = 48−ALSFRS-R in M000
Date of M000−Date of first symptom

If progression rate > 0.6, patient classified as fast.

Otherwise, patient classified as slow.

72 Bibliography

3. Classifying ALS patients by the onset site of the disease: The same supervised
methods applied as described previously for classifying patients by their disease
progression was also used for classifying them as having a bulbar or a spinal onset.
It also used as input the concatenation of data relatif to M000 and M006.

4. Regression for predicting ALSFRS-R delta between two sessions: Using
Linear, Gradient Boosting and Random Forest regression, all implemented by sklearn
in Python, I tested applying regression to predict how the ALSFRS-R score would
change between two sessions. As input, the data relatif to the first session and the
last session found for each patient were concatenated, which allowed to use a broader
range of patients. In this case, the coefficient of determination was the evaluation
metric.

In all cases, cross validation with 5 iterations was used for evaluating the perfor-
mance of the trained supervised models. Thus, the results shown in section A.4 present
not only an average value for each accuracy/coefficient, but also the standard deviation
between the iterations.

Detailed pipelines

To summarize, I implemented two pipelines, one for each MRI acquisition, with
similarities but also differences regarding the preprocessing and the simplicial complex,
as highlighted by figures 21 and 22. The goal was to uncover a prognostic biomarker to
predict the disease progression, but also a diagnostic biomarker to detect the disease at
early stages.

Figure 21 – The rsfMRI pipeline

A. Previous Work 73

Figure 22 – The T1 pipeline

A.4 Results

Characterisation of the Cohort

The clinical characteristics of the cohort are summarized in Table 5, providing
a general view of the patient population that participated in the study. This table
differentiates the dataset as a whole, the subset included in the rsfMRI pipeline, and the
subset included in the T1 pipeline.

Total rsfMRI T1
N Value N Value N Value

Population characteristics
Male gender (%) 180 111 (61.7%) 26 14 (53.9%) 39 23 (59.0%)
Age (years) 180 62.0 ± 22.2 26 59.7 ± 8.4 39 60.5 ± 10.4
Time from first symptoms to inclusion (months) 164 14.0 (9.0 to 27.0) 25 20.0 (9.0 to 27.0) 38 20.5 (10.3 to 30.8)
Spinal phenotype (%) 180 138 (76.7%) 26 22 (84.6%) 39 32 (82.1%)
Bulbar phenotype (%) 180 42 (23.3%) 26 4 (15.4%) 39 7 (17.9%)

Clinical outcomes
ALSFRS-R (/48) 171 38.9 ± 5.5 24 38.8 ± 6.2 36 38.9 ± 5.5
ALSFRS-R rate 158 0.5 (0.2 to 0.9) 23 0.5 (0.3 to 0.7) 35 0.4 (0.3 to 0.7)
Fast progressors (ALSFRS-R rate > 0.6) (%) 158 64 (40.5%) 23 9 (39.1%) 35 11 (31.4%)
ECAS (/136) 137 106.4 ± 18.5 25 110.2 ± 15.7 37 110.0 ± 16.7
Normal ECAS (ECAS > 105) 137 88 (64.2) 25 19 (76.0) 37 28 (75.7)

Table 5 – Patients’ characteristics and clinical outcomes gathered at inclusion.

Values are expressed as number (percentage) for qualitative variables and mean ± standard
deviation or median (1st quartile to 3rd quartile) for quantitative variables. A normal ECAS

score, indicating the absence of cognitive impairment as a symptom of ALS, would be more than
105 out of a total of 136 points.

Although men represented the majority in all three groups, the cohort is relatively
balanced in terms of gender. The participants are aged between 50 and 70 years, with an

74 Bibliography

average age of around 60 years, which is consistent with the typical age range for ALS
patients, as the disease commonly affects individuals in later stages of life. Most patients in
the cohort identify as Caucasian, aligning with the demographic characteristics discussed
in section 2.1, and are treated with riluzole. The proportion of patients with a spinal onset
of ALS is notably higher than those with a bulbar onset, which mirrors the general ALS
population, where spinal onset is more common.

In terms of disease progression, the median time from the onset of symptoms to
inclusion in the study is longer for the rsfMRI and T1 profiles compared to the total cohort,
while the ALSFRS-R progression rate’s median remains consistent across all groups.

Regarding ECAS, a majority of the cohort — 64.2%, 76%, and 75.7% in each
respective group — scored within the normal range, indicating that most of these patients
did not exhibit significant cognitive impairment. This finding is expected, as cognitive
impairment is moderate in earlier stages of the disease. It is also important to note that
the ECAS scores were not used in the training of the models, and the variability in ECAS
scoring, depending on the assessment method, adds another layer of complexity to the
interpretation of these results.

Results for rsfMRI

Preprocessing Results

After fMRI preprocessing, 62 connectivity matrices were generated for all sessions
corresponding to the 26 patients included in the fMRI pipeline and 32 matrices for control
cases. Figure 23 highlights the general structure of the connectivity matrices, where each
axis represents 300 brain regions of interest. The color gradient reflects the statistical
probability of functional connectivity between each pair of regions, with darker red tones
indicating a higher likelihood of connection.

In the left, an example of the functional connectivity obtained for a healthy control
from the PULSE cohort. In the right, a comparison that illustrates three connectivity
matrices for two patients with differents phenotypes, corresponding to sessions at inclusion,
three months after inclusion, and six months after inclusion.

A. Previous Work 75

Figure 23 – Connectivity Matrices for a healthy control and ALS patients.

Example of the generated connectivity matrices for (A) a healthy control and (B) sessions M000
(inclusion), M003 (three months after inclusion) and M006 (6 months after inclusion) for two
patients. Each row in (B) corresponds to a different subject. On top, a patient with a spinal

onset site. In the bottom, a patient with a bulbar onset site.

Figure B enables comparison across sessions and between the two patients - on
top, with a spinal onset site and, in the bottom, with a bulbar onset site - showing visual
differences between the matrices for each individual, as well as changes over time, while
maintaining the overall structure. Such divergences, even perceptible to the human eye,
led us to believe that the ML models would be able to classify patients by onset site, as
well as detect patterns that characterize the progression rate of the disease.

We also highlight that the regions for the control participant are not entirely more
or less connected than in ALS patients. It seems to depend on each pair of ROIs from
our results. However, dissimilarities between the healthy participant and the matrices in
Figure 23 are significant enough to validate further investigation in diagnosis.

TDA Results

From the generated connectivity matrices, persistent homology was calculated for
dimensions H0, H1, and H2, and is directly represented by persistence diagrams, as shown
in the first row of Figure 24 for one patient at inclusion. Before these results could be
utilized in Machine Learning models, I transformed them into persistence representations.
Figure 24 also illustrates the resulting persistence landscapes and persistence images in
the second and third rows, respectively, using the Gudhi library. It is evident that the
resulting persistence features differ significantly depending on the homology dimension
analyzed, which in turn affects the final representations.

76 Bibliography

Figure 24 – Persistence representations for rsfMRI.

Example of the persistence diagrams and respective generated persistence representations from
Gudhi library for session M000 for one patient in dimensions H0, H1 and H2. On the top, the
persistence diagrams. In the middle, the persistence landscapes. In the bottom, the persistence

images.

Healthy Controls vs. ALS Patients

To distinguish ALS patients from healthy controls, both supervised and unsuper-
vised machine learning methods were analyzed. The unsupervised methods tested included
KMeans and Hierarchical Clustering. The results of these clustering methods are presented
in Figure 28, which shows the distribution of the participants in a bidimensional space
after applying Principal Component Analysis to the TDA vectors. The first graph on the
left represents the expected classification, where the ALS patients and healthy controls
are distinctly separated. The middle graph displays the results of the KMeans clustering,
and the right graph shows the outcomes of Hierarchical Clustering.

Upon comparison, it is evident that neither KMeans nor Hierarchical Clustering
successfully separated the controls from the patients across the three persistence dimensions
(H0, H1, H2). In fact, the clustering models misclassified nearly all participants, with only
3 out of the 32 healthy controls being correctly clustered apart from the ALS patients. The
Adjusted Random Scores, shown below each image, reached very low values, confirming
that the groups seem to be randomly designated. However, mostly for H1 and H2, the
Silhouette Scores are close to 1, showing that the clusters are well-defined.

Table 6 shows the train and test accuracies obtained in dimensions 0, 1 and 2
for four supervised models: Support Vector Machine, Random Forest, KNeighbors and
Logistic Regression. From its results, we can conclude that supervised models seem to be
more promising, showing adequate results. Particularly, Random Forest performed the
best in H0, showing train accuracy of 100% and test accuracy of 73% in average. The

A. Previous Work 77

results below were obtained for Perslay Landscape representation, which was the one that
seemed to perform the best in this case, presenting the highest test accuracy. A table with
the results for all representations can be found in Appendix K.

[t]
Figure 25 – Clustering results for dimension H0.

Silhouette Score = 0.57 and Adjusted Random Score = -0.02 for KMeans and Silhouette Score = 0.61 and
Adjusted Random Score = -0.01 for Hierarchical Clustering. [t]

Figure 26 – Clustering results for dimension H1.

Silhouette Score = 0.82 and Adjusted Random Score = -0.01 for both clustering methods. [t]

Figure 27 – Clustering results for dimension H2.

Silhouette Score = 0.91 and Adjusted Random Score = 0.02 for both clustering methods.

Figure 28 – Clustering for classifying healthy controls vs. ALS patients in fMRI.
In the left, the Principal Component Analysis with the reference, that is, the expected result from clustering. In

the middle, the resulting KMeans clustering. In the right, the resulting Hierarchical Clustering.

78 Bibliography

SVM Random Forest KNeighbors Logistic Regression
Dimension Train accuracy Test accuracy Train accuracy Test accuracy Train accuracy Test accuracy Train accuracy Test accuracy
H0 0.68 ± 0.02 0.62 ± 0.05 1.0 ± 0.0 0.73 ± 0.13 0.76 ± 0.04 0.57 ± 0.10 0.72 ± 0.04 0.50 ± 0.11
H1 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.62 ± 0.14 0.77 ± 0.03 0.53 ± 0.09 0.61 ± 0.02 0.52 ± 0.09
H2 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.43 ± 0.12 0.78 ± 0.03 0.47 ± 0.07 0.56 ± 0.01 0.55 ± 0.07

Table 6 – Results for controls vs. patients classification in fMRI.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Progression Classification

ALS patients were classified as either fast or slow progressors using four different
models: Support Vector Machine, Random Forest, KNeighbors, and Logistic Regression.
In total, 13 patients were used to train and test this model, where 8 were classified as fast
and 5 were classified as slow. The accuracies obtained for dimensions 0, 1, and 2 are shown
in Table 7. The Persistence Image representation implemented by the Gudhi library was
chosen for this analysis as it achieved the highest overall test accuracy, specifically 0.93 ±
0.13 with Random Forest in H0, and also performed well in terms of execution time. The
complete table with all representations can be found in Appendix L.

The results in H0 are particularly promising, with accuracy values approaching
100%, which is the ideal outcome. However, the accuracies obtained in H2 were lower
across all models. Assuming that a test accuracy above 70% is considered at least satisfying
and above 80% is considered truly effective, the Random Forest and KNeighbors models
yielded interesting results in both H0 and H1. This level of performance was not achieved
by any of the tested models in H2.

Model Metric H0 H1 H2

SVM

Train accuracy 0.96 ± 0.05 0.67 ± 0.07 0.63 ± 0.04
Test accuracy 0.87 ± 0.16 0.53 ± 0.12 0.60 ± 0.23

Fast progressor accuracy 0.93 ± 0.13 0.93 ± 0.13 1.0 ± 0.0
Slow progressor accuracy 0.70 ± 0.40 0.0 ± 0.0 0.0 ± 0.0

Random Forest

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.93 ± 0.13 0.77 ± 0.20 0.37 ± 0.22

Fast progressor accuracy 0.93 ± 0.13 0.93 ± 0.13 0.67 ± 0.42
Slow progressor accuracy 0.80 ± 0.40 0.50 ± 0.45 0.0 ± 0.0

KNeighbors

Train accuracy 0.91 ± 0.06 0.94 ± 0.05 0.67 ± 0.05
Test accuracy 0.70 ± 0.27 0.77 ± 0.29 0.47 ± 0.12

Fast progressor accuracy 0.93 ± 0.13 1.0 ± 0.0 0.87 ± 0.27
Slow progressor accuracy 0.40 ± 0.49 0.40 ± 0.49 0.0 ± 0.0

Logistic Regression

Train accuracy 0.75 ± 0.15 0.71 ± 0.13 0.81 ± 0.06
Test accuracy 0.57 ± 0.25 0.50 ± 0.26 0.43 ± 0.25

Fast progressor accuracy 0.63 ± 0.37 0.73 ± 0.39 0.73 ± 0.39
Slow progressor accuracy 0.40 ± 0.49 0.10 ± 0.20 0.0 ± 0.0

Table 7 – Results for progression classification in fMRI.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Onset Site Classification

I applied Machine Learning to characterize ALS patients (N = 13, from which 11
were spinal and 2 were bulbar) by the disease’s onset site using Support Vector Machine
(SVM), Random Forest, KNeighbors, and Logistic Regression. The accuracies achieved by

A. Previous Work 79

these models, as shown in Table 8, indicate that all models reached overall train and test
accuracies of 70% or higher on average in dimensions 0 and 1. Notably, Support Vector
Machine and Random Forest achieved accuracies above 80% across all dimensions.

However, when analyzing the accuracy of classifying each onset site individually, a
large discrepancy becomes evident between the accuracy for spinal and bulbar classification.
This difference may be explained by the imbalance in the available data. To ensure reliable
accuracy in classifying onset sites, it would be necessary to obtain more MRI data from
patients with bulbar onset.

The results presented were obtained using the Perslay Persistence Image represen-
tation, which yielded the highest accuracies despite having one of the longest execution
times (ranging from 7 to 10 minutes). For a comparison of different representations, please
refer to Appendix M.

Model Metric H0 H1 H2

SVM

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 0.94 ± 0.05
Test accuracy 0.83 ± 0.21 0.53 ± 0.12 0.83 ± 0.21

Spinal accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Bulbar accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Random Forest

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.83 ± 0.21 0.83 ± 0.21 0.83 ± 0.21

Spinal accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Bulbar accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

KNeighbors

Train accuracy 0.93 ± 0.07 0.92 ± 0.04 0.84 ± 0.14
Test accuracy 0.70 ± 0.27 0.60 ± 0.08 0.57 ± 0.33

Spinal accuracy 0.87 ± 0.27 0.77 ± 0.20 0.73 ± 0.39
Bulbar accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Logistic Regression

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.70 ± 0.27 0.83 ± 0.21 0.63 ± 0.37

Spinal accuracy 0.87 ± 0.27 1.0 ± 0.0 0.80 ± 0.40
Bulbar accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 8 – Results for onset site classification in fMRI.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Regression for disease’s prediction evolution

Linear, Gradient Boosting and Random Forest regressions were tested for predicting
the evolution of ALSFRS-R score between two sessions, but performed very poorly, as
represented by the Table 9. The train coefficients of determination were high (equal or
close to 1), but the test coefficients were, in all cases, negative. This possibly suggests
overfitting and reveals that regression is not efficient for predicting the progression of the
disease. The results below were obtained for Gudhi Landscape representation, which was
the one that seemed to perform the best in this case, presenting less absurd values for the
coefficient, and executed very fast. A more detailed table with all results can be consulted
in Appendix N.

80 Bibliography

Linear Gradient Boosting Random Forest
Dimension Train coefficient Test coefficient Train coefficient Test coefficient Train coefficient Test coefficient
H0 1.0 ± 0.0 -4.99 ± 5.92 0.99 ± 6.35E-06 -3.28 ± 3.96 0.83 ± 0.03 -3.27 ± 4.81
H1 1.0 ± 0.0 -13.09 ± 14.93 0.99 ± 3.68E-10 -2.03 ± 1.18 0.84 ± 0.02 -2.54 ± 3.43
H2 1.0 ± 0.0 -72.81 ± 137.14 0.99 ± 5.67E-10 -2.03 ± 1.42 0.83 ± 0.01 -3.66 ± 4.61

Table 9 – Results for Regression models in fMRI.

Comparison between the coefficients of determination obtained by different regression models,
including linear, gradient boosting and random forest, in dimensions H0, H1 and H2.

Results for T1

Preprocessing Results

Figure 29 displays the results of the T1-weighted MRI preprocessing steps for one
patient at inclusion. The corrected and skull-stripped brain in B) and the segmentation
of white and gray matter in C) demonstrate that the preprocessed image is significantly
clearer than the raw image in A), making it more suitable for subsequent analysis. This
refinement ensures that only relevant information is retained for interpretation by the
TDA.

Figure 29 – Preprocessed T1-w MRI.

Example of one preprocessed T1-w MRI image for one patient at inclusion. (A) Raw T1; (B)
Corrected and skull-stripped T1; (C) Segmented for white and gray matter.

TDA results

As for fMRI, one example for a single patient at inclusion is represented by Figure
30. The persistence diagrams in the first row for dimensions H0, H1 and H2 were converted
to persistence landscapes (second row) and persistence images (third row) using the Gudhi
library. In this case, we can observe that there are similarities between each column, that
is, for each dimension in the general format of the obtained representations.

A. Previous Work 81

Figure 30 – Persistence representations for T1-w MRI.

Example of the persistence diagrams and respective generated persistence representations from
Gudhi library for session M000 for one patient in dimensions H0, H1 and H2. On the top, the
persistence diagrams. In the middle, the persistence landscapes. In the bottom, the persistence

images.

Healthy Controls vs. ALS Patients

As for rsfMRI, we tested Kmeans and Hierarchical Clustering as unsupervised
models and Support Vector Machine, Random Forest, KNeighbors and Logistic Regression
as supervised models to differentiate healthy controls from ALS patients. In Figure 34,
we observe that the classification assigned by both clustering methods (middle and right
graphs) do not correspond to the expected classification (left graph). Only 3 of the 32
controls were clustered separately from others. The Silhouette Scores, signalized below
the images, have reached significant values, close to 1, nevertheless the Adjusted Random
Scores were very close to 0, proving poor performance during clustering.

82 Bibliography

[t]
Figure 31 – Clustering results for dimension H0.

Silhouette Score = 0.89 and Adjusted Random Score = 0.01 for both clustering methods. [t]

Figure 32 – Clustering results for dimension H1.

Silhouette Score = 0.94 and Adjusted Random Score = 0.01 for both clustering methods. [t]

Figure 33 – Clustering results for dimension H2.

Silhouette Score = 0.88 and Adjusted Random Score = 0.01 for both clustering methods.

Figure 34 – Clustering for classifying healthy controls vs. ALS patients in T1.
In the left, the Principal Component Analysis with the reference, that is, the expected result from
clustering. In the middle, the resulting KMeans clustering. In the right, the resulting Hierarchical

Clustering.

Even though the results for supervised classification (Table 10) were not at a
satisfactory level, they are still better than for unsupervised models. For instance, the
Logistic Regression model achieved train accuracy of 0.61 and test accuracy of 0.63 in

A. Previous Work 83

average for H1, which is higher than 50%, indicating that the classification is not entirely
random, but still lower than 70% and therefore unsatisfactory. The results below were
obtained for Perslay Landscape representation, which was the one that seemed to perform
the best in this case. A more detailed table with all results can be consulted in Appendix
O.

SVM Random Forest KNeighbors Logistic Regression
Dimension Train accuracy Test accuracy Train accuracy Test accuracy Train accuracy Test accuracy Train accuracy Test accuracy
H0 0.63 ± 0.03 0.52 ± 0.11 1.0 ± 0.0 0.53 ± 0.06 0.80 ± 0.02 0.49 ± 0.07 0.60 ± 0.02 0.39 ± 0.13
H1 0.70 ± 0.04 0.53 ± 0.09 1.0 ± 0.0 0.55 ± 0.11 0.75 ± 0.03 0.50 ± 0.05 0.61 ± 0.04 0.63 ± 0.11
H2 0.64 ± 0.04 0.48 ± 0.11 1.0 ± 0.0 0.47 ± 0.15 0.72 ± 0.04 0.45 ± 0.13 0.61 ± 0.05 0.55 ± 0.18

Table 10 – Results for controls vs. patients classification in T1.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Progression Classification

Classifying ALS patients as fast (N = 10) or slow (N = 12) progressors using
treated T1 images from the PULSE cohort proved to be inefficient. Despite certain models
achieving perfect train accuracies (100%), as shown in Table 11, all test accuracies were
below 70%, which is unsatisfactory for reliable classification. The notable discrepancy
between train and test accuracies suggests potential overfitting.

For dimensions 0 and 1, the analysis utilized Persim’s Persistence Image as repre-
sentation, while Gudhi’s Persistence Image was used for dimension 2. These representations
were chosen not only because they yielded higher test accuracy, but also because they
presented more balanced values between train and test results. However, it’s important to
mention that Persim had the longest execution time among the tested representations.
For a more detailed overview of the results, please refer to the table in Appendix P.

Model Metric H0 H1 H2

SVM

Train accuracy 0.55 ± 0.03 0.57 ± 0.03 1.0 ± 0.0
Test accuracy 0.60 ± 0.21 0.55 ± 0.12 0.60 ± 0.14

Fast progressor accuracy 1.0 ± 0.0 1.0 ± 0.0 0.93 ± 0.13
Slow progressor accuracy 0.20 ± 0.40 0.0 ± 0.0 0.17 ± 0.21

Random Forest

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.60 ± 0.26 0.59 ± 0.09 0.55 ± 0.20

Fast progressor accuracy 0.67 ± 0.42 0.73 ± 0.23 0.57 ± 0.39
Slow progressor accuracy 0.57 ± 0.23 0.50 ± 0.11 0.57 ± 0.39

KNeighbors

Train accuracy 0.77 ± 0.06 0.65 ± 0.02 0.74 ± 0.06
Test accuracy 0.44 ± 0.16 0.35 ± 0.14 0.54 ± 0.30

Fast progressor accuracy 0.77 ± 0.29 0.73 ± 0.23 0.80 ± 0.24
Slow progressor accuracy 0.27 ± 0.39 0.10 ± 0.20 0.40 ± 0.37

Logistic Regression

Train accuracy 0.56 ± 0.09 0.59 ± 0.03 0.75 ± 0.14
Test accuracy 0.40 ± 0.14 0.51 ± 0.18 0.47 ± 0.25

Fast progressor accuracy 0.70 ± 0.40 0.77 ± 0.29 0.53 ± 0.32
Slow progressor accuracy 0.20 ± 0.40 0.20 ± 0.40 0.43 ± 0.23

Table 11 – Results for progression classification in T1.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Onset Site Classification

84 Bibliography

Analyzing the accuracies presented in Table 12, the models have performed very well
in classifying patients as bulbar (N = 2) or spinal (N = 20) onset ALS. Notably, Support
Vector Machine and Random Forest demonstrated significant results, consistently achieving
train accuracies of 100% and average test accuracies of 87% across all tested dimensions.
Nonetheless, given the difference in proportion between bulbar and spinal patients, these
models would need further validation with more data from patients with a bulbar onset,
The results were obtained using the Perslay Persistence Landscape representation, which
not only produced good accuracies but also had one of the lowest execution times. For
more detailed results, please refer to the table in Appendix Q.

Model Metric H0 H1 H2

SVM

Train accuracy 0.99 ± 0.02 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.87 ± 0.17 0.87 ± 0.17 0.87 ± 0.17

Spinal accuracy 0.93 ± 0.13 0.93 ± 0.13 0.93 ± 0.13
Bulbar accuracy 0.20 ± 0.24 0.0 ± 0.0 0.0 ± 0.0

Random Forest

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.87 ± 0.17 0.87 ± 0.17 0.87 ± 0.17

Spinal accuracy 0.43 ± 0.39 0.57 ± 0.39 0.47 ± 0.32
Bulbar accuracy 0.30 ± 0.40 0.50 ± 0.33 0.17 ± 0.21

KNeighbors

Train accuracy 0.90 ± 0.04 0.90 ± 0.06 0.90 ± 0.02
Test accuracy 0.87 ± 0.17 0.82 ± 0.16 0.79 ± 0.18

Spinal accuracy 0.63 ± 0.37 0.73 ± 0.23 0.43 ± 0.23
Bulbar accuracy 0.23 ± 0.29 0.33 ± 0.18 0.0 ± 0.0

Logistic Regression

Train accuracy 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Test accuracy 0.78 ± 0.13 0.74 ± 0.15 0.69 ± 0.17

Spinal accuracy 0.33 ± 0.28 0.60 ± 0.23 0.37 ± 0.19
Bulbar accuracy 0.17 ± 0.21 0.23 ± 0.29 0.33 ± 0.42

Table 12 – Results for onset site classification in T1.

Comparison between the accuracies obtained by different classification models, including SVM,
Random Forest, KNeighbors and Logistic Regression, in dimensions H0, H1 and H2.

Regression for disease’s prediction evolution

We did not obtain satisfactory results with the regression models. Table 13 shows
the coefficients of determination obtained using Gudhi Landscape representations, which
was the one that performed the best in this case. Indeed, test coefficients were negative,
renforcing that regression is not recommended for predicting the disease progression using
MRI images and Topological Data Analysis.

Linear Gradient Boosting Random Forest
Dimension Train coefficient Test coefficient Train coefficient Test coefficient Train coefficient Test coefficient
H0 1.0 ± 0.0 -43.03 ± 75.88 0.99 ± 5.49E-05 -1.36 ± 1.24 0.81 ± 0.02 -0.77 ± 0.41
H1 1.0 ± 0.0 -6.19 ± 6.98 0.99 ± 3.65E-05 -1.37 ± 1.92 0.85 ± 0.03 -0.78 ± 0.61
H2 1.0 ± 0.0 -8.80 ± 8.92 0.99 ± 2.55E-05 -2.56 ± 2.18 0.82 ± 0.04 -1.93 ± 2.46

Table 13 – Results for Regression models in T1-w MRI.

Comparison between the coefficients of determination obtained by different regression models,
including linear, gradient boosting and random forest, in dimensions H0, H1 and H2.

A.5 Conclusion

Unsupervised classification using KMeans and Hierarchical Clustering, along with
regression models like Linear, Gradient Boosting, and Random Forest regressions for

A. Previous Work 85

predicting the delta ALSFRS-R score between two sessions, proved ineffective for both
fMRI and T1 data. Such results are disappointing, once Tang et al. (2019) (TANG et al.,
2019) was able to achieve reliable clustering partitions and obtained reasonable prediction
correlation for the ALSFRS score using only clinical data. Nonetheless, it is important
to highlight that the dataset used in this study was considerably larger than PULSE,
including 2424 ALS patients after data selection. Consequently, it would be necessary to
test our methods with a much more significant amount of patients in order to draw a
fair comparison and, thus, it cannot be attested that clinical data is more efficient than
imaging data for regression training or clustering.

It is also worth mentioning that Tang et al. (2019) (TANG et al., 2019) obtained
more interesting values for the coefficient of determination when predicting the Forced
Vital Capacity (FVC), or the maximum amount of air one can exhale from the lungs after
fully inhaling, than when predicting the ALSFRS slope with regression models. This means
that it may be of our interest to test if better results can be accomplished by targeting
the patients’ FVC instead of the ALSFRS-R between two sessions.

Regarding diagnosis, despite not achieving state-of-the-art accuracy levels (88%)
as shown in Kushol et al. (2023) (KUSHOL et al., 2023), the developed models achieved a
respectable 73% accuracy. More notably, the 93% accuracy achieved in classifying disease
progression as fast or slow using the fMRI pipeline suggests that the work holds promise
and is worth pursuing further. This particular result gains interest, as it is equivalent or
even surpasses other reported prognosis predictions.

Hothorn and Jung (2014) (HOTHORN; JUNG, 2014) did not reach encouraging
accuracies using clinical data and indicates that the past ALSFRS slope and onset site are
the only worthy candidates for predicting disease progression in clinic. Elamin et al. (2015)
(ELAMIN et al., 2015) classified patients according to the ALS risk development using
clinical data and obtained high values for Positive and Negative Prediction Values (73.3-
85.7% and 93.3-100% respectively). As for the best results from our functional pipeline,
Positive Prediction Value was 80-100% and Negative Prediction Value was 100%, which
are, thus, comparable to state-of-the-art. Also, the highest prognosis accuracy obtained
in Van Der Burgh et al. (2017) (van der Burgh et al., 2017) using both clinical and MRI
data was of 84.4%, evidencing that the accuracy that we achieved is very significant.

In this project, we observed a comparative analysis of the performance of fMRI
and T1 pipelines in distinguishing ALS patients from healthy controls, predicting dis-
ease progression, and classifying the onset site. Both pipelines exhibited similarities and
differences depending on the tested models.

Table 14 compares the best test accuracies obtained in each pipeline for different
dimensions (H0, H1, H2). Overall, the fMRI pipeline showed a slight edge over the
T1 pipeline in certain tasks. A statistical comparison using the Mann-Whitney U test

86 Bibliography

(COMMUNITY, 2008-2024) was applied to each pair of accuracies (fMRI and T1) obtained
from the supervised models across all dimensions. The results indicated that in most
cases, there was no significant difference between the performances of the two imaging
modalities. However, for dimension 0 in control vs. patient classification and progression
rate prediction, the fMRI pipeline significantly outperformed the T1 pipeline (p-values of
0.036 and 0.044, respectively).

Pipeline Dimension Best Test Accuracy in
Diagnosis

Best Test Accuracy in
Progression

Classification

Best Test Accuracy in
Onset Classification

fMRI
H0 0.73 ± 0.13 0.93 ± 0.13 0.83 ± 0.21
H1 0.62 ± 0.14 0.77 ± 0.20 0.92 ± 0.04
H2 0.55 ± 0.07 0.60 ± 0.23 0.83 ± 0.21

T1
H0 0.53 ± 0.06 0.60 ± 0.21 0.87 ± 0.17
H1 0.63 ± 0.11 0.59 ± 0.09 0.87 ± 0.17
H2 0.55 ± 0.18 0.60 ± 0.14 0.87 ± 0.17

Table 14 – Comparison between accuracies obtained for classification in fMRI
and T1 pipelines.

Support Vector Machine (SVM) and Random Forest models consistently provided
the highest average accuracies across most classification tasks. Both KMeans and Hierar-
chical Clustering performed similarly in clustering tasks, while regression models yielded
poor coefficients of determination. Linear regression, in particular, was the least adequate
for predicting ALSFRS-R scores over time.

B. Inclusion and non-inclusion criteria for each of the groups included in the cohort PULSE 87

B Inclusion and non-inclusion criteria for each of the groups included
in the cohort PULSE

Group Inclusion Criteria Non-Inclusion Criteria
ALS patients - Having a possible/probable/defi-

nite SLA diagnosis following the El
Escorial
- Since first symptom or first deficit
- Patient aged over 18 years old, man
or woman
- Ability to freely and clearly consent
- Having social security

- Patient aged under 18 years old
- Inability to consent
- Presence of another serious pathol-
ogy interfering on vital or functional
prognostic

Healthy control - Healthy subject aged over 18 years
old paired by age and sex to the pa-
tient population. Ideally motivated
and involved
- Neurological tests and examination
showing no neurological disorders
- No serious pathology interfering on
vital or functional prognostic
- Having social security

- Subject under 18 years old
- Inability to consent
- Neurological tests showing neuro-
logical disorders
- Serious pathology interfering on vi-
tal or functional prognostic
- Not having social security
- Contraindication to MRI

Neurological
control

- Patient aged over 18 years old
paired by age and sex to the patient
population
- Presenting another neurodegener-
ative disease (Parkinson’s disease,
Alzheimer’s disease, etc.)
- No other serious pathology interfer-
ing on vital or functional prognostic
- Having social security

- Patient aged under 18 years old
- Inability to consent
- Another serious pathology interfer-
ing on vital or functional prognostic
- Not having social security
- Contraindication to MRI

C Bash code for running fMRI preprocessing

#!/ bin / bash

d i r e c t o r y=$1

preproce s s ing
s i n g u l a r i t y run −−cleanenv . / fmr iprep / fmriprep . s i f \

$d i r e c t o r y /data \
$d i r e c t o r y / fmriprep pa r t i c i p an t \

−−fs−l i c e n s e −f i l e $d i r e c t o r y / l i c e n s e . txt \
−−random−seed 42 \
−−omp−nthreads 1 \
−−sku l l −s t r i p −f ixed−seed

pos t p ro c e s s i n g
s i n g u l a r i t y exec −−nv po s tp ro c e s s i ng / po s tp ro c e s s i ng . s i f \

python3 po s tp r o c e s s i ng . py $d i r e c t o r y / fmriprep /

88 Bibliography

D Python code for confound regression and functional connectivity
matrices computation

from n i l e a r n import image as nimg
from n i l e a r n import data s e t s
from n i l e a r n . input_data import Ni f t iLabe l sMasker
from n i l e a r n . connectome import Connect ivityMeasure

import os
import sys
import numpy as np
import n ibabe l as nib
import pandas as pd
import bids
import j s on

def po s tp ro c e s s i ng (sub , a t l a s_schae f e r , fmriprep_dir , s e s s i o n s) :
print (sub)

for s e s s i o n in s e s s i o n s :
layout = bids . BIDSLayout (fmriprep_dir , v a l i d a t e=

False , c on f i g =[’ b ids ’ , ’ d e r i v a t i v e s ’])
print (s e s s i o n)
Get the f i l e pa ths (preproces sed fMRI , mask

and confounds)
f u n c_ f i l e s = layout . get (sub j e c t=sub ,

s e s s i o n=se s s i on ,
datatype=’ func ’ , task=’

r e s t i n g ’ ,
desc=’ preproc ’ ,
space=’

MNI152NLin2009cAsym ’ ,
ex tens i on=’ n i i . gz ’ ,
return_type=’ f i l e ’)

mask_f i l e s = layout . get (sub j e c t=sub ,
s e s s i o n=se s s i on ,
datatype=’ func ’ , task=’

r e s t i n g ’ ,

D. Python code for confound regression and functional connectivity matrices computation 89

desc=’ bra in ’ ,
s u f f i x=’mask ’ ,
space=’

MNI152NLin2009cAsym ’ ,
ex tens i on=’ n i i . gz ’ ,
return_type=’ f i l e ’)

con found_f i l e s = layout . get (sub j e c t=sub ,
s e s s i o n=se s s i on ,
datatype=’ func ’ ,

task=’ r e s t i n g ’ ,
desc=’ confounds ’ ,
ex t ens i on=’ tsv ’ ,
return_type=’ f i l e ’)

try :
f u n c_ f i l e = f un c_ f i l e s [0]
mask_fi le = mask_f i l e s [0]
con found_f i l e = con found_f i l e s [0]

S e l e c t confounds to be cons idered in
confound r e g r e s s i o n

confound_df = pd . read_csv (confound_f i l e ,
d e l im i t e r=’ \ t ’)

confound_vars = [’ trans_x ’ , ’ trans_y ’ , ’
trans_z ’ ,

’ rot_x ’ , ’ rot_y ’ , ’ rot_z
’ ,

’ c s f ’ , ’ white_matter ’ , ’
g l oba l_s i gna l ’]

confound_df = confound_df [confound_vars]

Discard ing the f i r s t four volumes o f each
run to a l l ow fo r T1−e q u i l i b r a t i o n e f f e c t s
raw_func_img = nimg . load_img (f un c_ f i l e)
func_img = raw_func_img . s l i c e r [: , : , : , 4 :]
drop_confound_df = confound_df . l o c [4 :]

Get r e p e t i t i o n time f o r s u b j e c t from json
f unc_f i l e s_ j son = layout . get (sub j e c t=sub

90 Bibliography

, s e s s i o n=se s s i on , datatype=’ func ’ ,
task=’ r e s t i n g ’ , desc=’ preproc ’ , space
=’MNI152NLin2009cAsym ’ , ex tens i on=’
j son ’ , return_type=’ f i l e ’)

f = open(f unc_f i l e s_ j son [0])
data = json . load (f)
r epe t i t i on_t ime = data [’ Repetit ionTime ’]
f . c l o s e ()

Confound r e g r e s s i o n
confounds_matrix = drop_confound_df .

va lue s
parameters from Yeo 2011

high_pass = 0.009
low_pass = 0.08

clean_img = nimg . clean_img (func_img ,
confounds=confounds_matrix , detrend=
True ,

s tandard i z e
=
True
,

low_pass
=
low_pass
,

high_pass
=
high_pass
,

t_r
=
repet i t ion_t ime
,

D. Python code for confound regression and functional connectivity matrices computation 91

mask_img
=
mask_fi le
)

c l ean_dir = f ’ { fmriprep_dir }CleanImages/
’

i f not os . path . e x i s t s (c l ean_dir) :
os . makedirs (c l ean_dir)

clean_img_dir = f ’ { c lean_dir }sub−{sub}
_ses−{s e s s i o n }_clean . n i i . gz ’

clean_img . to_f i lename (clean_img_dir)

a t l a s_f i l ename_schae f e r = a t l a s_s chae f e r
. maps

l ab e l s_ s cha e f e r = at l a s_schae f e r . l a b e l s

Get c o n n e c t i v i t y matrix
connect iv i ty_matr i ce s_di r = f ’ {

fmriprep_dir }
Connect ivityMatrix_Negative / ’

i f not os . path . e x i s t s (
connect iv i ty_matr i ce s_di r) :

os . makedirs (
connect iv i ty_matr i ce s_di r)

kind = ’ c o r r e l a t i o n ’
a t l a s = ’ s cha e f e r ’
masker = Ni f t iLabe l sMasker (labels_img=

at las_f i l ename_schae fe r , s t andard i z e=
True , verbose=5)

t ime_se r i e s = masker . f i t_t rans fo rm (
clean_img_dir , confounds=
confounds_matrix)

corre lat ion_measure =
Connect ivityMeasure (kind = kind)

co r r e l a t i on_matr ix = corre lat ion_measure

92 Bibliography

. f i t_t rans fo rm ([t ime_se r i e s]) [0]
corre la t i on_matr i x = np . a b s o l u t e (

corre l a t i on_matr i x)
corre la t i on_matr i x [cor re la t i on_matr i x

< 0] = 0
subject_connect iv i ty_matr ix = pd .

DataFrame (data=corre la t ion_matr ix ,
index=labe l s_schae f e r , columns=
l ab e l s_ s cha e f e r)

subject_connect iv i ty_matr ix . to_csv (f ’ {
connect iv i ty_matr i ce s_di r }sub−{sub}
_ses−{s e s s i o n }_atlas−{a t l a s }_kind−{
kind}_connect ivity_matrix . csv ’)

except :
print (f ’ S e s s i on ␣{ s e s s i o n }␣ unava i l ab l e ␣

f o r ␣ sub j e c t ␣{sub} ’)
continue

def pos tp roce s s ing_fo r_a l l_sub j e c t s (d i r e c t o r y) :

Import the bra in a t l a s
a t l a s_s chae f e r = data s e t s . f e tch_at las_schae fer_2018 (

n_rois=300)
sub j e c t s = [x [4 :] for x in os . l i s t d i r (d i r e c t o r y) i f ’ sub

’ in x and ’ html ’ not in x]
for sub in s ub j e c t s :

s e s s i o n s = [x [4 :] for x in os . l i s t d i r (d i r e c t o r y
+ ’ sub−’ + sub) i f ’ s e s ’ in x]

po s tp r o c e s s i ng (sub , a t l a s_schae f e r , d i r e c to ry ,
s e s s i o n s)

d i r e c t o r y = sys . argv [1]
po s tp roce s s i ng_fo r_a l l_sub j e c t s (d i r e c t o r y)

E. Container definition for confound regression and functional connectivity matrix computation 93

E Container definition for confound regression and functional con-
nectivity matrix computation

BootStrap : docker
From : ubuntu : b i on i c

%l a b e l s
APPLICATION_NAME fMRI po s tp r o c e s s i ng
AUTHOR_NAME Fernanda Furukita
AUTHOR_EMAIL fernanda . namie@gmail . com
YEAR 2024

%help
Container f o r po s tp r o c e s s i ng fMRI images and get f un c t i o na l

c onne c t i v i t y matr i ce s .

%environment
Set system l o c a l e
PATH=/bin : / sb in : / usr / bin : / usr / sb in : / usr / l o c a l / bin : / usr / l o c a l

/ sb in
RDBASE=/usr / l o c a l / share / rdk i t
CUDA=/usr / l o c a l /cuda/ l i b 6 4 : / usr / l o c a l /cuda−10.1/ l i b 6 4 : / usr /

l o c a l /cuda−10.2/ l i b 6 4
LD_LIBRARY_PATH=/. s i n g u l a r i t y . d/ l i b s :$RDBASE/ l i b :$CUDA
PYTHONPATH=modules :$RDBASE:/ usr / l o c a l / share / rdk i t / rdk i t : / usr

/ l o c a l / l i b /python3 .6/ d i s t−packages /
LANG=C.UTF−8 LC_ALL=C.UTF−8

%post
Change to tmp d i r e c t o r y to download temporary f i l e s .
cd /tmp

I n s t a l l e s s e n t i a l so f tware , languages and l i b r a r i e s .
apt−get −qq −y update

export DEBIAN_FRONTEND=non in t e r a c t i v e
apt−get −qq i n s t a l l −y −−no−i n s t a l l −recommends tzdata apt−

u t i l s

94 Bibliography

ln −f s / usr / share / zone in f o /America/New_York / e tc / l o c a l t ime
dpkg−r e c on f i g u r e −−frontend non in t e r a c t i v e tzdata

apt−get −qq −y update
apt−get −qq i n s t a l l −y −−no−i n s t a l l −recommends \

autoconf \
automake \
bui ld−e s s e n t i a l \
bzip2 \
ca−c e r t i f i c a t e s \
cmake \
gcc \
g++ \
g f o r t r an \
g i t \
gnupg2 \
l i b t o o l \
l i b j p eg −dev \
l ibpng−dev \
l i b t i f f −dev \
l i b a t l a s −base−dev \
l ibxml2−dev \
z l ib1g−dev \
l i b c a i r o 2 −dev \
l i b e i g en3 −dev \
l i b cup t i −dev \
l i bpc r e3−dev \
l i b s s l −dev \
l i b c u r l 4 −openss l−dev \
l i bboo s t −a l l −dev \
l i bboo s t −dev \
l i bboo s t −system−dev \
l i bboo s t −thread−dev \
l i bboo s t −s e r i a l i z a t i o n −dev \
l i bboo s t −regex−dev \
l i b g t k 2 .0−dev \
l i b r e a d l i n e −dev \
l ibbz2−dev \
l ib lzma−dev \

E. Container definition for confound regression and functional connectivity matrix computation 95

l i b p c r e++−dev \
l ibpango1 .0−dev \
l ibmariadb−c l i e n t −lgp l−dev \
l ibopenb la s−dev \
l i b l apack−dev \
l i bx t −dev \
neovim \
openjdk−8−jdk \
python \
python−pip \
python−dev \
python3−dev \
python3−pip \
python3−wheel \
swig \
t e x l i v e \
t e x l i v e −fonts−extra \
t e x i n f o \
vim \
wget \
xvfb \
xauth \
xfonts−base \
z ip

export LANG=C.UTF−8 LC_ALL=C.UTF−8

Update python pip .
python3 −m pip −−no−cache−d i r i n s t a l l −−upgrade pip
python3 −m pip −−no−cache−d i r i n s t a l l s e t up t oo l s −−upgrade
python −m pip −−no−cache−d i r i n s t a l l s e t up t oo l s −−upgrade

I n s t a l l l i b r a r i e s
python3 −m pip −−no−cache−d i r i n s t a l l numpy pandas n i l e a r n

n ibabe l pybids

Cleanup
apt−get −qq c l ean
rm −r f /var / l i b /apt/ l i s t s /∗
rm −r f /tmp/mpi

96 Bibliography

F Bash Script for adding SliceTiming to json files with fMRI acqui-
sition parameters

#!/ bin / bash

s ub j e c t s =‘ l s −d ~/Documents/ pu l s e_func t i ona l /data /∗/ ‘
s l i c e_t im ing=’ ␣␣␣␣ " S l i ceTiming " : ␣ [\ n␣␣␣␣␣␣␣␣ 0 . 0 , \ n␣␣␣␣␣␣␣␣

0 .37333 ,\n␣␣␣␣␣␣␣␣ 0 .74667 ,\n␣␣␣␣␣␣␣␣ 1 .12 ,\ n␣␣␣␣␣␣␣␣ 1 .44 ,\ n␣␣␣
␣␣␣␣␣ 1 .76 ,\ n␣␣␣␣␣␣␣␣ 2 .08 ,\ n␣␣␣␣␣␣␣␣ 0 .053333 ,\n␣␣␣␣␣␣␣␣
0 .42667 ,\n␣␣␣␣␣␣␣␣ 0 . 8 , \ n␣␣␣␣␣␣␣␣ 1 .1733 ,\n␣␣␣␣␣␣␣␣ 1 .4933 ,\n␣␣␣
␣␣␣␣␣ 1 .8133 ,\n␣␣␣␣␣␣␣␣ 2 .1333 ,\n␣␣␣␣␣␣␣␣ 0 .10667 ,\n␣␣␣␣␣␣␣␣
0 .48 ,\ n␣␣␣␣␣␣␣␣ 0 .85333 ,\n␣␣␣␣␣␣␣␣ 1 .2267 ,\n␣␣␣␣␣␣␣␣ 1 .5467 ,\n␣␣
␣␣␣␣␣␣ 1 .8667 ,\n␣␣␣␣␣␣␣␣ 2 .1867 ,\n␣␣␣␣␣␣␣␣ 0 .16 ,\ n␣␣␣␣␣␣␣␣
0 .53333 ,\n␣␣␣␣␣␣␣␣ 0 .90667 ,\n␣␣␣␣␣␣␣␣ 1 .28 ,\ n␣␣␣␣␣␣␣␣ 1 . 6 , \ n␣␣␣␣
␣␣␣␣ 1 .92 ,\ n␣␣␣␣␣␣␣␣ 2 .24 ,\ n␣␣␣␣␣␣␣␣ 0 .21333 ,\n␣␣␣␣␣␣␣␣ 0 .58667 ,\
n␣␣␣␣␣␣␣␣ 0 .96 ,\ n␣␣␣␣␣␣␣␣ 1 .3333 ,\n␣␣␣␣␣␣␣␣ 1 .6533 ,\n␣␣␣␣␣␣␣␣
1 .9733 ,\n␣␣␣␣␣␣␣␣ 2 .2933 ,\n␣␣␣␣␣␣␣␣ 0 .26667 ,\n␣␣␣␣␣␣␣␣ 0 .64 ,\ n␣␣
␣␣␣␣␣␣ 1 .0133 ,\n␣␣␣␣␣␣␣␣ 1 .3867 ,\n␣␣␣␣␣␣␣␣ 1 .7067 ,\n␣␣␣␣␣␣␣␣
2 .0267 ,\n␣␣␣␣␣␣␣␣ 2 .3467 ,\n␣␣␣␣␣␣␣␣ 0 .32 ,\ n␣␣␣␣␣␣␣␣ 0 .69333 ,\n␣␣
␣␣␣␣␣␣ 1.0667\n␣␣␣␣] , ’

for sub j e c t in $ sub j e c t s
do

dirs=‘ l s −d $sub j e c t /∗/ func ‘
for d i r in $d i r s ; do

f i c h i e r s =‘ l s $d i r /∗ . json ‘
for f i c h i e r in $ f i c h i e r s
do

i f jq −e . $ f i c h i e r 2>&1 >> j s o n_ f i l e ;
then

i f ! grep −q Sl i ceTiming
$ f i c h i e r ; then

sed −i " 2 s /^/
$s l i c e_t im ing \n/ " "
$ f i c h i e r "

f i
f i

done

F. Bash Script for adding SliceTiming to json files with fMRI acquisition parameters 97

done
done

98 Bibliography

G Bash Script for preprocessing T1 images
#!/ bin / bash
d i r=’ /home/ l e sou rd /Documents/FPII_raw/ rawdatases ’
T1_folder=’ /home/ l e sou rd /Documents/FPII_raw/T1_corrected ’
cd $d i r
s ub j e c t s =‘ l s −d ∗/ | cut −f1 −d ’ / ’ ‘

for sub j e c t in $ sub j e c t s
do

s e s s i o n s =‘ l s $subject ‘
for s e s s i o n in $ s e s s i o n s
do

i f [! −f $T1_folder /${ sub j e c t }_${ s e s s i o n }
_T1w_brain_seg . n i i . gz] ; then

IFS=’ ␣ ’ read −ra f i l e <<< ‘ l s $d i r /
$ sub j e c t / $ s e s s i o n /anat | grep n i i . gz ‘

echo "================================="
echo ${ f i l e [0] }
echo "================================="
b ia s co r r e c t i on
N4BiasFie ldCorrect ion −i $d i r / $ sub j e c t /

$ s e s s i o n /anat/${ f i l e [0] } −o [
$T1_folder /${ sub j e c t }_${ s e s s i o n }
_corrected_T1w . n i i . gz , T1w_BiasField .
n i i . gz]

rm T1w_BiasField . n i i . gz
s k u l l −s t r i p p i n g
hd−bet −i $T1_folder /${ sub j e c t }_${

s e s s i o n }_corrected_T1w . n i i . gz −o
$T1_folder /${ sub j e c t }_${ s e s s i o n }
_T1w_brain . n i i . gz #−dev i c e cpu −mode
f a s t −t t a 0

rm $T1_folder /${ sub j e c t }_${ s e s s i o n }
_T1w_brain_mask . n i i . gz

segmentat ion WM/GM
f a s t −o $T1_folder /${ sub j e c t }_${ s e s s i o n }

_T1w_brain $T1_folder /${ sub j e c t }_${
s e s s i o n }_T1w_brain . n i i . gz

rm $T1_folder /${ sub j e c t }_${ s e s s i o n }

G. Bash Script for preprocessing T1 images 99

_T1w_brain_pveseg . n i i . gz
rm $T1_folder /${ sub j e c t }_${ s e s s i o n }

_T1w_brain_pve_0 . n i i . gz
rm $T1_folder /${ sub j e c t }_${ s e s s i o n }

_T1w_brain_pve_1 . n i i . gz
rm $T1_folder /${ sub j e c t }_${ s e s s i o n }

_T1w_brain_pve_2 . n i i . gz
rm $T1_folder /${ sub j e c t }_${ s e s s i o n }

_T1w_brain_mixeltype . n i i . gz
f i

done
done

100 Bibliography

H Container definition for T1 preprocessing
BootStrap : docker
From : ubuntu : b i on i c

%l a b e l s
APPLICATION_NAME T1 prep ro c e s s i ng
AUTHOR_NAME Fernanda Furukita
AUTHOR_EMAIL fernanda . namie@gmail . com
YEAR 2024

%help
Container f o r p r ep ro c e s s i ng T1−w images (co r r e c t i on , s ku l l −

s t r i pp i n g and WM/GM segmentat ion) .

%f i l e s
/home/amael−brous t e t /Documents/neurotda /T1MRI/ s i n g u l a r i t y /

f s l i n s t a l l e r . py / usr / l o c a l / f s l i n s t a l l e r . py

%environment
Set system l o c a l e
PATH=/bin : / sb in : / usr / bin : / usr / sb in : / usr / l o c a l / bin : / usr / l o c a l

/ sb in
RDBASE=/usr / l o c a l / share / rdk i t
CUDA=/usr / l o c a l /cuda/ l i b 6 4 : / usr / l o c a l /cuda−10.1/ l i b 6 4 : / usr /

l o c a l /cuda−10.2/ l i b 6 4
LD_LIBRARY_PATH=/. s i n g u l a r i t y . d/ l i b s :$RDBASE/ l i b :$CUDA
PYTHONPATH=modules :$RDBASE:/ usr / l o c a l / share / rdk i t / rdk i t : / usr

/ l o c a l / l i b /python3 .6/ d i s t−packages /
LANG=C.UTF−8 LC_ALL=C.UTF−8
export PATH="/usr / l o c a l / f s l / bin :$PATH"
export PATH="/usr / l o c a l / ants /bin :$PATH"
export LD_LIBRARY_PATH="/opt/ ants / l i b :$LD_LIBRARY_PATH"

export ANTSPATH="/opt/ ants / bin /"
export PATH="/opt/ ants / bin :$PATH"
export LC_ALL=C

%post
Change to tmp d i r e c t o r y to download temporary f i l e s .
cd /tmp

H. Container definition for T1 preprocessing 101

I n s t a l l e s s e n t i a l so f tware , languages and l i b r a r i e s .
apt−get −qq −y update

export DEBIAN_FRONTEND=non in t e r a c t i v e
apt−get −qq i n s t a l l −y −−no−i n s t a l l −recommends tzdata apt−

u t i l s

ln −f s / usr / share / zone in f o /America/New_York / e tc / l o c a l t ime
dpkg−r e c on f i g u r e −−frontend non in t e r a c t i v e tzdata

apt−get −qq −y update
apt−get −qq i n s t a l l −y −−no−i n s t a l l −recommends \

autoconf \
automake \
bui ld−e s s e n t i a l \
bzip2 \
ca−c e r t i f i c a t e s \
cmake \
gcc \
g++ \
g f o r t r an \
g i t \
gnupg2 \
l i b t o o l \
l i b j p eg −dev \
l ibpng−dev \
l i b t i f f −dev \
l i b a t l a s −base−dev \
l ibxml2−dev \
z l ib1g−dev \
l i b c a i r o 2 −dev \
l i b e i g en3 −dev \
l i b cup t i −dev \
l i bpc r e3−dev \
l i b s s l −dev \
l i b c u r l 4 −openss l−dev \
l i bboo s t −a l l −dev \
l i bboo s t −dev \

102 Bibliography

l i bboo s t −system−dev \
l i bboo s t −thread−dev \
l i bboo s t −s e r i a l i z a t i o n −dev \
l i bboo s t −regex−dev \
l i b g t k 2 .0−dev \
l i b r e a d l i n e −dev \
l ibbz2−dev \
l ib lzma−dev \
l i b p c r e++−dev \
l ibpango1 .0−dev \
l ibmariadb−c l i e n t −lgp l−dev \
l ibopenb la s−dev \
l i b l apack−dev \
l i bx t −dev \
neovim \
openjdk−8−jdk \
python3 .10 \
python−pip \
python−dev \
python3−dev \
python3−pip \
python3−wheel \
swig \
t e x l i v e \
t e x l i v e −fonts−extra \
t e x i n f o \
vim \
wget \
xvfb \
xauth \
xfonts−base \
z ip

export LANG=C.UTF−8 LC_ALL=C.UTF−8

i n s t a l l ANTs f o r c o r r e c t i o n
ANTSVERSION="2 . 4 . 3 "

apt−get update

H. Container definition for T1 preprocessing 103

apt−get i n s t a l l −y −−no−i n s t a l l −recommends \
apt−transport−https \
bc \
bui ld−e s s e n t i a l \
ca−c e r t i f i c a t e s \
gnupg \
ninja−bu i ld \
g i t \
so ftware−prope r t i e s −common \
wget \
z l ib1g−dev

wget −O − https : // apt . k i tware . com/keys / kitware−arch ive−
l a t e s t . asc 2>/dev/ nu l l | apt−key add −

apt−add−r epo s i t o r y −y ’ deb https : // apt . k i tware . com/
ubuntu/ b i on i c main ’

apt−get update
apt−get −y i n s t a l l cmake=3.18.3−0 kitware1 cmake−data

=3.18.3−0 kitware1

mkdir −p / ants
cd / ants
g i t c l one https : // github . com/ANTsX/ANTs. g i t −−branch=v${

ANTSVERSION}
mv ANTs source
cd / ants / source

mkdir −p / ants / bu i ld
cd / ants / bu i ld
mkdir −p /opt/ ants
g i t c on f i g −−g l oba l u r l . " https : / / " . ins teadOf g i t : //
cmake \

−G Ninja \
−DBUILD_TESTING=ON \
−DRUN_LONG_TESTS=OFF \
−DRUN_SHORT_TESTS=ON \
−DBUILD_SHARED_LIBS=ON \
−DCMAKE_INSTALL_PREFIX=/opt/ ants \

104 Bibliography

/ ants / source
cmake −−bui ld . −−p a r a l l e l
cd ANTS−bui ld
cmake −−i n s t a l l .

i n s t a l l hd−bet f o r sku l l −s t r i pp i n g
pip3 i n s t a l l −−upgrade pip
pip3 i n s t a l l −−upgrade s e t up t oo l s
pip3 i n s t a l l opencv−python opencv−contr ib−python
cd / usr / l o c a l

g i t c l one https : // github . com/MIC−DKFZ/HD−BET
cd HD−BET
pip3 i n s t a l l −e .

i n s t a l l f s l f o r WM/GM segmentat ion
python3 / usr / l o c a l / f s l i n s t a l l e r . py −d "/ usr / l o c a l / f s l "
rm /usr / l o c a l / f s l i n s t a l l e r . py
FSLDIR=/usr / l o c a l / f s l
PATH=${FSLDIR}/ share / f s l / bin : ${PATH}
export FSLDIR PATH
. ${FSLDIR}/ etc / f s l c o n f / f s l . sh

Cleanup
apt−get −qq c l ean
rm −r f /var / l i b /apt/ l i s t s /∗
rm −r f /tmp/mpi

I Python code for functions used in TDA and in Model Training

import numpy as np
import pandas as pd
import gudhi as gd
from pylab import ∗
import n ibabe l as nib
import time
import p s u t i l
import os

import t en so r f l ow as t f

I. Python code for functions used in TDA and in Model Training 105

from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler
import gudhi . r e p r e s e n t a t i o n s as gdr
import gudhi . t en so r f l ow . pe r s l ay as p r s l
from persim import PersImage , Per s i s t ence Imager
from gtda . diagrams import Pers i s tence Image as PIgtda ,

Pers i s tenceLandscape
from gudhi . r e p r e s e n t a t i o n s import Landscape , Pers i s tence Image as

PIgudhi

from s k l e a rn . mode l_se lect ion import KFold
from s k l e a rn . met r i c s import accuracy_score

from s k l e a rn . svm import SVC
from s k l e a rn . ensemble import RandomForestClass i f i e r
from s k l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r
from s k l e a rn . l inear_model import Log i s t i cReg r e s s i on
from s k l e a rn . l inear_model import LinearRegre s s i on
from s k l e a rn . ensemble import GradientBoost ingRegressor
from s k l e a rn . ensemble import RandomForestRegressor

Parameters
f i l e s = a l l p reproces sed images
def get_M000_M006_files (f i l e s) :

Gets which s e s s i o n s each s u b j e c t has
s ub j e c t s = {}
for f i l e in f i l e s :

pos_sub = f i l e . f i nd (’ sub ’)
pos_ses = f i l e . f i nd (’ s e s ’)
sub = f i l e [pos_sub : pos_sub+12]
s e s s i o n = f i l e [pos_ses+4: pos_ses+8]
i f sub not in s ub j e c t s :

s ub j e c t s [sub] = []

s ub j e c t s [sub] . append (s e s s i o n)

Gets s u b j e c t s t h a t have each combination o f s e s s i o n s
pa i rw i s e

M000_M003 = []

106 Bibliography

M000_M006 = []
M003_M006 = []
M000_M012 = []
M003_M012 = []
M006_M012 = []

for sub in s ub j e c t s . keys () :
i f (’M000 ’ in s ub j e c t s [sub] and ’M003 ’ in s ub j e c t s [sub])

:
M000_M003 . append (sub)

i f (’M000 ’ in s ub j e c t s [sub] and ’M006 ’ in s ub j e c t s [sub])
:
M000_M006 . append (sub)

i f (’M006 ’ in s ub j e c t s [sub] and ’M003 ’ in s ub j e c t s [sub])
:
M003_M006 . append (sub)

i f (’M000 ’ in s ub j e c t s [sub] and ’M012 ’ in s ub j e c t s [sub])
:
M000_M012 . append (sub)

i f (’M012 ’ in s ub j e c t s [sub] and ’M003 ’ in s ub j e c t s [sub])
:
M003_M012 . append (sub)

i f (’M006 ’ in s ub j e c t s [sub] and ’M012 ’ in s ub j e c t s [sub])
:
M006_M012 . append (sub)

print (f ’ Pat i ent s ␣ that ␣have␣M000␣and␣M003 : ␣{ l en (M000_M003) } ’)
print (f ’ Pat i ent s ␣ that ␣have␣M000␣and␣M006 : ␣{ l en (M000_M006) } ’)
print (f ’ Pat i ent s ␣ that ␣have␣M003␣and␣M006 : ␣{ l en (M003_M006) } ’)
print (f ’ Pat i ent s ␣ that ␣have␣M000␣and␣M012 : ␣{ l en (M000_M012) } ’)
print (f ’ Pat i ent s ␣ that ␣have␣M003␣and␣M012 : ␣{ l en (M003_M012) } ’)
print (f ’ Pat i ent s ␣ that ␣have␣M006␣and␣M012 : ␣{ l en (M006_M012) } ’)

I. Python code for functions used in TDA and in Model Training 107

Gets f i l e s f o r both M000 and M006 only f o r the s u b j e c t s
t h a t have both s e s s i o n s s imu l t aneous l y

f i les_M0 = []
f i les_M6 = []

for f i l e in f i l e s :
pos_sub = f i l e . f i nd (’ sub ’)
pos_ses = f i l e . f i nd (’ s e s ’)
sub = f i l e [pos_sub : pos_sub+12]
s e s s i o n = f i l e [pos_ses+4: pos_ses+8]

i f s e s s i o n == ’M000 ’ and sub in M000_M006 :
f i les_M0 . append (f i l e)

e l i f s e s s i o n == ’M006 ’ and sub in M000_M006 :
f i les_M6 . append (f i l e)

f i l e s are so r t ed so t ha t they have the same order o f
p a t i e n t s

f i les_M0 . s o r t ()
f i les_M6 . s o r t ()
return f i les_M0 , f i les_M6

Parameters
path = l o c a l i s e s where c o r r e l a t i o n matr ices are
f i l e s = a l l p reproces sed images
def g e t_ f i r s t_ s e s s i o n_ f i l e s (path , f i l e s) :

Gets which s e s s i o n s each s u b j e c t has
s ub j e c t s = {}
for f i l e in f i l e s :

pos_sub = f i l e . f i nd (’ sub ’)
pos_ses = f i l e . f i nd (’ s e s ’)
sub = f i l e [pos_sub : pos_sub+12]
s e s s i o n = f i l e [pos_ses+4: pos_ses+8]
i f sub not in s ub j e c t s :

s ub j e c t s [sub] = []

s ub j e c t s [sub] . append (s e s s i o n)

f i r s t _ s e s s i o n_ f i l e s = []

108 Bibliography

for sub in s ub j e c t s . keys () :
i f ’M000 ’ in s ub j e c t s [sub] :

f i r s t _ s e s s i o n_ f i l e s . append (path + sub + ’_ses−
M000_atlas−schaefer_kind−
cor r e l a t i on_connec t iv i ty_matr ix . csv ’)

e l i f ’M003 ’ in s ub j e c t s [sub] :
f i r s t _ s e s s i o n_ f i l e s . append (path + sub + ’_ses−

M003_atlas−schaefer_kind−
cor r e l a t i on_connec t iv i ty_matr ix . csv ’)

e l i f ’M006 ’ in s ub j e c t s [sub] :
f i r s t _ s e s s i o n_ f i l e s . append (path + sub + ’_ses−

M006_atlas−schaefer_kind−
cor r e l a t i on_connec t iv i ty_matr ix . csv ’)

return f i r s t _ s e s s i o n_ f i l e s

Parameters
f i l e s = T1 images f o r which the p e r s i s t e n c e w i l l be c a l c u l a t e d
def c a l cu l a t e_cub i c a l_pe r s i s t en c e (f i l e s , t i t l e) :

pers i s tences_H0 = []
pers i s tences_H1 = []
pers i s tences_H2 = []
o rder_subjec t s = []

for f i l e in f i l e s :
print (f i l e)
sub = f i l e [f i l e . f i nd (’ sub ’) : f i l e . f i nd (’ sub ’) + 12]
img = nib . load (f i l e)
data = img . get_fdata ()

cub i c a l = gd . CubicalComplex (
top_dimens iona l_ce l l s = data

)
cub i c a l . compute_pers istence (homology_coef f_f ie ld = 2 ,

min_pers i s tence = 0)

pers i s tences_H0 . append (cub i c a l .
pe r s i s t ence_inte rva l s_in_dimens ion (0))

pers i s tences_H1 . append (cub i c a l .
pe r s i s t ence_inte rva l s_in_dimens ion (1))

I. Python code for functions used in TDA and in Model Training 109

pers i s tences_H2 . append (cub i c a l .
pe r s i s t ence_inte rva l s_in_dimens ion (2))

order_subjec t s . append (sub)

np . savez (t i t l e , pers i s tences_H0=np . array (pers istences_H0 ,
dtype=’ ob j e c t ’) , pers i s tences_H1=np . array (pers istences_H1
, dtype=’ ob j e c t ’) , pers i s tences_H2=np . array (
pers istences_H2 , dtype=’ ob j e c t ’) , o rder_subjec t s=
order_subjec t s)

Parameters
f i l e s = fMRI images f o r which the p e r s i s t e n c e w i l l be

c a l c u l a t e d
def ca l cu l a t e_s imp l ex_per s i s t ence (f i l e s , t i t l e) :

pers i s tences_H0 = []
pers i s tences_H1 = []
pers i s tences_H2 = []
o rder_subjec t s = []

for f i l e in f i l e s :
print (f i l e)
sub = f i l e [f i l e . f i nd (’ sub ’) : f i l e . f i nd (’ sub ’) + 12]
matrix = pd . read_csv (f i l e , header=0, index_col=0) . va lue s
matrix [matrix == 0] = np . f i n f o (f loat) . smal lest_normal
inverse_matr ix = 1 / (matrix)

rips_complex = gd . RipsComplex (distance_matr ix=
inverse_matrix , max_edge_length=1e+3)

s implex_tree = rips_complex . create_simplex_tree (
max_dimension=3)

s implex_tree . compute_pers istence (homology_coef f_f ie ld =
2)

pers i s tences_H0 . append (s implex_tree .
pe r s i s t ence_inte rva l s_in_dimens ion (0))

pers i s tences_H1 . append (s implex_tree .
pe r s i s t ence_inte rva l s_in_dimens ion (1))

pers i s tences_H2 . append (s implex_tree .
pe r s i s t ence_inte rva l s_in_dimens ion (2))

110 Bibliography

order_subjec t s . append (sub)

np . savez (t i t l e , pers i s tences_H0=np . array (pers istences_H0 ,
dtype=’ ob j e c t ’) , pers i s tences_H1=np . array (pers istences_H1
, dtype=’ ob j e c t ’) , pers i s tences_H2=np . array (
pers istences_H2 , dtype=’ ob j e c t ’) , o rder_subjec t s=
order_subjec t s)

Parameters
pers = l i s t wi th the p e r s i s t e n c e s c a l c u l a t e d to which Pers lay

w i l l be app l i e d
def get_pers lay_vectors (pers , dim) :

Preprocess ing o f p e r s i s t e n c e s
DiagramSelector : S e l e c t s po in t s t h a t are non i n f i n i t e
Diagram Sca l e r : Normal isat ion
Padding : Adds po in t s in (0 ,0) so a l l p e r s i s t e n c e s have the

same s i z e
diagrams = gdr . DiagramSelector (use=True) . f i t_t rans fo rm (np .

asar ray (pers , dtype=’ ob j e c t ’))
diagrams = gdr . DiagramScaler (use=True , s c a l e r s = [([0 , 1] ,

MinMaxScaler ())]) . f i t_t rans fo rm (diagrams)
diagrams = gdr . Padding (use=True) . f i t_t rans fo rm (np . asar ray (

diagrams , dtype=’ ob j e c t ’))

Padding re turns 3D data (t h i r d dimension = po in t added
during padding or not)

diagrams_2D = []
for diag in diagrams :

diag_2D = []
for point in diag :

diag_2D . append ([po int [0] , po int [1]])
diagrams_2D . append (np . array (diag_2D))

s t a r t = time . time ()
==================================
PERSLAY
==================================
diagrams = t f . RaggedTensor . from_tensor (t f . constant (

I. Python code for functions used in TDA and in Model Training 111

diagrams_2D , dtype=t f . f l o a t 3 2))
rho = t f . i d e n t i t y
phi = p r s l . Gauss ianPers layPhi ((100 , 100) , ((−.5 , 1 . 5) , (−.5 ,

1 . 5)) , . 1)
phi = p r s l . TentPerslayPhi (np . array (np . arange (−1 . , 2 . , . 0 01) ,

dtype=np . f l o a t 3 2))
weight = p r s l . PowerPerslayWeight (1 . , 1 .)
perm_op = t f . math . reduce_sum

pe r s l ay = p r s l . Pers lay (phi=phi , weight=weight , perm_op=
perm_op , rho=rho)

ve c t o r s = pe r s l ay (diagrams)

==================================
PERSIM − PersImage
==================================
pim = PersImage (p i x e l s =[100 ,100] , spread=1)
ve c t o r s = pim . trans form (diagrams_2D)

==================================
PERSIM − Pers i s tenceImager
==================================
pimgr = Pers i s t ence Imager (p i x e l_ s i z e =0.005)
ve c t o r s = pimgr . f i t_t rans fo rm (diagrams_2D)
print (’ Reso lut ion ␣=’ , pimgr . r e s o l u t i o n)

==================================
GIOTTO−TDA
==================================
diagrams_3D = []
for diag in diagrams_2D :

diagrams_3D . append ([np . append (pair , dim) for pa i r in
diag])

PI = PIgtda (sigma=0.1 , n_bins=1000)
ve c t o r s = PI . f i t_t rans fo rm (diagrams_3D)

PL = Pers i s tenceLandscape (n_layers=5, n_bins=100)
ve c t o r s = PL. f i t_t rans fo rm (diagrams_3D)

112 Bibliography

==================================
GUDHI
==================================
vec to r s = Landscape (r e s o l u t i o n =1000) . f i t_t rans fo rm (

diagrams_2D)
vec to r s = PIgudhi (bandwidth=1.0 , weight=lambda x : x [1] ∗ ∗ 2 ,

im_range=[0 , 1 , 0 , 1] , r e s o l u t i o n =[100 ,100]) .
f i t_t rans fo rm (diagrams_2D)

print (f ’ Total ␣ time␣ (Pe r s i s t en c e ␣ Images) : ␣{ time . time () ␣−␣
s t a r t } ’)

print (f ’RAM␣used␣ (GB) : ␣{ p s u t i l . Process (os . ge tp id ()) .
memory_info () . r s s ␣/␣10∗∗9} ’)

print (f ’ Total ␣ Ava i l ab l e ␣RAM␣(GB) : ␣{ p s u t i l . virtual_memory () .
t o t a l ␣/␣10␣∗∗␣9} ’)

print (f ’ Percentua l : ␣{ p s u t i l . Process (os . ge tp id ()) . memory_info
() . r s s ␣/␣ p s u t i l . virtual_memory () . t o t a l } ’)

return np . array (ve c t o r s)

def t e s t_mode l s_c l a s s i f i c a t i on (vectors_M0 , vectors_M6 ,
t rue_ labe l s) :
X = []
for x1 , x2 in zip (vectors_M0 , vectors_M6) :

X. append (np . concatenate ([x1 . f l a t t e n () , x2 . f l a t t e n ()]))
test_models (np . array (X) , np . array (t rue_ labe l s))

Parameters
pers_group1 = f i r s t group o f p e r s i s t e n c e s to be compared
pers_group2 = second group o f p e r s i s t e n c e s to be compared
t r u e _ l a b e l s = expec ted l a b e l s (f a s t or s low progre s so r)
def test_models (X, y) :

s t a r t = time . time ()
model_SVC = SVC(gamma=’ auto ’ , random_state=42)
model_RF = RandomForestClass i f i e r (random_state=42)
model_KN = KNe ighbo r sC la s s i f i e r (n_neighbors=2)
model_LR = Log i s t i cReg r e s s i on (random_state=42)

n_sp l i t s = 5

I. Python code for functions used in TDA and in Model Training 113

kf = KFold (n_sp l i t s=n_spl i t s , s h u f f l e=True , random_state=42)
acc_tra in = np . empty ((4 , n_sp l i t s))
acc_test = np . empty ((4 , n_sp l i t s))
idx = 0
for t ra in , t e s t in kf . s p l i t (X, y) :

X_train , X_test = X[t r a i n] , X[t e s t]
y_train , y_test = y [t r a i n] , y [t e s t]

model_SVC . f i t (X_train , y_train)
y_pred_test = model_SVC . p r ed i c t (X_test)
y_pred_train = model_SVC . p r ed i c t (X_train)
acc_tra in [0] [idx] = accuracy_score (y_train , y_pred_train

)
acc_test [0] [idx] = accuracy_score (y_test , y_pred_test)

model_RF . f i t (X_train , y_train)
y_pred_test = model_RF . p r ed i c t (X_test)
y_pred_train = model_RF . p r ed i c t (X_train)
acc_tra in [1] [idx] = accuracy_score (y_train , y_pred_train

)
acc_test [1] [idx] = accuracy_score (y_test , y_pred_test)

model_KN . f i t (X_train , y_train)
y_pred_test = model_KN . p r ed i c t (X_test)
y_pred_train = model_KN . p r ed i c t (X_train)
acc_tra in [2] [idx] = accuracy_score (y_train , y_pred_train

)
acc_test [2] [idx] = accuracy_score (y_test , y_pred_test)

model_LR . f i t (X_train , y_train)
y_pred_test = model_LR . p r ed i c t (X_test)
y_pred_train = model_LR . p r ed i c t (X_train)
acc_tra in [3] [idx] = accuracy_score (y_train , y_pred_train

)
acc_test [3] [idx] = accuracy_score (y_test , y_pred_test)

idx += 1

print (f ’ Total ␣ time␣ (model␣ t r a i n i n g) : ␣{ time . time () ␣−␣ s t a r t } ’)

114 Bibliography

print (f ’RAM␣used␣ (GB) : ␣{ p s u t i l . Process (os . ge tp id ()) .
memory_info () . r s s ␣/␣10∗∗9} ’)

print (f ’ Total ␣ Ava i l ab l e ␣RAM␣(GB) : ␣{ p s u t i l . virtual_memory () .
t o t a l ␣/␣10␣∗∗␣9} ’)

print (f ’ Percentua l : ␣{ p s u t i l . Process (os . ge tp id ()) . memory_info
() . r s s ␣/␣ p s u t i l . virtual_memory () . t o t a l } ’)

print (’===============SVC===============’)
print (f ’ Train␣Accuracy␣=␣{ acc_tra in [0] . mean () }␣+/−␣{

acc_tra in [0] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ acc_test [0] . mean () }␣+/−␣{ acc_test

[0] . s td () } ’)

print (’===============RandomForest===============’)
print (f ’ Train␣Accuracy␣=␣{ acc_tra in [1] . mean () }␣+/−␣{

acc_tra in [1] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ acc_test [1] . mean () }␣+/−␣{ acc_test

[1] . s td () } ’)

print (’===============KNeighbors===============’)
print (f ’ Train␣Accuracy␣=␣{ acc_tra in [2] . mean () }␣+/−␣{

acc_tra in [2] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ acc_test [2] . mean () }␣+/−␣{ acc_test

[2] . s td () } ’)

print (’===============Log i s t i cReg r e s s i on===============’)
print (f ’ Train␣Accuracy␣=␣{ acc_tra in [3] . mean () }␣+/−␣{

acc_tra in [3] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ acc_test [3] . mean () }␣+/−␣{ acc_test

[3] . s td () } ’)

def t e s t_ r e g r e s s i o n (pers1 , pers2 , de l ta s , dim) :
vec to r s1 = get_pers lay_vectors (pers1 , dim)
vec to r s2 = get_pers lay_vectors (pers2 , dim)

s t a r t = time . time ()
x = []
for vector1 , vec tor2 in zip (vectors1 , v e c to r s2) :

x . append (np . concatenate ([vec tor1 . f l a t t e n () , vec tor2 .

I. Python code for functions used in TDA and in Model Training 115

f l a t t e n ()] , 0))
x = np . array (x)
y = np . array (d e l t a s)

lr_model = LinearRegre s s i on ()
gb_model = GradientBoost ingRegressor (random_state=42)
rf_model = RandomForestRegressor (random_state=42)

n_sp l i t s = 5
kf = KFold (n_sp l i t s=n_spl i t s , s h u f f l e=True , random_state=42)
tra in_acc = np . empty ((3 , n_sp l i t s))
test_acc = np . empty ((3 , n_sp l i t s))
idx = 0
for t ra in , t e s t in kf . s p l i t (x , y) :

X_train , X_test = x [t r a i n] , x [t e s t]
y_train , y_test = y [t r a i n] , y [t e s t]

lr_model . f i t (X_train , y_train)
tra in_acc [0] [idx] = lr_model . s c o r e (X_train , y_train)
test_acc [0] [idx] = lr_model . s c o r e (X_test , y_test)

gb_model . f i t (X_train , y_train)
tra in_acc [1] [idx] = gb_model . s c o r e (X_train , y_train)
test_acc [1] [idx] = gb_model . s c o r e (X_test , y_test)

rf_model . f i t (X_train , y_train)
tra in_acc [2] [idx] = rf_model . s c o r e (X_train , y_train)
test_acc [2] [idx] = rf_model . s c o r e (X_test , y_test)
idx += 1

print (f ’ Total ␣ time␣ (model␣ t r a i n i n g) : ␣{ time . time () ␣−␣ s t a r t } ’)
print (f ’RAM␣used␣ (GB) : ␣{ p s u t i l . Process (os . ge tp id ()) .

memory_info () . r s s ␣/␣10∗∗9} ’)
print (f ’ Total ␣ Ava i l ab l e ␣RAM␣(GB) : ␣{ p s u t i l . virtual_memory () .

t o t a l ␣/␣10␣∗∗␣9} ’)
print (f ’ Percentua l : ␣{ p s u t i l . Process (os . ge tp id ()) . memory_info

() . r s s ␣/␣ p s u t i l . virtual_memory () . t o t a l } ’)
print (’===============Linear ␣Regres s ion===============’)
print (f ’ Train␣Accuracy␣=␣{ tra in_acc [0] . mean () }␣+/−␣{

116 Bibliography

tra in_acc [0] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ test_acc [0] . mean () }␣+/−␣{ test_acc

[0] . s td () } ’)
print (’===============Gradient ␣Boost ing ␣Regres s ion

===============’)
print (f ’ Train␣Accuracy␣=␣{ tra in_acc [1] . mean () }␣+/−␣{

tra in_acc [1] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ test_acc [1] . mean () }␣+/−␣{ test_acc

[1] . s td () } ’)
print (’===============Random␣Forest ␣Regres s ion

===============’)
print (f ’ Train␣Accuracy␣=␣{ tra in_acc [2] . mean () }␣+/−␣{

tra in_acc [2] . s td () } ’)
print (f ’ Test ␣Accuracy␣=␣{ test_acc [2] . mean () }␣+/−␣{ test_acc

[2] . s td () } ’)

J Python code for functions used in Clustering

import numpy as np
import pandas as pd
from pylab import ∗
import matp lo t l i b . pyplot as p l t
import seaborn as sns

from s k l e a rn . decomposit ion import PCA
from s k l e a rn . c l u s t e r import KMeans
from kneed import KneeLocator
from s k l e a rn . met r i c s import s i l houe t t e_sco r e ,

adjusted_rand_score
from s k l e a rn . c l u s t e r import Agglomerat iveCluster ing

def acp (ve c t o r s) :
pca = PCA(n_components=2, random_state=42)
s i z e = 1
for i in range (len (np . shape (ve c t o r s)) − 1) :

s i z e ∗= np . shape (ve c t o r s) [i +1]
pers_pca = pca . f i t_t rans fo rm (np . asar ray (ve c t o r s) . reshape ((

len (v e c t o r s) , s i z e)))

J. Python code for functions used in Clustering 117

exp la ined_var iances = [pca . expla ined_var iance_rat io_ [0] , pca
. expla ined_var iance_rat io_ [1]]

return pers_pca , exp la ined_var iances

def c l u s t e r i n g (vector s , order_subjects , name , qtte_cases ,
t rue_labe l s , use_elbow=True , prede f ined_n_clus te r s=2) :
pers_pca , exp la ined_var iances = acp (ve c t o r s)

i f use_elbow :
s s e = []
for k in range (1 , 11) :

kmeans = KMeans(n_c lus te r s=k , random_state=42, i n i t=
’ random ’ , n_init=10, max_iter=300)

kmeans . f i t (pers_pca)
s s e . append (kmeans . i n e r t i a_)

k l = KneeLocator (range (1 , 11) , sse , curve=’ convex ’ ,
d i r e c t i o n=’ dec r ea s ing ’)

n_c lus te r s = k l . elbow
else :

n_c lus te r s = prede f ined_n_clus te r s

mode l_c luster ing = KMeans(n_c lus te r s=n_clusters , i n i t=’k−
means++’ , n_init=50, max_iter=500 , random_state=42)

trained_model = model_c luster ing . f i t (pers_pca)

pcadf = pd . DataFrame (pers_pca , columns=[’ component_1 ’ , ’
component_2 ’])

pcadf [’ p r ed i c t ed_c lu s t e r ’] = trained_model . l abe l s_

p l t . rcParams [" t ex t . usetex "] = False
p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)
p l t . f i g u r e (f i g s i z e =(8 ,8))
s ca t = sns . s c a t t e r p l o t (data=pcadf , x=’ component_1 ’ , y=’

component_2 ’ , hue=’ p r ed i c t ed_c lu s t e r ’ , p a l e t t e=’ v i r i d i s ’)
s ca t . s e t_x labe l (f ’Component␣1␣ ({ exp la ined_var iances [0] : . 2 f })

’)
s ca t . s e t_y labe l (f ’Component␣2␣ ({ exp la ined_var iances [1] : . 2 f })

’)

118 Bibliography

for i , tx t in enumerate (o rder_subjec t s) :
s ca t . annotate (txt [4 : 9]+ txt [−5 :] , (pers_pca [i , 0] ,

pers_pca [i , 1]) , f o n t s i z e =6)

f i g = sca t . g e t_f i gure ()
f i g . s a v e f i g (’ . / r e s u l t s / ’ + name + ’ . png ’)
p l t . c l o s e ()

s i l_ s c o r e = s i l h ou e t t e_s co r e (pers_pca , pcadf [’
p r ed i c t ed_c lu s t e r ’])

adj_score = adjusted_rand_score (t rue_labe l s , pcadf [’
p r ed i c t ed_c lu s t e r ’])

print (f ’ S i l h ou e t t e ␣ Score ␣=␣{ s i l_ s c o r e }␣ | ␣Adjusted␣Random␣
Score ␣=␣{ adj_score } ’)

l a b e l s = [’ case ’] ∗ qtte_cases + [’ c on t r o l ’] ∗ (len (v e c t o r s)
− qtte_cases)

p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)
p l t . f i g u r e (f i g s i z e =(8 ,8))
s ca t = sns . s c a t t e r p l o t (data=pcadf , x=’ component_1 ’ , y=’

component_2 ’ , hue=l abe l s , p a l e t t e=’ v i r i d i s ’)
f i g = sca t . g e t_f i gure ()
f i g . s a v e f i g (’ . / r e s u l t s / ’ + name + ’ _ref . png ’)
p l t . c l o s e ()

def HC_clustering (vector s , name , t rue_labe l s , o rder_subjec t s) :
pers_pca , exp la ined_var iances = acp (ve c t o r s)
pcadf = pd . DataFrame (pers_pca , columns=[’ component_1 ’ , ’

component_2 ’])

h i e r a r c h i c a l_ c l u s t e r = Agg lomerat iveCluster ing (n_c lus t e r s=2,
l i nkage=’ward ’)

l a b e l s = h i e r a r c h i c a l_ c l u s t e r . f i t_p r ed i c t (pers_pca)

p l t . rcParams [" t ex t . usetex "] = False
p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)
p l t . f i g u r e (f i g s i z e =(8 ,8))
s ca t = sns . s c a t t e r p l o t (data=pcadf , x=’ component_1 ’ , y=’

J. Python code for functions used in Clustering 119

component_2 ’ , hue=l abe l s , p a l e t t e=’ v i r i d i s ’)
s ca t . s e t_x labe l (f ’Component␣1␣ ({ exp la ined_var iances [0] : . 2 f })

’)
s ca t . s e t_y labe l (f ’Component␣2␣ ({ exp la ined_var iances [1] : . 2 f })

’)

for i , tx t in enumerate (o rder_subjec t s) :
s ca t . annotate (txt [4 : 9]+ txt [−5 :] , (pers_pca [i , 0] ,

pers_pca [i , 1]) , f o n t s i z e =6)

f i g = sca t . g e t_f i gure ()
f i g . s a v e f i g (’ . / r e s u l t s / ’ + name + ’ . png ’)
p l t . c l o s e ()

s i l_ s c o r e = s i l h ou e t t e_s co r e (pers_pca , l a b e l s)
adj_score = adjusted_rand_score (t rue_labe l s , l a b e l s)
print (f ’ S i l h ou e t t e ␣ Score ␣=␣{ s i l_ s c o r e }␣ | ␣Adjusted␣Random␣

Score ␣=␣{ adj_score } ’)

120 Bibliography

K Results for all representations in control vs. patient classification
from the rsfMRI pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 142.73 124.9 0.82 1.0 ± 0.0 0.53 ± 0.08 1.0 ± 0.0 0.63 ± 0.21 0.75 ± 0.06 0.52 ± 0.07 0.70 ± 0.04 0.52 ± 0.07
Persim 4.6 7.9 0.72 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.45 ± 0.07 0.73 ± 0.02 0.34 ± 0.09 0.73 ± 0.02 0.55 ± 0.07
Giotto No Results
Gudhi 4.7 40.1 0.72 0.67 ± 0.02 0.58 ± 0.11 1.0 ± 0.0 0.50 ± 0.11 0.69 ± 0.03 0.53 ± 0.06 0.66 ± 0.03 0.62 ± 0.08

PL
Perslay 5.3 4.3 0.73 0.68 ± 0.02 0.62 ± 0.05 1.0 ± 0.0 0.73 ± 0.13 0.76 ± 0.04 0.57 ± 0.10 0.72 ± 0.04 0.50 ± 0.11
Giotto 0.1 1.3 0.72 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.57 ± 0.11 0.74 ± 0.02 0.55 ± 0.07 0.72 ± 0.04 0.64 ± 0.09
Gudhi 0.3 12.2 0.72 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.57 ± 0.11 0.74 ± 0.02 0.55 ± 0.07 0.77 ± 0.03 0.64 ± 0.08

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying functional MRI as healthy control or ALS patient.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 211.5 206.5 0.92 0.96 ± 0.03 0.57 ± 0.08 1.0 ± 0.0 0.48 ± 0.09 0.72 ± 0.03 0.47 ± 0.05 0.82 ± 0.04 0.60 ± 0.06
Persim 6.8 7.4 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.57 ± 0.06 0.75 ± 0.04 0.55 ± 0.10 0.55 ± 0.02 0.55 ± 0.07
Giotto No Results
Gudhi 8.6 69.0 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.49 ± 0.26 0.68 ± 0.07 0.38 ± 0.08 0.58 ± 0.03 0.45 ± 0.07

PL
Perslay 7.4 3.8 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.62 ± 0.14 0.77 ± 0.03 0.53 ± 0.09 0.61 ± 0.02 0.52 ± 0.09
Giotto 0.1 1.4 0.72 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.52 ± 0.17 0.76 ± 0.04 0.45 ± 0.10 0.65 ± 0.06 0.52 ± 0.04
Gudhi 0.7 7.4 0.72 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.50 ± 0.13 0.77 ± 0.04 0.45 ± 0.10 0.78 ± 0.05 0.48 ± 0.11

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying functional MRI as healthy control or ALS patient.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 350.4 202.2 1.01 0.67 ± 0.06 0.55 ± 0.14 1.0 ± 0.0 0.64 ± 0.11 0.76 ± 0.03 0.53 ± 0.15 0.72 ± 0.03 0.52 ± 0.11
Persim 10.8 7.8 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.43 ± 0.15 0.73 ± 0.05 0.48 ± 0.19 0.55 ± 0.02 0.55 ± 0.07
Giotto No Results
Gudhi 11.5 16.4 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.59 ± 0.15 0.80 ± 0.06 0.58 ± 0.14 0.58 ± 0.03 0.57 ± 0.08

PL
Perslay 11.5 3.6 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.43 ± 0.12 0.78 ± 0.03 0.47 ± 0.07 0.56 ± 0.01 0.55 ± 0.07
Giotto 0.2 1.6 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.55 ± 0.09 0.70 ± 0.03 0.45 ± 0.13 0.56 ± 0.01 0.55 ± 0.07
Gudhi 0.9 5.0 0.73 0.55 ± 0.02 0.55 ± 0.07 1.0 ± 0.0 0.59 ± 0.06 0.74 ± 0.03 0.42 ± 0.10 0.60 ± 0.01 0.57 ± 0.02

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying functional MRI as healthy control or ALS patient.

L. Results for all representations in progression classification from the rsfMRI pipeline 121

L Results for all representations in progression classification from
the rsfMRI pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 74.9 254.1 0.73 1.0 ± 0.0 0.53 ± 0.12 1.0 ± 0.0 0.77 ± 0.20 0.91 ± 0.06 0.70 ± 0.27 1.0 ± 0.0 0.47 ± 0.12
Persim 2.3 23.0 0.69 0.63 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.37 ± 0.22 0.69 ± 0.07 0.60 ± 0.23 0.63 ± 0.04 0.60 ± 0.23
Giotto 23.8 281.2 0.90 0.61 ± 0.07 0.40 ± 0.23 0.61 ± 0.07 0.60 ± 0.23 0.61 ± 0.07 0.60 ± 0.23 0.61 ± 0.07 0.60 ± 0.23
Gudhi 4.7 139.5 0.69 0.96 ± 0.05 0.87 ± 0.16 1.0 ± 0.0 0.93 ± 0.13 0.91 ± 0.06 0.70 ± 0.27 0.75 ± 0.15 0.57 ± 0.25

PL
Perslay 3.1 6.7 0.73 0.96 ± 0.05 0.87 ± 0.16 1.0 ± 0.0 0.73 ± 0.23 0.91 ± 0.06 0.70 ± 0.27 1.0 ± 0.0 0.53 ± 0.12
Giotto 0.1 1.3 0.69 0.69 ± 0.11 0.53 ± 0.12 1.0 ± 0.0 0.83 ± 0.21 0.96 ± 0.05 0.83 ± 0.21 0.83 ± 0.08 0.53 ± 0.12
Gudhi 0.1 130.8 0.69 0.69 ± 0.11 0.53 ± 0.12 1.0 ± 0.0 0.83 ± 0.21 0.96 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.67 ± 0.18

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying functional MRI by progression rate.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 84.5 246.8 0.75 1.0 ± 0.0 0.53 ± 0.12 1.0 ± 0.0 0.60 ± 0.08 0.85 ± 0.04 0.60 ± 0.08 1.0 ± 0.0 0.63 ± 0.22
Persim 2.7 23.8 0.70 0.65 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.73 ± 0.23 0.88 ± 0.08 0.60 ± 0.23 0.65 ± 0.04 0.60 ± 0.23
Giotto 21.8 240.6 1.11 1.0 ± 0.0 0.40 ± 0.23 1.0 ± 0.0 0.63 ± 0.22 0.94 ± 0.05 0.60 ± 0.08 1.0 ± 0.0 0.63 ± 0.22
Gudhi 4.2 26.3 0.76 0.67 ± 0.07 0.53 ± 0.12 1.0 ± 0.0 0.77 ± 0.20 0.94 ± 0.05 0.77 ± 0.29 0.71 ± 0.13 0.50 ± 0.26

PL
Perslay 3.2 5.7 0.73 0.67 ± 0.07 0.53 ± 0.12 1.0 ± 0.0 0.53 ± 0.12 0.69 ± 0.05 0.70 ± 0.27 0.81 ± 0.01 0.43 ± 0.25
Giotto 0.1 1.3 0.70 0.67 ± 0.07 0.53 ± 0.12 1.0 ± 0.0 0.53 ± 0.12 0.67 ± 0.05 0.60 ± 0.23 0.69 ± 0.06 0.53 ± 0.12
Gudhi 0.1 24.1 0.69 0.67 ± 0.07 0.53 ± 0.12 1.0 ± 0.0 0.53 ± 0.12 0.67 ± 0.05 0.60 ± 0.23 0.87 ± 0.04 0.37 ± 0.22

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying functional MRI by progression rate.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 104.0 226.2 0.74 1.0 ± 0.0 0.53 ± 0.12 1.0 ± 0.0 0.47 ± 0.12 0.79 ± 0.07 0.67 ± 0.28 1.0 ± 0.0 0.40 ± 0.08
Persim 3.6 23.4 0.70 1.0 ± 0.0 0.40 ± 0.23 1.0 ± 0.0 0.70 ± 0.16 0.73 ± 0.08 0.60 ± 0.23 0.67 ± 0.07 0.53 ± 0.12
Giotto 55.2 302.9 1.32 1.0 ± 0.0 0.53 ± 0.34 1.0 ± 0.0 0.53 ± 0.34 0.86 ± 0.05 0.63 ± 0.37 1.0 ± 0.0 0.27 ± 0.25
Gudhi 5.4 14.9 0.70 0.63 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.37 ± 0.22 0.67 ± 0.05 0.47 ± 0.12 0.81 ± 0.06 0.43 ± 0.25

PL
Perslay 3.7 5.8 0.73 0.63 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.47 ± 0.12 0.65 ± 0.04 0.47 ± 0.12 0.77 ± 0.07 0.60 ± 0.23
Giotto 0.1 1.4 0.70 0.65 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.47 ± 0.12 0.67 ± 0.07 0.47 ± 0.12 0.75 ± 0.04 0.60 ± 0.23
Gudhi 0.1 13.9 0.69 0.65 ± 0.04 0.60 ± 0.23 1.0 ± 0.0 0.47 ± 0.12 0.67 ± 0.07 0.47 ± 0.12 0.87 ± 0.07 0.47 ± 0.12

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying functional MRI by progression rate.

122 Bibliography

M Results for all representations in onset classification from the
rsfMRI pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 194.6 240.5 0.72 1.0 ± 0.0 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.93 ± 0.07 0.70 ± 0.27 1.0 ± 0.0 0.70 ± 0.27
Persim 2.3 17.1 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.77 ± 0.20 0.92 ± 0.07 0.63 ± 0.22 0.85 ± 0.05 0.83 ± 0.21
Giotto 32.7 549.8 0.90 0.85 ± 0.05 0.83 ± 0.21 0.85 ± 0.05 0.83 ± 0.21 0.61 ± 0.33 0.43 ± 0.39 0.85 ± 0.05 0.83 ± 0.21
Gudhi 2.1 170.2 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.77 ± 0.20 0.93 ± 0.07 0.70 ± 0.27 0.93 ± 0.11 0.70 ± 0.27

PL
Perslay 5.11 15.8 0.73 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.93 ± 0.07 0.70 ± 0.27 1.0 ± 0.0 0.70 ± 0.27
Giotto 0.1 1.3 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.77 ± 0.07 0.53 ± 0.34 0.85 ± 0.05 0.83 ± 0.21
Gudhi 0.1 97.1 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.77 ± 0.07 0.53 ± 0.34 1.0 ± 0.0 0.83 ± 0.21

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying functional MRI by onset site.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 224.2 373.8 0.74 1.0 ± 0.0 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.92 ± 0.04 0.60 ± 0.08 1.0 ± 0.0 0.83 ± 0.21
Persim 2.5 17.8 0.70 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.67 ± 0.18 0.81 ± 0.06 0.47 ± 0.12 0.85 ± 0.05 0.83 ± 0.21
Giotto 32.1 370.0 1.11 1.0 ± 0.0 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.96 ± 0.05 0.67 ± 0.18 1.0 ± 0.0 0.83 ± 0.21
Gudhi 2.0 49.8 0.79 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.73 ± 0.23 0.81 ± 0.06 0.53 ± 0.32 0.85 ± 0.05 0.83 ± 0.21

PL
Perslay 5.3 12.0 0.74 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.73 ± 0.23 0.78 ± 0.13 0.40 ± 0.08 0.85 ± 0.05 0.83 ± 0.21
Giotto 0.1 1.3 0.70 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.71 ± 0.11 0.43 ± 0.33 0.85 ± 0.05 0.83 ± 0.21
Gudhi 0.1 22.1 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.71 ± 0.11 0.43 ± 0.33 0.85 ± 0.05 0.83 ± 0.21

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying functional MRI by onset site.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 254.24 260.9 0.77 0.94 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.75 ± 0.14 0.47 ± 0.24 1.0 ± 0.0 0.63 ± 0.37
Persim 2.9 16.1 0.70 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.75 ± 0.14 0.47 ± 0.24 0.85 ± 0.05 0.83 ± 0.21
Giotto 77.5 357.9 1.32 1.0 ± 0.0 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.86 ± 0.08 0.50 ± 0.26 1.0 ± 0.0 0.60 ± 0.23
Gudhi 2.86 30.9 0.81 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.63 ± 0.37 0.82 ± 0.12 0.57 ± 0.39 0.85 ± 0.05 0.63 ± 0.37

PL
Perslay 7.35 10.8 0.74 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.86 ± 0.10 0.53 ± 0.45 0.85 ± 0.05 0.83 ± 0.21
Giotto 0.1 1.3 0.70 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.88 ± 0.08 0.47 ± 0.40 0.85 ± 0.05 0.83 ± 0.21
Gudhi 0.1 17.9 0.69 0.85 ± 0.05 0.83 ± 0.21 1.0 ± 0.0 0.83 ± 0.21 0.88 ± 0.08 0.47 ± 0.40 0.92 ± 0.04 0.83 ± 0.21

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying functional MRI by onset site.

N. Results for all representations in regression from the rsfMRI pipeline 123

N Results for all representations in regression from the rsfMRI
pipeline

H0
Linear Gradient Boosting Random Forest

Library Time convert-
ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coefficient Test coeffi-
cient

PI

PersLay 123.3 46.4 0.73 0.99 ± 3.70E-07 -241.36 ± 233.95 0.99 ± 9.65E-08 -5.04 ± 9.17 0.81 ± 0.02 -2.76 ± 4.30
Persim 4.1 80.3 0.69 0.99 ± 3.09E-03 -52.67 ± 50.78 0.99 ± 4.89E-05 -11.98 ± 22.70 0.82 ± 0.04 -7.03 ± 12.69
Giotto 0.4 775.9 1.09 0.0 ± 0.0 -2.64 ± 3.49 0.0 ± 0.0 -2.64 ± 3.49 -4.85E-04 ± 2.80E-

04
-2.55 ± 3.23

Gudhi 8.1 176.7 0.74 0.87 ± 0.07 -1066.43 ±
1980.18

0.99 ± 2.16E-04 -5.68 ± 6.14 0.76 ± 0.04 -2.85 ± 3.76

PL
Perslay 4.9 9.2 0.72 0.99 ± 2.69E-10 -13.89 ± 21.78 0.99 ± 6.68E-07 -2.11 ± 3.67 0.82 ± 0.03 -2.38 ± 3.79
Giotto 0.1 3.9 0.67 1.0 ± 0.0 -4.97 ± 5.93 0.99 ± 6.35E-06 -2.59 ± 2.96 0.83 ± 0.03 -3.19 ± 4.66
Gudhi 0.1 21.6 0.67 1.0 ± 0.0 -4.99 ± 5.92 0.99 ± 6.35E-06 -3.28 ± 3.96 0.83 ± 0.03 -3.27 ± 4.81

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for the regression in the rsfMRI pipeline.

H1
Linear Gradient Boosting Random Forest

Library Time convert-
ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coeffi-
cient

Test coeffi-
cient

PI

PersLay 157.4 48.7 0.74 0.99 ± 9.17E-12 -18.61 ± 22.64 0.99 ± 5.35E-09 -3.84 ± 3.52 0.82 ± 0.03 -3.07 ± 3.20
Persim 5.2 78.2 0.69 1.0 ± 0.0 -266.73 ± 362.34 0.99 ± 1.70E-04 -4.24 ± 5.61 0.77 ± 0.04 -3.65 ± 4.72
Giotto 105.2 13504.1 0.75 1.0 ± 0.0 -16.65 ± 16.84 0.99 ± 2.63E-08 -2.62 ± 2.67 0.84 ± 0.03 -2.38 ± 2.54
Gudhi 7.7 178.6 0.69 1.0 ± 0.0 -1212.56 ±

1851.39
0.99 ± 7.13E-05 -3.21 ± 5.93 0.81 ± 0.04 -3.32 ± 5.31

PL
Perslay 5.9 6.9 0.77 0.99 ± 8.97E-13 -8.29 ± 9.40 0.99 ± 5.80E-09 -4.42 ± 3.72 0.84 ± 0.03 -3.10 ± 3.36
Giotto 0.2 3.6 0.67 1.0 ± 0.0 -13.01 ± 14.70 0.99 ± 1.19E-09 -3.30 ± 2.79 0.84 ± 0.02 -3.10 ± 3.65
Gudhi 0.2 21.2 0.66 1.0 ± 0.0 -13.09 ± 14.93 0.99 ± 3.68E-10 -2.03 ± 1.18 0.84 ± 0.02 -2.54 ± 3.43

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for the regression in the rsfMRI pipeline.

H2
Linear Gradient Boosting Random Forest

Library Time convert-
ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coeffi-
cient

Test coeffi-
cient

PI

PersLay 223.1 44.9 0.79 0.99 ± 5.79E-12 -23.56 ± 25.62 0.99 ± 1.92E-08 -1.60 ± 1.01 0.84 ± 0.02 -1.92 ± 2.16
Persim 7.4 78.5 0.7 1.0 ± 4.97E-17 -4541.41 ± 8739.41 0.99 ± 1.98E-04 -12.18 ± 18.51 0.78 ± 0.02 -5.97 ± 8.52
Giotto 94.4 9837.5 0.76 1.0 ± 0.0 -38.89 ± 36.49 0.99 ± 1.74E-08 -2.89 ± 4.01 0.84 ± 0.02 -2.37 ± 3.25
Gudhi 12.6 109.7 0.71 1.0 ± 0.0 -6.76E+7 ±

1.35E+8
0.99 ± 1.11E-04 -13.91 ± 24.41 0.79 ± 0.03 -7.85 ± 13.89

PL
Perslay 8.2 5.6 0.76 0.99 ± 3.90E-12 -364.45 ± 676.82 0.99 ± 3.36E-09 -2.30 ± 1.99 0.84 ± 0.02 -3.44 ± 3.55
Giotto 0.2 3.1 0.67 1.0 ± 0.0 -71.49 ± 134.60 0.99 ± 2.16E-09 -5.45 ± 4.17 0.83 ± 0.02 -4.99 ± 6.23
Gudhi 0.3 14.6 0.56 1.0 ± 0.0 -72.81 ± 137.14 0.99 ± 5.67E-10 -2.03 ± 1.42 0.83 ± 0.01 -3.66 ± 4.61

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for the regression in the rsfMRI pipeline.

124 Bibliography

O Results for all representations in control vs. patient classification
from the T1 pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 249.5 6.9 0.51 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.61 ± 0.08 0.73 ± 0.02 0.53 ± 0.08 0.55 ± 0.02 0.45 ± 0.08
Giotto 80.0 938.9 1.61 1.0 ± 0.0 0.44 ± 0.03 1.0 ± 0.0 0.61 ± 0.08 0.73 ± 0.02 0.53 ± 0.08 0.55 ± 0.02 0.61 ± 0.08
Gudhi No Results

PL
Perslay 7.6 0.8 1.09 0.63 ± 0.03 0.52 ± 0.11 1.0 ± 0.0 0.53 ± 0.06 0.80 ± 0.02 0.49 ± 0.07 0.60 ± 0.02 0.39 ± 0.13
Giotto 4.4 1.4 1.11 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.48 ± 0.07 0.80 ± 0.02 0.50 ± 0.11 0.58 ± 0.03 0.47 ± 0.11
Gudhi 12.7 1.7 0.93 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.47 ± 0.09 0.79 ± 0.02 0.52 ± 0.08 0.60 ± 0.01 0.42 ± 0.10

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying T1-w MRI as healthy control or ALS patient.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 2510.6 20.2 0.99 0.51 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.55 ± 0.14 0.70 ± 0.05 0.52 ± 0.11 0.61 ± 0.04 0.58 ± 0.10
Giotto 118.3 1308.4 3.55 1.0 ± 0.0 0.44 ± 0.03 1.0 ± 0.0 0.55 ± 0.09 0.77 ± 0.04 0.62 ± 0.04 0.76 ± 0.04 0.67 ± 0.15
Gudhi No Results

PL
Perslay 64.8 0.8 1.42 0.70 ± 0.04 0.53 ± 0.09 1.0 ± 0.0 0.55 ± 0.11 0.75 ± 0.03 0.50 ± 0.05 0.61 ± 0.04 0.63 ± 0.11
Giotto 43.3 1.5 2.54 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.50 ± 0.11 0.75 ± 0.03 0.44 ± 0.12 0.59 ± 0.06 0.50 ± 0.12
Gudhi 129.6 1.9 1.23 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.52 ± 0.13 0.76 ± 0.04 0.44 ± 0.12 0.63 ± 0.03 0.42 ± 0.09

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying T1-w MRI as healthy control or ALS patient.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 2322.6 15.4 0.99 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.52 ± 0.09 0.73 ± 0.04 0.47 ± 0.08 0.61 ± 0.02 0.61 ± 0.09
Giotto 107.6 1565.7 4.05 1.0 ± 0.0 0.44 ± 0.03 1.0 ± 0.0 0.38 ± 0.08 0.77 ± 0.03 0.61 ± 0.12 0.72 ± 0.03 0.61 ± 0.19
Gudhi No Results

PL
Perslay 63.9 0.8 1.39 0.64 ± 0.04 0.48 ± 0.11 1.0 ± 0.0 0.47 ± 0.15 0.72 ± 0.04 0.45 ± 0.13 0.61 ± 0.05 0.55 ± 0.18
Giotto 42.7 1.5 2.53 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.41 ± 0.08 0.75 ± 0.02 0.50 ± 0.07 0.56 ± 0.03 0.42 ± 0.15
Gudhi 123.9 1.8 1.23 0.52 ± 0.01 0.44 ± 0.03 1.0 ± 0.0 0.41 ± 0.09 0.75 ± 0.02 0.50 ± 0.07 0.63 ± 0.03 0.37 ± 0.09

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying T1-w MRI as healthy control or ALS patient.

P. Results for all representations in progression classification from the T1 pipeline 125

P Results for all representations in progression classification from
the T1 pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 1062.9 62.0 0.99 0.55 ± 0.03 0.60 ± 0.21 1.0 ± 0.0 0.60 ± 0.26 0.77 ± 0.06 0.44 ± 0.16 0.56 ± 0.09 0.40 ± 0.14
Giotto 65.5 426.1 1.71 1.0 ± 0.0 0.55 ± 0.12 1.0 ± 0.0 0.42 ± 0.20 0.60 ± 0.10 0.36 ± 0.16 1.0 ± 0.0 0.35 ± 0.16
Gudhi 677.6 264.3 0.85 0.97 ± 0.03 0.37 ± 0.12 1.0 ± 0.0 0.46 ± 0.21 0.70 ± 0.02 0.38 ± 0.19 0.75 ± 0.07 0.48 ± 0.28

PL
Perslay 22.9 1.0 1.10 0.97 ± 0.03 0.6 ± 0.14 1.0 ± 0.0 0.33 ± 0.29 0.68 ± 0.06 0.41 ± 0.27 0.86 ± 0.06 0.28 ± 0.23
Giotto 15.5 1.6 1.42 0.56 ± 0.02 0.50 ± 0.06 1.0 ± 0.0 0.23 ± 0.20 0.70 ± 0.07 0.41 ± 0.16 0.64 ± 0.09 0.37 ± 0.12
Gudhi 71.9 140.1 0.95 0.56 ± 0.02 0.50 ± 0.06 1.0 ± 0.0 0.23 ± 0.20 0.70 ± 0.07 0.41 ± 0.16 0.84 ± 0.07 0.15 ± 0.20

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying T1-weighted MRI by progression rate.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 909.5 96.5 0.99 0.57 ± 0.03 0.55 ± 0.12 1.0 ± 0.0 0.59 ± 0.09 0.65 ± 0.02 0.35 ± 0.14 0.59 ± 0.03 0.51 ± 0.18
Giotto 64.1 447.9 1.90 1.0 ± 0.0 0.55 ± 0.12 1.0 ± 0.0 0.32 ± 0.26 0.60 ± 0.08 0.37 ± 0.12 0.99 ± 0.02 0.27 ± 0.25
Gudhi 586.1 253.3 0.65 1.0 ± 0.0 0.47 ± 0.18 1.0 ± 0.0 0.47 ± 0.18 0.63 ± 0.04 0.50 ± 0.17 0.70 ± 0.10 0.29 ± 0.19

PL
Perslay 23.5 0.8 1.19 1.0 ± 0.0 0.51 ± 0.13 1.0 ± 0.0 0.51 ± 0.24 0.68 ± 0.02 0.50 ± 0.06 0.92 ± 0.07 0.45 ± 0.21
Giotto 16.2 1.3 1.42 0.57 ± 0.03 0.55 ± 0.12 1.0 ± 0.0 0.36 ± 0.22 0.73 ± 0.09 0.41 ± 0.09 0.70 ± 0.04 0.37 ± 0.12
Gudhi 48.8 160.8 0.95 0.57 ± 0.03 0.55 ± 0.12 1.0 ± 0.0 0.36 ± 0.22 0.71 ± 0.11 0.41 ± 0.09 0.91 ± 0.03 0.36 ± 0.16

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying T1-weighted MRI by progression rate.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay No Results
Persim 1476.3 89.4 1.01 0.57 ± 0.03 0.55 ± 0.12 1.0 ± 0.0 0.50 ± 0.17 0.64 ± 0.03 0.36 ± 0.10 0.63 ± 0.04 0.51 ± 0.18
Giotto 74.2 514.1 2.25 1.0 ± 0.0 0.55 ± 0.12 1.0 ± 0.0 0.32 ± 0.11 0.64 ± 0.09 0.33 ± 0.25 1.0 ± 0.0 0.27 ± 0.25
Gudhi 995.5 264.2 0.67 1.0 ± 0.0 0.60 ± 0.14 1.0 ± 0.0 0.55 ± 0.20 0.74 ± 0.06 0.54 ± 0.30 0.75 ± 0.14 0.47 ± 0.25

PL
Perslay 39.3 0.8 1.06 0.99 ± 0.02 0.51 ± 0.13 1.0 ± 0.0 0.32 ± 0.21 0.66 ± 0.10 0.22 ± 0.13 0.97 ± 0.04 0.37 ± 0.27
Giotto 27.7 1.3 1.41 0.56 ± 0.02 0.45 ± 0.12 1.0 ± 0.0 0.36 ± 0.22 0.75 ± 0.06 0.50 ± 0.25 0.71 ± 0.06 0.42 ± 0.20
Gudhi 86.3 147.5 0.95 0.56 ± 0.02 0.45 ± 0.12 1.0 ± 0.0 0.36 ± 0.22 0.75 ± 0.06 0.5 ± 0.25 0.92 ± 0.06 0.37 ± 0.20

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying T1-weighted MRI by progression rate.

126 Bibliography

Q Results for all representations in onset classification from the T1
pipeline

H0
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 1130.4 1.5 1.04 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.90 ± 0.04 0.83 ± 0.15 1.0 ± 0.0 0.70 ± 0.20
Persim 800.5 44.6 0.98 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.91 ± 0.05 0.72 ± 0.28 0.86 ± 0.04 0.87 ± 0.17
Giotto 176.5 1016.9 1.84 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.83 ± 0.05 0.69 ± 0.17 1.0 ± 0.0 0.69 ± 0.17
Gudhi 1045.0 295.3 0.83 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.92 ± 0.04 0.78 ± 0.13 0.93 ± 0.09 0.72 ± 0.17

PL
Perslay 24.5 1.0 1.27 0.99 ± 0.02 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.90 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.78 ± 0.13
Giotto 16.0 1.2 1.43 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.86 ± 0.05 0.78 ± 0.13 0.90 ± 0.04 0.87 ± 0.17
Gudhi 75.4 360.8 0.96 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.86 ± 0.05 0.78 ± 0.13 0.93 ± 0.02 0.78 ± 0.13

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for classifying T1-weighted MRI by onset site.

H1
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train accu-
racy

Test accu-
racy

PI

PersLay 1224.5 1.3 1.06 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.86 ± 0.06 0.73 ± 0.17 1.0 ± 0.0 0.64 ± 0.19
Persim 815.5 93.4 0.62 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.92 ± 0.03 0.77 ± 0.13 0.86 ± 0.04 0.87 ± 0.17
Giotto 112.0 647.8 2.04 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.83 ± 0.15 0.83 ± 0.05 0.73 ± 0.17 1.0 ± 0.0 0.69 ± 0.17
Gudhi 882.5 283.4 0.49 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.83 ± 0.15 0.85 ± 0.08 0.72 ± 0.28 0.91 ± 0.09 0.72 ± 0.28

PL
Perslay 23.8 0.8 1.19 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.90 ± 0.06 0.82 ± 0.16 1.0 ± 0.0 0.74 ± 0.15
Giotto 15.5 1.0 1.43 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.82 ± 0.16 0.87 ± 0.04 0.78 ± 0.13 0.91 ± 0.03 0.87 ± 0.17
Gudhi 67.2 361.2 0.96 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.87 ± 0.04 0.78 ± 0.13 0.94 ± 1.60E-

03
0.78 ± 0.13

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for classifying T1-weighted MRI by onset site.

H2
SVC Random Forest KNeighbors Logistic Regression

Library Time con-
verting PD
to PI/PL
(s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

Train ac-
curacy

Test accu-
racy

PI

PersLay 1896.8 1.3 1.46 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.85 ± 0.03 0.69 ± 0.17 1.0 ± 0.0 0.59 ± 0.24
Persim 1406.8 80.0 0.65 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.85 ± 0.06 0.77 ± 0.20 0.86 ± 0.04 0.87 ± 0.17
Giotto 133.2 404.3 2.41 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.79 ± 0.18 0.83 ± 0.05 0.73 ± 0.17 1.0 ± 0.0 0.74 ± 0.15
Gudhi 1481.9 282.3 0.57 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.83 ± 0.15 0.88 ± 0.04 0.69 ± 0.31 0.90 ± 0.09 0.67 ± 0.25

PL
Perslay 41.6 0.8 1.31 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.90 ± 0.02 0.79 ± 0.18 1.0 ± 0.0 0.69 ± 0.17
Giotto 27.4 1.0 1.42 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.87 ± 0.04 0.82 ± 0.16 0.86 ± 0.04 0.87 ± 0.17
Gudhi 156.3 349.8 1.0 0.86 ± 0.04 0.87 ± 0.17 1.0 ± 0.0 0.87 ± 0.17 0.87 ± 0.04 0.82 ± 0.16 0.99 ± 0.02 0.83 ± 0.15

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for classifying T1-weighted MRI by onset site.

R. Results for all representations in regression from the T1 pipeline 127

R Results for all representations in regression from the T1 pipeline
H0

Linear Gradient Boosting Random Forest
Library Time convert-

ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coeffi-
cient

Test coeffi-
cient

PI

PersLay 315.1 6.3 21.73 0.99 ± 7.49E-10 -205.91 ± 379.31 0.99 ± 4.82E-07 -1.54 ± 1.58 0.84 ± 0.03 -1.04 ± 1.21
Persim 246.1 134.6 0.94 0.99 ± 1.76E-14 -1.22E+04 ±

2.42E+04
0.99 ± 2.40E-04 -0.81 ± 0.61 0.84 ± 0.02 -0.72 ± 0.58

Giotto 85.7 16258.5 1.35 1.0 ± 0.0 -280.70 ± 327.98 0.99 ± 1.48E-07 -1.25 ± 1.54 0.85 ± 0.03 -0.84 ± 1.25
Gudhi 196.7 125.1 0.95 0.99 ± 5.10E-14 -546.26 ± 953.64 0.99 ± 5.69E-04 -1.33 ± 1.13 0.83 ± 0.01 -1.10 ± 1.28

PL
Perslay 6.4 0.8 1.58 0.76 ± 0.07 -998.95 ± 1329.81 0.99 ± 5.30E-05 -1.26 ± 1.02 0.81 ± 0.02 -0.79 ± 0.61
Giotto 4.83 5.7 1.04 1.0 ± 0.0 -45.02 ± 79.74 0.99 ± 7.48E-05 -1.24 ± 1.16 0.81 ± 0.03 -0.72 ± 0.37
Gudhi 29.6 35.9 0.87 1.0 ± 0.0 -43.03 ± 75.88 0.99 ± 5.49E-05 -1.36 ± 1.24 0.81 ± 0.02 -0.77 ± 0.41

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H0 for the regression in the T1 pipeline.

H1
Linear Gradient Boosting Random Forest

Library Time convert-
ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coeffi-
cient

Test coeffi-
cient

PI

PersLay No Results
Persim 2475.0 137.4 1.19 0.99 ± 3.51E-14 -6158.46 ±

1.19E+04
0.99 ± 7.24E-05 -0.73 ± 0.90 0.86 ± 0.02 -0.47 ± 0.80

Giotto 115.4 14379.3 1.97 1.0 ± 0.0 -508.63 ± 859.89 0.99 ± 2.51E-07 -1.00 ± 0.82 0.84 ± 0.02 -0.88 ± 1.09
Gudhi 3551.6 128.5 0.03 0.99 ± 4.96E-15 -4436.76 ± 7774.89 0.99 ± 1.70E-04 -2.58 ± 3.56 0.83 ± 0.02 -0.93 ± 1.33

PL
Perslay 61.6 0.8 8.3 0.81 ± 0.06 -80.22 ± 154.59 0.99 ± 2.59E-05 -0.91 ± 0.82 0.84 ± 0.03 -0.56 ± 0.50
Giotto 48.3 4.4 1.90 1.0 ± 0.0 -6.15 ± 6.95 0.99 ± 3.34E-05 -1.61 ± 2.04 0.85 ± 0.03 -0.73 ± 0.59
Gudhi 324.4 37.5 0.64 1.0 ± 0.0 -6.19 ± 6.98 0.99 ± 3.65E-05 -1.37 ± 1.92 0.85 ± 0.03 -0.78 ± 0.61

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H1 for the regression in the T1 pipeline.

H2
Linear Gradient Boosting Random Forest

Library Time convert-
ing PD to
PI/PL (s)

Time train-
ing models
(s)

RAM Us-
age (GB)

Train coeffi-
cient

Test coefficient Train coeffi-
cient

Test coeffi-
cient

Train coeffi-
cient

Test coeffi-
cient

PI

PersLay No Results
Persim 2449.8 139.3 1.19 0.99 ± 1.01E-13 -3248.05 ± 5744.43 0.99 ± 6.58E-05 -0.41 ± 0.55 0.85 ± 0.01 -0.23 ± 0.38
Giotto 113.1 14595.2 2.07 1.0 ± 0.0 -4.06E+04 ±

8.09E+04
0.99 ± 5.5E-08 -2.70 ± 4.56 0.84 ± 0.03 -1.31 ± 2.30

Gudhi No Results

PL
Perslay 58.3 0.8 8.30 0.76 ± 0.06 -44.46 ± 51.83 0.99 ± 3.00E-05 -3.34 ± 3.91 0.82 ± 0.03 -1.65 ± 2.06
Giotto 47.4 4.5 1.89 1.0 ± 0.0 -8.73 ± 8.84 0.99 ± 1.10E-05 -2.70 ± 2.47 0.82 ± 0.03 -1.84 ± 2.25
Gudhi 260.1 38.8 0.73 1.0 ± 0.0 -8.80 ± 8.92 0.99 ± 2.55E-05 -2.56 ± 2.18 0.82 ± 0.04 -1.93 ± 2.46

Comparison between the different libraries for converting the persistence diagrams (PD) to
persistence representations, including persistence images (PI) and persistence landscapes (PL),

in dimension H2 for the regression in the T1 pipeline.

	Title page
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Conceptual Aspects
	Amyotrophic Lateral Sclerosis
	Prognostic Models for Predicting ALS Evolution using Clinical Data
	Prognostic and Diagnostic Models using MRI Data

	ALS Databases
	Natural Language Processing
	Introduction to NLP
	NLP's Current State
	NLP Applications

	Legal implications

	Methods
	Article collection
	Text preprocessing
	Data characterization
	Data provision
	User interface

	Results
	Analysis and Evaluation
	Final Considerations
	Bibliography
	Appendix
	Previous Work
	Introduction
	Objectives
	Methodologie
	Results
	Conclusion

	Inclusion and non-inclusion criteria for each of the groups included in the cohort PULSE
	Bash code for running fMRI preprocessing
	Python code for confound regression and functional connectivity matrices computation
	Container definition for confound regression and functional connectivity matrix computation
	Bash Script for adding SliceTiming to json files with fMRI acquisition parameters
	Bash Script for preprocessing T1 images
	Container definition for T1 preprocessing
	Python code for functions used in TDA and in Model Training
	Python code for functions used in Clustering
	Results for all representations in control vs. patient classification from the rsfMRI pipeline
	Results for all representations in progression classification from the rsfMRI pipeline
	Results for all representations in onset classification from the rsfMRI pipeline
	Results for all representations in regression from the rsfMRI pipeline
	Results for all representations in control vs. patient classification from the T1 pipeline
	Results for all representations in progression classification from the T1 pipeline
	Results for all representations in onset classification from the T1 pipeline
	Results for all representations in regression from the T1 pipeline

