
Caio A. G. Xavier

Dênio A. Almeida

Nícolas V. Auler

Finnish

Smart Personal Financial
Management by Leveraging Machine
Learning and the Open Banking API

São Paulo, SP

2024

Finnish - Smart Personal Financial
Management by Leveraging Ma-
chine Learning and the Open Bank-
ing API

Dissertation in
Computer Engineering - Engenharia de Computação

Caio A. G. Xavier
Dênio A. Almeida
Nícolas V. Auler

Advisor: Prof. Bruno C. Albertini
Academic Year: 2024

i

Abstract

“Finnish” is a novel personal financial management tool that leverages machine learning
and the Open Banking API to redefine personal finance management. Motivated by the
rapid evolution of software delivery and the complex state of personal finances in Brazil,
this work aims to address the increasing need for comprehensive and user-friendly finan-
cial management solutions. Finnish distinguishes itself by offering an intuitive platform
that integrates advanced analytics for personalized financial insights and recommenda-
tions, making financial management accessible to all and promoting financial literacy.
Comparing Finnish against existing solutions, its potential to fill market gaps and set
new standards in the personal financial management domain is revealed. This study un-
derscores the significant role of technology in enhancing financial stability and literacy,
highlighting Finnish’s contribution to the broader objectives of financial inclusion and
improved user experience.

Keywords: Personal Financial Management, Machine Learning, Open Banking API,
Digital Banking, Software Quality, Financial Inclusion, User Experience

Resumo

“Finnish” é uma ferramenta inovadora de gestão financeira pessoal que aproveita o apren-
dizado de máquina e a API de Open Banking para redefinir a gestão de finanças pessoais.
Motivada pela rápida evolução na entrega de software e pela complexidade do estado
das finanças pessoais no Brasil, este trabalho visa abordar a crescente necessidade de
soluções de gestão financeira abrangentes e amigáveis ao usuário. O Finnish se distingue
por oferecer uma plataforma intuitiva que integra análises avançadas para insights finan-
ceiros personalizados e recomendações, tornando a gestão financeira acessível a todos e
promovendo a literacia financeira. A análise realizada compara o Finnish com soluções ex-
istentes, revelando seu potencial para preencher lacunas no mercado e estabelecer novos
padrões no domínio da gestão financeira pessoal. Este estudo sublinha o papel signi-
ficativo da tecnologia na melhoria da estabilidade e literacia financeiras, destacando a
contribuição do Finnish para os objetivos mais amplos de inclusão financeira e melhoria
da experiência do usuário.

Palavras-chave: Gestão Financeira Pessoal, Aprendizado de Máquina, Open Banking,
Bancos Digitais, Qualidade de Software, Inclusão Financeira, Experiência do Usuário

iii

Contents

Abstract i

Resumo ii

Contents iii

1 Introduction 1
1.1 Motivation . 1

1.1.1 State of Software Products . 1
1.1.2 State of Personal Finances in Brazil 3

1.2 Objective . 8
1.3 Justificative . 8
1.4 Work Organization . 8

2 Design 10
2.1 Sector Analysis . 10

2.1.1 National Market . 10
2.1.2 International Market . 15

2.2 Ideas grooming . 16

3 Requirements Specification 17
3.1 Functional Requirements . 17
3.2 Non Functional Requirements . 17

4 Implementation 19
4.1 Used Technologies . 19

4.1.1 Server . 19
4.1.2 Mobile . 19
4.1.3 Categorization . 20

4.2 Project and Implementation . 20

4.2.1 Server . 20
4.2.2 Mobile . 22
4.2.3 Categorization . 41

4.3 Tests . 44

5 Final Considerations 46
5.1 Compromises . 46

5.1.1 Mobile . 46
5.1.2 Backend Server . 46
5.1.3 Infrastructure . 47
5.1.4 Categorization . 47

5.2 Future Perspectives . 47
5.3 Conclusion . 49
5.4 Live Preview and Open-Source . 50

Bibliography 51

List of Figures 52

List of Tables 54

1

1| Introduction

1.1. Motivation

The development of this Thesis and the creation of Finnish, the product born from it,
was specially fostered by two major factors:

1.1.1. State of Software Products

After introspecting on current state of software products, it’s noticeable that a lot of
changes have been happening to them, for example:

• How they’re delivered

When there weren’t easy processes to update software remotely, via the Internet,
the level of quality in the release had to be a quality that would guarantee uptime.

Nowadays, the policy for software has been that of releasing as soon as possible,
and go patching the mistakes and adding functionality afterwards [6].

Of course, this has its advantages, software can be shipped rapidly and demands
met, however, it’s a two edged blade, since it’s ever more common to encounter
bugs.

• How they’re implemented

For the Apollo 11 Guidance Computer in 1969, its software had to be optimized to
the extreme, both in terms of performance and memory, because the hardware it
ran on was limited[1].

But since then, hardware has had significant developments, with CPU’s and GPU’s
achieving astronomical performance.

However, there’s a case to be made that software hasn’t followed this steep raise of
growth, because it can reap the benefits from the hardware developments.

In the game development industry, where optimization is still a core principle, a

1| Introduction 2

point was made in the biggest game developer conference in Europe, devGAMM, to
state that “software has been freeriding on hardware”[4].

This trend is particularly tied to long-running pieces of software, where legacy and con-
tracts must be kept.

The core pieces of software used in Web Development, for example, the database engines,
have been in place for decades. While that introduces a concept of stability, those products
were devised in a completely different world stage for technology, specially when taking
into account the rapid evolution of this area[7].

Exposure to academia leads to the discovery of bleeding-edge technologies, which moti-
vates the building of a software product to advertise the state-of-the-art in the software
engineering field.

One such technology, is the one of the rising stars Github repository: TigerBettle[8]. It
aims to replace Postgres and MySQL, both database engines from almost three decades
ago, with a new, distributed and “1000 times faster” finance-oriented database engine.
Using this technology in Finnish will be a point of research in the following stages.

Furthermore, in Brazil, the amount of transactions has been growing rapidly 1.1.2. Which
adds the need for designing a system capable of suiting the ever growing demands.

That means building a product with the following core principles:

• Keeping the customer always happy

That means no bugs, no downtime. A software you can’t complain about, not even
the 1% of the customer base, all the customers have to be content.

• Respecting the customer privacy and providing security

To be elaborated in the following chapter.

1| Introduction 3

1.1.2. State of Personal Finances in Brazil

Rise of banking with the advent of digital banks

Research done by BC shows that the average number of bank accounts was 5.2 in 2022.

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

20
24

0

0.2

0.4

0.6

0.8

1

1.2

·109

C
ou

nt

Number of Accounts
Number of Clients (CPF + CNPJ)

Figure 1.1: Time Series of Number of Bank Accounts and Number of Clients (CPF +
CNPJ) in Brazil[3]

This shows an interesting scenario in Brazil.

• Why does a bank client need 5 different bank accounts?

Firstly, having a diversified portfolio, helps by ensuring resilience to market fluc-
tuations, but, also, helps with interest rates, as well as with credit and investment
opportunities. The advent of digital banking has helped with this phenomenon.

However, having lots of banks accounts makes the client more prone to misman-
agement, specially when accounting for the segment without a formal education in

1| Introduction 4

finances or personal finances.

• This graph only shows that the population that has an account, would have on
average 5 in 2022, however, not shown is that there is still 20% of the population
that has an account, but didn’t do any operations in 2022[9]. Why?

One possible cause is that of unnacessibility. Speaking of digital banks, when a
user creates an account through an app: the user can be used to onboarding pro-
cesses, like those of creating credentials and providing necessary information and
documents. But to manage finances through an app, that can be harder if there is
no focus on those groups and no educational and tutorial material in the app.

Finnish tries to solve this problem by both providing the user with some education
material on financial basics, but also with an AI that will try to analyse the account
and make suggestions, as well as help explain some phenomenon.

Finnish also will have a more intuitive design and UX, to make the user feel that
making operations isn’t such a hard task.

1| Introduction 5

Number of banking institutions growing rapidly

The number of banking institutions authorized by the Central Bank doubled from 2021
to 2022. This has been the landscape of Brazilian finances, where new, most of the times,
digital institutions are appering, with focus on a specific niche, like cryptocurrencies.

But it’s still to appear an institution that focuses on popularizing and making finances
accessible, by allowing a client access to their finances in a holistic approach.

2,
01
6

2,
01
7

2,
01
8

2,
01
9

2,
02
0

2,
02
1

2,
02
2

0

10

20

30

40

50

60

70

80

1

6
10

19

26

37

74

Figure 1.2: Number of financial institutions authorized by the Central Bank each year.

And this growth, also poses a challenge: are all of the institutions focusing on deliver-
ing good and secure products? Or is the race for the brazilian digital finance segment
obfuscating the goals that don’t directly drive revenue and market share?

1| Introduction 6

Steep growth in number of transactions

The digitalization process in the payment instruments was accompanied by a change in
the pattern of use of the channels of access to financial services, resulting in a continuous
and substancial reduction in the use of presencial channels[5].

This payment instruments change can be seen in 1.3 and 1.4.

20
21

-01

20
21

-04

20
21

-08

20
21

-11

20
22

-02

20
22

-06

20
22

-09

20
22

-12

20
23

-03

20
23

-07

20
23

-10

20
24

-01

20
24

-05

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

·106

C
ou

nt

Pix
Slip
DOC
TEC
Check
TED

Figure 1.3: Number of monthly transferences per instrument in the last thee years[2]

1| Introduction 7

2,
01
0

2,
01
1

2,
01
2

2,
01
3

2,
01
4

2,
01
5

2,
01
6

2,
01
7

2,
01
8

2,
01
9

2,
02
0

2,
02
1

2,
02
2

2,
02
3

0

0.5

1

1.5

2

2.5

·104
C

ou
nt

Check
Debit card
Credit card

Pre paid card
Direct debit

Pix
DOC/TEC

TED
Slip

Book transfer
Government transfer

Covenant

Figure 1.4: Number of yearly transactions per instrument[2]

This rise in the number of transactions shows the need for optimizing transactions in a
new way, using new technology and processes.

Also, the digitalization process shows the need to have an exceptional digital support, so
that clients can be satisfied, by not having a presencial channel of access, which would
facilitate communication.

1| Introduction 8

1.2. Objective

Our mission is to Make personal finances accessible to all.

Leveraging the brazilian Open Finance ecosystem, which is a tool that allows for banking
institutions to exchange data among them, Finnish aims to provide the end user with these
missing tools for personal finance. The app also will provide the user with educational
content for finances, both tailored for their data and non-specific training.

1.3. Justificative

The development of this project is crucial for addressing a significant gap in the finan-
cial management landscape, where individuals often struggle to manage accounts across
multiple banks and platforms. In today’s society, financial transparency and control are
essential, yet the complexity of dealing with scattered financial data makes it difficult for
many users to stay on top of their personal finances. This system leverages the Open Fi-
nance framework to centralize a person’s financial life into a single application, providing
an innovative solution to this challenge.

The system simplifies the user’s mutiple bank accounts management by integrating his
financial data and offers a better vision of his finance. Furthermore, the use of a machine
learning layer that provides personalized financial insights and recommendations adds
value to customers, and also help them to make better decisions and improve their financial
health.

1.4. Work Organization

This section consist of the following parts. The work method specifies how the project was
carried out, outlining every step like requirements specification, design, implementation
and testing. Although which results from a certain appraisal phase are achieved is clarified
in later chapters, this section outlines the workflow utilized.

The Requirements Specification defines the project requirements, tailored to the develop-
ment of the system. It includes a comprehensive list of both functional and non-functional
requirements, ensuring the system meets user needs.

Noew, the Development of the Work chapter illustrates the transformation of requirements
into a functional product. It is organized into subsections to facilitate understanding of
the development process, including:

1| Introduction 9

• Technologies Used : This subsection highlights the key technologies and tools em-
ployed during the product development, explaining their relevance and contribution
to the project.

• Implementation: Here, the results of the design and implementation phases are
discussed, along with justifications for the decisions made during these processes.

• Testing and Evaluation : This section outlines the testing procedures undertaken,
and validation tests, tailored to the system’s needs.

10

2| Design

2.1. Sector Analysis

2.1.1. National Market

To provide context for the project, a study was conducted on the main existing market
solutions for the previously listed issues. Among these, we observed 3 Brazilian applica-
tions, each with different scales (in terms of user numbers); and 2 foreign applications,
each with distinct purposes.

Since mid-2017, Brazil has experienced a notable influx of legislative proposals aimed at
regulating the flourishing fintech sector. This regulatory initiative is underpinned by the
dual goals of enhancing legal security for stakeholders and stimulating a competitive land-
scape within the sector. The advent of these regulations is a testament to the recognition
of the critical role that fintech companies play in the broader financial ecosystem, driven
by rapid technological advancements and evolving consumer preferences. In response to
these dynamics, Brazilian regulatory authorities have embarked on a comprehensive ap-
proach to governance, marked by the introduction of several key regulatory frameworks.

Notably, the Regulation of Investment Crowdfunding (CVM No. 588, 2018) stands as
a seminal piece of legislation designed to govern the domain of crowdfunding platforms.
This regulation is instrumental in establishing a legal framework that safeguards investor
interests while providing a structured pathway for startups and small businesses to access
alternative funding sources. Furthermore, the introduction of the Regulatory Sandbox
(Complementary Law No. 182, 2021) signifies a progressive step towards fostering inno-
vation within the fintech space. This legal provision facilitates a controlled environment
wherein emerging fintech entities can test novel products and services under the temporary
supervision of regulatory bodies, without being subjected to the full gamut of regulatory
requirements. This approach not only accelerates the pace of innovation but also enables
regulators to adapt and refine regulatory frameworks in alignment with technological
advancements.

2| Design 11

Lastly, the Open Finance (Circular 4.032, 2020) regulation emerges as a critical initiative
aimed at promoting financial inclusivity and competition. By mandating the sharing of
customer data among financial institutions, with explicit customer consent, this regulation
paves the way for a more integrated and customer-centric financial services ecosystem.
This paradigm shift towards open finance underscores the commitment of Brazilian reg-
ulators to leverage technology in enhancing financial accessibility and efficiency.

In summary, these regulatory measures collectively embody Brazil’s strategic approach to
fostering a resilient and competitive fintech sector, acknowledging the intricate balance
between regulation and innovation in the rapidly evolving financial landscape.

These regulatory changes have allowed many companies and business models to emerge.
Below, we list 3 of them, each with distinct characteristics:

Picpay (+100mn downloads)

PicPay functions primarily as a digital wallet, streamlining transactions between various
parties. Its web version, however, is somewhat restricted. Through integration with Open
Finance, PicPay facilitates comprehensive banking interactions for users. In the realm of
personal finance, it offers free services for financial management and planning, having no
paid services.

Figure 2.1: Picpay’s web home dashboard

2| Design 12

Figure 2.2: View of transactions’ details

Organizze (+1mn downloads)

Organizze is a comprehensive application designed to assist users with their personal finan-
cial management, similar to the concepts proposed in this project. It offers a user-friendly
platform that allows for easy modifications and adjustments according to the user’s fi-
nancial data and preferences. However, one notable limitation is its lack of automation
features, as well as the absence of AI-powered tools for the categorization of financial
transactions, which could enhance the efficiency and accuracy of financial tracking.

Figure 2.3: View to add financial transactions
Organizze adopts a subscription-based model. The service provides various plans, among
which is a three-year subscription option priced at BRL 358.00. It also offers a 7-day free
trial. This trial period is a key aspect of their service, encouraging users to experience
the application’s capabilities before making a commitment.

2| Design 13

Figure 2.4: Organizze’s home dashboard

Figure 2.5: View of categorized financial statement

MeuDinheiro (+100k downloads)

MeuDinheiro’s focus extends beyond individual consumers to encompass small businesses.
The application provides a free version closely resembling Organizze, facilitating the in-
clusion of both expenses and income.

2| Design 14

Figure 2.6: View to add financial transactions

For users seeking enhanced functionality, the application’s premium version presents a
comprehensive suite of features. This includes sophisticated tools for monitoring the
progression of net worth, setting specific income and expense objectives, and integrating
with bank accounts, among others. The range and depth of these features are designed
to be flexible, adapting to the varied demands of users.

Figure 2.7: View of plans and additional features

2| Design 15

Comparative Table

Upon analyzing each competitor within the local landscape, it is possible to summarize
their characteristics in the table presented below. This comparison is instrumental for
advancing with the project.

Organizze Picpay MeuDinheiro

Charts with income/ex-
penses evolution

x x

Extract categorization x x x
Openfinance Licensing x x x
AI recommendation tools
Automatic bank’s data ex-
traction

x

Manual insert of expens-
es/income data

x x

Web app x x x
Mobile app x x x
Paid service x x

Table 2.1: Comparative list of peers and its features

2.1.2. International Market

The fintech sector outside Brazil presents a dynamic and varied landscape, shaped by
diverse regulatory approaches and market maturity levels. In developed markets, regu-
lations such as open banking have spurred innovation in personal financial management
(PFM) apps, enabling them to offer more comprehensive services by accessing bank data
with user consent. This regulatory environment fosters a competitive ecosystem where
fintech startups and traditional financial institutions vie to provide user-centric solutions.

In this context, two companies stand out: one that is emerging, with the integration of
users’ bank accounts, and another that is more established in the market for personal
finance management.

Plaid (+100k downloads)

Plaid is an American company operating in seven countries, with approximately 100,000
users, acting as a technical intermediary between financial institutions and users. It is

2| Design 16

capable of consolidating financial data from various sources and categorizing transactions.

Mint

Mint is the closest global peer to Organizze, boasting 25 million users, with trend charts
on the evolution of expenses. Its most significant distinction comes from possessing AI
tools for expenditure recommendations.

2.2. Ideas grooming

At first, emerging technologies were considered, aiming for an application with more
features and market differentiators. Among them, DREX was taken into consideration.
To that end, the group contacted a collaborator from BTG Pactual bank, who was selected
to work at Bacen, Banco Central do Brasil, and assist in the development of DREX.

The contact was made, and unfortunately, he said that the technology is not expected to
be deployed in the production environment by the end of the year, when our dissertation
needs to be done. Additionally, the group of people from banks who are developing and
testing DREX is very restricted, thus diminishing the prospects for this group to leverage
this tool. DREX would be a highlight for the application, as it would bring clients closer
to a decentralized ecosystem, where purchases could be safer and available at any time
of the day. For instance, it envisions that through smart contracts, a person looking to
buy a car from someone else would receive ownership simultaneously as their money is
transferred, without involving third parties and ensuring security for both parties.

17

3| Requirements Specification

The developed project implements a personal financial management application that con-
nects the user’s accounts via the Open Finance provided by the Pluggy platform.In ad-
dition, there is a machine learning layer that provides financial insights and recommen-
dations.This system is accessed via a web application and an Android mobile applica-
tion.Therefore, based on this scope, the requirements are listed below.

3.1. Functional Requirements

• The system must allow users to set their personal data, username and password for
registration;

• The system must allow users to change their password if it was forgotten or if it
wants;

• The system must allow users to add or to delete its accounts from any bank;

• The system must allow users to add non-trackable transactions e.g, cash ones;

• The system must encourage users to create stronger passwords on sign-up phase;

• The system must show financial incomes and outcomes in dashboards e.g, pie charts
for month expenses;

• The system must give expenses suggestions in the app based on the user history;

• The system must categorize users expenses e.g, food related expenses.

3.2. Non Functional Requirements

• The system shall be safe:

– The system shall encrypt the passwords;

– The users sessions will be expirablle;

3| Requirements Specification 18

– The system shall have captchas for sign in or sign up;

– The server will have a Rate-limit;

– The system shall support a two factors authentication;

• The system shall work for users privacy, since it will respect the LGPD;

• The system shall be available 24/7;

• The system shall implement a machine learning layer for categorization.

19

4| Implementation

4.1. Used Technologies

4.1.1. Server

In the development of the Finnish Server, the general programming process of separating
Hypermedia API’s from Data API’s was followed.

Internally, a website written with HTMX is being used for testing purposes. This is where
the Hypermedia API fits in.

The server is written as a Rest service in HTTP 1.1, which is written in Async Rust, on
top an Async database engine, called SQLx, running on Postgresql.

It’s the server responsibility to integrate with the external clients being used for Emailing,
Webhooks, Open-Finance integration and Proof-of-Work captcha verification, as well as
providing ergonomic contracts to the Mobile client, which consumes the Server’s Data
API’s.

Infrastructure

The server is deployed to a Nixos private server, which allows us to have Infrastructure
as code, by defining reproducible linux services, instead of the more traditional route of
containers.

Having our private server also allowed us to add Observability services, like a Grafana
Beyla collector that sends Metrics and Traces to a Grafana Cloud dashboard.

4.1.2. Mobile

From the Mobile side, the application was developed using the Kotlin programming lan-
guage, in the Android Studio developing environment. Through its native resources, it
was easier to develop interfaces and features. And, the user interface was developed using

4| Implementation 20

Figma, always trying to do a friendly interface and easy-to-use.

The developing process, actually, started with a web application version, which served as
a starting point for the mobile layer. So, the mobile views were inspired in the web ones,
trying to maintain a similarity between platforms.

4.1.3. Categorization

In the development of the categorization system, we initially implemented DistilBERT, a
pre-trained language model optimized for efficiency, to classify transaction descriptions.
However, due to issues with non-tokenized transaction data in Portuguese, we transi-
tioned to a custom lexogram-based approach, where specific patterns within transaction
descriptions were used as features. We then utilized XGBoost, a powerful gradient boost-
ing algorithm, to enhance classification accuracy. Real transaction data was retrieved
through Pluggy’s API and mapped to predefined categories for training and testing the
model.

Model Server

In order for the model to talk to the rest of the Finnish ecosystem, we decided to deploy
it as a server, since this entire project is being run on a very limited timeline, and also
with only 3 developers. So, to avoid us having to make compromises in the actual server
of the application, like writing it in Python FastAPI instead of Rust Axum, and avoid
having to add unnecessary complexity to the Model, like writing it in Rust, instead of
Python, we chose to write only the Model in Python, and, to make it communicate with
our Rust server, we turned it into a server of its own, so the Rust one could act as client.

4.2. Project and Implementation

4.2.1. Server

The server’s implementation followed a “provide the most, as early as possible” mentality.

Firstly, a manual usage of the HTMX website was developed, so users could already input
their expenses and track them through the website.

Then, the focus shifted to the Data API, since the Mobile app became the main priority.
It’s important to note that the Mobile app came after we started implementing the server.

After the API’s were implemented for the mobile app, integration with Open-Finance

4| Implementation 21

began, so users could automatically track their expenses.

From then, the focus shifted to testing, architecting and restructuring for webhook integra-
tion and good database layouts, also taking categorization model needs in consideration.

Finally, we integratedour model into the server flows, so we can both categorize users
transactions and improve our model with the new data (and hopefully, user feedback).

This was done by providing our Model as an API, a server. And our Rust code would
act as the client for this Model service, and provide a processed set of API’s back to the
Mobile.

In the next Categorization section we’ll describe in more detail this Model server, but, in
the optics of the Rust server, we consume the Model API via a categorization service and
a training service.

The first API is served transparently to the Mobile, since the categorization is sent inside
of other flows, like the transaction listing.

And the second is explicitely called when a user requests a re-categorization of a transac-
tion, which causes the model to be re-trained.

Infrastructure

The DevOps concern of Finnish started with a Bleeding-Edge approach, not only were
we using a Infrastructure-as-Code model, we were using a “Infrastructure-generated-from-
Rust-macros” model, which doens’t even have a term for it yet.

But that quickly became too restrictive, since I often had to open issues in the cloud
provider github libraries for Rust, and ultimately we decided that also investing time in
becoming contributors to this open source innovation wasn’t going to go well with the
extremely short time to develop this Project.

Moreover, the need for having Observability was growing, and, again, having to use that
through the lens of Shuttle (this experimental approach), was going to be harder than
just spawning an OpenTelemetry Collector in a private Linux instance.

So we migrated to a private server in Digital Ocean, running Nixos. We first had to
Nixos-infect a regular Ubuntu server. Then, we could develop our Nix reproducible en-
vironments, with the server and Grafana Beyla auto-instrumented collector and regular
Linux Systemd services.

This allows for ultimate flexibility, and responsability, while we also remain at a Cutting-

4| Implementation 22

Edge field of DevOps.

So, we deployed the Postgres database, the Rust server, the Grafana collector, as well
as the Model server (which is a Python FastAPI server) to this NixOS machine, via
nix-configured files.

4.2.2. Mobile

First, for the mobile development, the design was made in Figma where it was created
layouts and user flows based on usability principles. At frontend end designs finalization,
it started with mobile app development and simultaneously integrating the same with
backend as APIs for endpoints that were getting prepared. The intended screens are
showed below in Figures 4.1, 4.2 and 4.3.

(a) SignIn screen. (b) SignUp screen.

Figure 4.1: Figma SignUp and SignIn screens

4| Implementation 23

Figure 4.2: Figma - Home screen

4| Implementation 24

(a) Incomes screen. (b) Outcomes screen.

Figure 4.3: Figma Incomes and Outcomes screens

Each functionality added was tested to ensure it worked as intended before moving on
to the next feature. This iterative process helped maintain a quality throughout devel-
opment. The integration with Pluggy, which provides financial data, is the final step.
It worked on incorporating their widget into the app to enable seamless access to users’
financial information. But it is still needed to display expenses from banks got from the
widget related to Open Finance.

Now, it is described how the application was set. The app has the Sign In, Sign Up, Forgot
My Password, Change Password screens, a screen for entering the confirmation email, a

4| Implementation 25

screen for entering the MFA code, Home screen, financial incomes screen, financial output
screen. Still within the Home screen, there is a dialog box for adding untrackable expenses
and one for editing them.

The app starts with the Sign In screen, for entering email and password, as well as a
dynamic captcha. There is a button to actually Sign In and the data is sent to the server.
If they are incorrect, the wrong fields are outlined in red and an error message is shown
under each field and the captcha is restarted. The captcha must be entered too. The
screens developed for this can be seen in Figure 4.4.

(a) SignIn App. (b) SignIn validations screen.

Figure 4.4: SignIn and validations screen developed

If the user has forgotten the password, there is a field with the text ’Esqueceu Sua Senha?’
which takes the user to a screen where they enter their password reset email. This screen

4| Implementation 26

basically has the field and the button to send the email to the server, and a button to
return to the Sign In screen. Once the user has received the message in the registered
email, they are taken to a screen on the web where they register their new password. This
can be seen in Figure 4.5.

(a) Forgot password screen. (b) Forgot password validations screen.

Figure 4.5: Forgot password validations screen developed

There is a popup that asks if the user really wants to leave the app by pressing the return
button, show in Figure 4.6.

4| Implementation 27

Figure 4.6: Leave App Feature

Returning to the Sign In screen, there is also a field with the text ’Sign Up’, which
takes the user to the screen for registering their data. On this screen, there are fields
for registering its name, email, password, password confirmation, and a captcha. As well
as a button to send data to the server. Empty fields, weak passwords, or non-matching
passwords are validated when data is sent. Just like on the Sign In screen, this validation
changes the fields, outlining those that are incorrect in red, and showing the respective
error message, be it a weak password or an empty field, for example, shown in Figure 4.7.

4| Implementation 28

(a) SignUp screen. (b) SignUp validations screen.

Figure 4.7: SignUp and validations screen developed

Returning to the Sign In screen, when the data entered is valid, the user may be taken
to some screens depending on their status. Firstly, the user must have confirmed their
email. This confirmation is sent to the email made in Sign Up when the user registers
correctly. If the user has not yet confirmed, the screen to be shown is for entering the
confirmation email, with the send button. There is also a button to return to the Sign In
screen, and it all can be seen in Figure 4.8.

4| Implementation 29

(a) Email Confirmation screen. (b) Email Confirmation validations screen.

Figure 4.8: SignUp and validations screen developed

Now, if the user’s email is confirmed, the screen presented to the user when they Sign In is
the second authentication factor screen. In it, the user is presented with a field for inserting
the token, a widget that takes the user to the Play Store to download a recommended
authentication application, and a link that takes the user to the authentication application
that they have installed on their device. After inserting the token, the field will go through
the same validation mentioned above, and if the server returns a failure, the field will be
outlined in red and the error text will be displayed. This is shown in Figures 4.9 and 4.10.

4| Implementation 30

(a) MFA screen. (b) MFA validations screen.

Figure 4.9: MFA validations screen developed

4| Implementation 31

Figure 4.10: MFA open local authenticator

Finally, if the user has already confirmed their email and has also completed the second
authentication factor, they are taken to the Home screen. On this main screen, it will
have a sandwich style menu on the left, from which the user can go to the Inputs and
Outputs screen. On the right there is another menu, where it can go to the screen to
change its password, or log out. If it chooses to log out, a popup is shown if it really
wants to log out. For the other options, it is taken to the selected screen, and it can be
seen in Figures 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16.

4| Implementation 32

(a) Menu Incomes - Outcomes. (b) Menu Change Password - Log Out.

Figure 4.11: Menus for changing screens

4| Implementation 33

Figure 4.12: Incomes Details screen developed

4| Implementation 34

(a) Incomes Dashboard 1 screen. (b) Incomes Dashboard 2 screen.

Figure 4.13: Incomes Dashboards screen developed

4| Implementation 35

Figure 4.14: Outcomes Details screen developed

4| Implementation 36

(a) Outcomes Dashboard 1 screen. (b) Outcomes Dashboard 2 screen.

Figure 4.15: Outcomes Dashboards screen developed

4| Implementation 37

(a) Change Password screen. (b) Change Password validations screen.

Figure 4.16: Change Password screen developed

Still on the Home screen, there is a button at the top that directs the user to a Pluggy
widget on the screen and they can add a bank of their choice, according to what is
available. Once added, the screen loads the new information that will come from the
server. Further down, the user will find two areas referring to data from the banks they
have already added. It can see through each bank and each bank transaction has a brief
description. In this case, this information is arranged in larger retractable Input and
Output boxes. Then there are slightly smaller boxes for each bank, also retractable. And
then, within each bank, each transaction also is in this format. This screen can be seen
in Figure 4.17.

4| Implementation 38

Figure 4.17: Home screen developed

Below, there is a similar arrangement of Input and Output information, but this time
arranged in graphs. And, the user will see graphs such as the proportion of Incomes or
Outcomes of each bank in relation to the whole, and the proportion according to the
categories.

Finally, further down there is a space where the user can enter non-traceable expenses.
There is a ’+’ button, which makes a dialog box appear on the screen, in which the user
can enter the expense information and add. Here the fields also undergo validation. This
type of expense is arranged in a similar way to the previous ones, however, there is also a
pencil icon, which, when pressed, allows the user to edit the specific transaction or even
delete it. The fields undergo a validation too, and when the user execute one of this
actions, a popup is shown in the screen asking if it really wants to execute. And, a popup

4| Implementation 39

related to the server response is shown in the screen showing if the action had success or
not. In the larger untrackable expenses box, there is also a filter icon that allows the user
to filter these expenses by month. It can be seen in Figures 4.18, 4.19, and 4.20.

(a) Add untrackable expense dialog. (b) Add untrackable expense dialog validations.

Figure 4.18: Add untrackable expenses dialog

4| Implementation 40

(a) Add untrackable expense dialog. (b) Edit untrackable expense dialog validations.

Figure 4.19: Edit untrackable expenses dialog

4| Implementation 41

Figure 4.20: Filter Month Picker Dialog

4.2.3. Categorization

To develop a model tailored to the project’s categorization needs, we started with a
comprehensive review of available technologies and research on AI-based categorization
models. After evaluating different model architectures, we settled on the XGBoost al-
gorithm due to its effectiveness in handling structured, tabular data, as well as its high
performance with relatively low computational requirements. XGBoost’s ability to cap-
ture complex patterns through gradient boosting made it particularly suitable for our
task, where a mix of numerical, categorical, and text-derived features are essential for
accurate transaction classification.

Initially, we considered using pre-trained language models, such as DistilBERT—a lighter,
faster version of BERT that maintains much of BERT’s language understanding. We hy-

4| Implementation 42

pothesized that DistilBERT’s deep language representation could be leveraged to classify
transaction descriptions directly, given its pre-training on a large corpus. Testing with
DistilBERT on simple, fictional transactions like "Bought groceries," "Monthly salary,"
and "Paid electricity bill" yielded promising accuracy. However, when we tested it with
real transaction data, particularly descriptions in Portuguese without consistent word
separation (e.g., "ELCSS-EXTRAFARMA"), performance declined significantly. Distil-
BERT’s reliance on tokenized and well-separated text limited its effectiveness with our
unstructured, concatenated transaction descriptions.

To address these challenges, we pivoted to a data-driven approach using structured data
from the Pluggy API. Pluggy provides comprehensive transaction data, including fields
like description, amount, balance, and category, but the raw transaction descriptions
varied across financial institutions. This variation presented both a challenge and an
opportunity: while we couldn’t rely solely on descriptions for categorization, we could
integrate other features (like amount, balance, and manually extracted patterns from
descriptions) into a model more suited to structured inputs.

For example, Pluggy provides transaction data in the following format:

Listing 4.1: Transaction example

{
" id " : "59 cccc5c −1c12 −497d−8f8c−b0a60d166b80 " ,
" d e s c r i p t i o n " : "VENCIMENTO RENDA FIXA − LCI IPCA F 3 A BANCO
INTER SA" ,
" descr ipt ionRaw " : nu l l ,
" currencyCode " : "BRL" ,
"amount " : 137 .15 ,
"amountInAccountCurrency " : nu l l ,
" date " : "2024−08−09T03 : 0 0 : 0 0 . 0 0 0Z" ,
" category " : "Fixed income " ,
" categoryId " : "03020000" ,
" balance " : 178 .17 ,
" accountId " : "7 e577092−c366−4f8d−a435−49b3025eb15d " ,
" providerCode " : nu l l ,
" s t a tu s " : "POSTED" ,
"paymentData " : nu l l ,
" type " : "CREDIT" ,
" creditCardMetadata " : nu l l ,
" acquirerData " : nu l l ,

4| Implementation 43

"merchant " : nu l l ,
" createdAt " : "2024−09−26T01 : 0 1 : 4 5 . 7 8 1Z" ,
"updatedAt " : "2024−09−26T01 : 0 1 : 4 5 . 7 8 1Z"

}

After preprocessing the data, we mapped Pluggy’s diverse transaction categories to our
predefined 12 target categories: ’Restaurants,’ ’Shopping,’ ’Services,’ ’Entertainment,’
’Groceries,’ ’Salary,’ ’Interest Income,’ ’Utilities,’ ’Pharmacy,’ ’Transfer,’ ’Transport,’ and
’Others.’ This mapping helped standardize the dataset, ensuring consistent labels across
transactions from different banks.

We chose XGBoost due to its robustness with tabular data and its ability to capture non-
linear relationships through ensemble learning. Unlike language models that require clean,
tokenized text, XGBoost is well-suited to structured datasets and can handle both cate-
gorical and numerical features efficiently. Additionally, XGBoost allowed us to integrate
various features:

• Numerical features like amount and balance.

• Lexogram-based indicators to detect the presence of specific patterns within trans-
action descriptions.

• Category mappings that reclassify inconsistent labels into our target categories.

XGBoost’s gradient-boosting approach also provided control over model complexity, al-
lowing us to avoid overfitting while achieving high classification accuracy on our mapped
categories.

To enhance classification reliability, we introduced a confidence threshold in the predic-
tion script. The model outputs a confidence score for each prediction, and if this score
falls below 0.7, we revert to the transaction’s original category (provided by Pluggy) for
certain predefined categories, such as ’Entertainment’ and ’Utilities.’ This fallback mech-
anism ensures that the model doesn’t misclassify transactions with uncertain predictions,
prioritizing the original data when confidence is low.

The initial model development, testing, and optimization were conducted in a Jupyter
Notebook environment. This allowed us to iteratively experiment with feature engineer-
ing and hyperparameter tuning. Once we finalized the model, we transitioned it into a
production-ready Python script, converting the Jupyter code into standalone .py files.
This final version processes JSON transaction inputs, maps categories where needed, and
prints both the predicted category and confidence level for seamless deployment.

4| Implementation 44

This structured, multi-stage approach—from initial research and model selection to itera-
tive testing, confidence calibration, and final deployment—allowed us to develop a robust,
efficient categorization model that aligns with real-world transaction data intricacies.

To support the model’s deployment and provide real-time categorization, a server was
implemented using FastAPI, a lightweight and efficient Python framework for building
APIs. The server includes two primary endpoints to streamline interaction with the model.
The first endpoint receives a list of transactions as input, processes each transaction to
predict its category using the XGBoost model, and returns the predicted categories along
with confidence levels for each transaction. This functionality allows batch processing of
transactions, improving scalability and efficiency. The second endpoint focuses on model
maintenance by handling the retraining process. It identifies new transactions added
to the dataset, triggers a script to map these transactions to predefined categories, and
executes the model retraining pipeline. By integrating these two functionalities, the server
ensures the model remains up-to-date while providing accurate and seamless transaction
categorization for users.

One significant limitation of the current implementation is that the model operates glob-
ally, applying the same categorization logic across all users without accounting for individ-
ual preferences or behaviors. While this approach simplifies implementation and leverages
shared patterns across the dataset, it overlooks the nuanced, user-specific context that
often influences transaction categorization. For instance, a user might frequently cate-
gorize recurring transactions like "Netflix" under "Utilities" instead of "Entertainment,"
or prioritize specific lexicon patterns unique to their spending habits. By treating all
users as a homogeneous group, the model risks misclassifying transactions that deviate
from generalized patterns, potentially undermining its reliability for personalized financial
insights.

4.3. Tests

Since good software was always at the core of this undertaking, writing tests has always
been at the tasks board.

When it comes to the server side, the use of llvm-cov, unit-testing and integration testing
is currently deployed. This tool allows visualization of the areas that are tested and
untested, and reports code-coverage.

Development isn’t being run in a test-driven philosophy, but instead using Patch Coverage
reports in an informative way.

4| Implementation 45

There are future plans of implementing “proptests” (property-based testing) on more
sensitive features in the server side.

Also, in the mobile side, testing was a fundamental aspect of the development process.
Each component of the application underwent testing to ensure reliability. This included
software testing to evaluate functionality. Integration testing was done, which checked
the interaction between the mobile app and the backend, as well as with Pluggy’s API.

46

5| Final Considerations

This final topic presents the final remarks about this project, while pointing out future
perspectives that could improve upon the current state of the project.

5.1. Compromises

5.1.1. Mobile

In the application, the cross-platform development was not possible. Therefore, Apple’s
own device such as a Macbook was not achieved for iOS development, and more time
would be needed in the development of this front, which contains some differences in
implementation. Likewise, it was not possible to deliver a more user-friendly interface,
due to the learning curve to learn mobile development taking longer than expected, taking
away time available to dedicate to the user interface.

On the other hand, it was possible to develop an app that integrates with the server to
authenticate, search for financial transactions, and register untraceable expenses. The
app also integrates with the Friendly Captcha API, where it receives proof in code to be
sent to the server for authentication, and there is integration with the Pluggy API. In
the latter case, the integration consisted of the widget that allows the user to choose the
bank to search for and display their data.

5.1.2. Backend Server

The first glaring compromise that needed to be made in the server-side is that, since this
project was not made as part of an actual banking institution, in Brazil, there is no way
to directly connect to the Open Finance network.

This meant that an intermediary had to be used, in this case, Pluggy was that Open
Finance provider, but we could have gone with other competitors, like Belvo.

Having this constraint impacted, not only on budget, but, also on external dependencies.

5| Final Considerations 47

Another compromise that needed to be made was to the robustness of the databases’s
accountability patterns, both functional and non-functional.

Firstly, having to sync with Pluggy caused the server to have a Webhook sync, as well a
time-sync. Medling with these transactions would have been easier with an Accountability-
minded database, which we’ll mention on Future Perspectives.

5.1.3. Infrastructure

Also, storing these transactions in our databases could maybe profit with some database
encryption, in case our infra was compromised.

Another infrastructure compromise was not deploying our own instance of Grafana for
observability, and instead going with the Grafana Cloud option.

That isn’t ideal, specially long-term, due to the configurability of self-hosting it.

Finally, everything infra-related was on an extreme budget, since our cost-target was $0.
Of course, we couldn’t reach this target, but we wanted to not have to worry with funding
for this project. Although, even with this tight budget, running on the lowest possible
hardware configs, our server still met decent performance, due to using good code, and
using Rust for the server.

5.1.4. Categorization

The development of the AI model required balancing key compromises, particularly when
pre-trained language models like DistilBERT struggled to process unstructured transac-
tion descriptions in Portuguese. To address this, the team opted for XGBoost, which,
while less specialized in natural language processing, allowed the integration of numerical
features, pattern detection, and category mapping. This compromise resulted in a robust
categorization system that effectively handles diverse transaction data, fully integrated
with the Pluggy API.

5.2. Future Perspectives

The application has significant potential to evolve into a multiplatform solution, expand-
ing its accessibility and user base. By leveraging Kotlin Multiplatform, it could support
both Android and iOS, requiring adaptations to the current Android structure while in-
tegrating iOS-specific features. Beyond compatibility, the application can undergo visual
enhancements to improve user engagement and usability. New transaction views could

5| Final Considerations 48

provide users with diverse perspectives on their financial data, while deeper AI integration
could unlock advanced functionalities such as spending insights, real-time alerts for un-
usual transactions, and personalized budgeting suggestions. These enhancements would
rely on a more dynamic server communication with the categorization layer, enabling a
more interactive experience.

The categorization model has room for advancement, particularly in terms of personaliza-
tion and flexibility. A key improvement involves introducing user-specific customization,
allowing the model to learn and adapt to individual spending behaviors. This could be
achieved through a user-level customization layer that refines global model predictions
based on historical user data, delivering more accurate and tailored insights. Letting
users create their own custom categories would make the system much more flexible, al-
lowing them to organize transactions in a way that makes sense for their personal financial
needs. Integrating these custom categories into the retraining pipeline would ensure that
the model remains relevant as user needs evolve. Additionally, refining the processing of
unstructured data, such as noisy or concatenated transaction descriptions, would enhance
the system’s robustness and accuracy, ensuring reliability across a wide variety of inputs.

On the backend, strengthening the accounting database architecture is a priority to en-
sure the system can handle future demands. Adopting Tigerbeetle’s advanced database
technology could provide the necessary foundation for managing sensitive financial data
with precision and scalability. Tigerbeetle’s innovative testing methods and focus on fi-
nancial accuracy make it a great option for improving the current architecture, resolving
compromises made during the initial development. This change would not only make the
system more robust but also set it up for long-term growth and reliability.

Infrastructure improvements are another critical area for future development. Vertical
scaling through increased investment in computing resources would support more self-
hosted services, reducing reliance on external providers and enhancing system control.
Rewriting performance-critical components, such as the categorization model, in Rust
instead of Python, would allow for direct embedding into the backend server, improving
processing speed and reducing latency. Deploying modern tools to streamline infrastruc-
ture management, such as alternatives to the archived "nix-devops," could further opti-
mize the development and deployment process. Although current substitutes are in their
infancy, adopting these tools as they mature would significantly enhance the project’s
operational efficiency.

Together, these advancements form a comprehensive roadmap for the project’s future,
addressing current limitations while preparing for scalability, flexibility, and user-centric

5| Final Considerations 49

innovation. By pursuing these developments, the project can grow into an advanced
financial management tool that meets the needs of a growing and diverse user base.

5.3. Conclusion

The Finnish project represents a pivotal step forward in the realm of personal financial
management, offering an innovative solution that bridges cutting-edge technology and the
growing need for financial literacy and accessibility. By harnessing the power of machine
learning and Open Banking APIs, Finnish successfully integrates advanced analytics into
an intuitive platform that promises to transform the way users interact with their finances.

Achievements and Potential

Despite the challenges encountered, the project demonstrates remarkable achievements:

1. Technological Integration: Seamless incorporation of advanced tools like XG-
Boost for transaction categorization, alongside state-of-the-art Rust and Python
frameworks, has set a solid foundation for future scalability.

2. User-Centric Approach: With features tailored to simplifying financial tasks
and improving user experience, Finnish addresses a significant gap in the market
for accessible, user-friendly financial tools.

3. Resilience in Development: Adopting creative solutions to overcome limitations,
such as leveraging the Pluggy API and maintaining a low-cost infrastructure, high-
lights the team’s ability to deliver under constraints.

Broader Impact

Finnish aligns itself with the global shift towards financial inclusion and digital empower-
ment. By addressing critical pain points such as fragmented financial data, lack of financial
education, and cumbersome user interfaces, the project contributes to making personal
finance management not only accessible but also enjoyable. Moreover, Finnish’s focus on
educating users and providing actionable insights fosters long-term financial stability and
literacy.

Future Horizons

The possibilities for Finnish’s growth are boundless:

5| Final Considerations 50

• Personalized Financial Insights: Future iterations could incorporate user-specific
customization, tailoring recommendations to individual spending patterns and habits.

• Multi-Platform Expansion: Extending compatibility to iOS and web platforms
would broaden the app’s reach, making it an indispensable tool for diverse user
bases.

• Advanced AI Features: Deeper integration of AI for real-time fraud detection,
financial health tracking, and automated financial planning could redefine the stan-
dards of personal finance applications.

Finnish is not just a project—it is a vision for a smarter, more inclusive financial future.
The commitment to innovation, coupled with an unwavering focus on user needs, positions
Finnish as a transformative force in personal finance. This journey, though just beginning,
already reflects the potential to become a benchmark for technological excellence and user
empowerment in the financial technology landscape.

5.4. Live Preview and Open-Source

The Finnish project emphasizes transparency and collaboration, aligning with the open-
source ethos. Below are the repositories and live platforms associated with the project:

GitHub Repositories

• Server (Rust API): Explore the backend codebase powering Finnish’s financial
analytics and transaction processing. https://github.com/finnish-app/server

• Infrastructure (NixOS Server Code): Review the server infrastructure and
deployment setup. https://github.com/finnish-app/infra

Live Platforms

• Website: Visit the official Finnish platform to learn more about the project and
access its features. https://fina.center

• Dashboard and CI/CD Monitoring: Access Finnish’s live dashboards and con-
tinuous integration pipelines for real-time insights into system operations and builds.

– BuildBot Dashboard: https://buildbot.fina.center

– Grafana Dashboard: https://grafana.fina.center

https://github.com/finnish-app/server
https://github.com/finnish-app/infra
https://fina.center
https://buildbot.fina.center
https://grafana.fina.center

51

Bibliography

[1] C. Averill. A brief analysis of the apollo guidance computer. arXiv preprint
arXiv:2201.08230, 2022.

[2] Banco Central do Brasil e Instituições. Estatísticas de meios de pagamentos. https:
//www.bcb.gov.br/estatisticas/spbadendos, 2022. Accessed: 2024-03-14.

[3] Banco Central do Brasil e Instituições. Estatísticas de relacionamentos, cpfs e cnpjs
envolvidos. https://www.bcb.gov.br/acessoinformacao/ccsestatisticas, 2024.
Accessed: 2024-03-14.

[4] J. Blow. Preventing the collapse of civilization. In Pre-
venting the Collapse of Civilization, Moscow, 2019. devGAMM.
https://www.youtube.com/watch?v=ZSRHeXYDLko.

[5] B. Central. Evolução de meios digitais para realização de transações de pagamento
no brasil. Relatório de Economia Bancária, 2022.

[6] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman,
J. Micco, B. Murphy, T. Savor, et al. The top 10 adages in continuous deployment.
IEEE Software, 34(3):86–95, 2017.

[7] TigerBeetle. Problem of current db solutions. https://github.com/tigerbeetle/

tigerbeetle/blob/main/docs/HISTORY.md, 2022. Accessed: 2024-03-14.

[8] TigerBeetle. Github repository. https://github.com/tigerbeetle/tigerbeetle,
2024. Accessed: 2024-03-14.

[9] Valor - Globo. Bancarização avança, mas uso de conta é lim-
itado. https://valor.globo.com/financas/noticia/2023/10/27/

bancarizacao-avanca-mas-uso-de-conta-e-limitado.ghtml, 2023. Accessed:
2024-03-14.

https://www.bcb.gov.br/estatisticas/spbadendos
https://www.bcb.gov.br/estatisticas/spbadendos
https://www.bcb.gov.br/acessoinformacao/ccsestatisticas
https://github.com/tigerbeetle/tigerbeetle/blob/main/docs/HISTORY.md
https://github.com/tigerbeetle/tigerbeetle/blob/main/docs/HISTORY.md
https://github.com/tigerbeetle/tigerbeetle
https://valor.globo.com/financas/noticia/2023/10/27/bancarizacao-avanca-mas-uso-de-conta-e-limitado.ghtml
https://valor.globo.com/financas/noticia/2023/10/27/bancarizacao-avanca-mas-uso-de-conta-e-limitado.ghtml

52

List of Figures

1.1 Time Series of Number of Bank Accounts and Number of Clients (CPF +
CNPJ) in Brazil[3] . 3

1.2 Number of financial institutions authorized by the Central Bank each year. 5
1.3 Number of monthly transferences per instrument in the last thee years[2] . 6
1.4 Number of yearly transactions per instrument[2] 7

2.1 Picpay’s web home dashboard . 11
2.2 View of transactions’ details . 12
2.3 View to add financial transactions . 12
2.4 Organizze’s home dashboard . 13
2.5 View of categorized financial statement . 13
2.6 View to add financial transactions . 14
2.7 View of plans and additional features . 14

4.1 Figma SignUp and SignIn screens . 22
4.2 Figma - Home screen . 23
4.3 Figma Incomes and Outcomes screens . 24
4.4 SignIn and validations screen developed . 25
4.5 Forgot password validations screen developed 26
4.6 Leave App Feature . 27
4.7 SignUp and validations screen developed 28
4.8 SignUp and validations screen developed 29
4.9 MFA validations screen developed . 30
4.10 MFA open local authenticator . 31
4.11 Menus for changing screens . 32
4.12 Incomes Details screen developed . 33
4.13 Incomes Dashboards screen developed . 34
4.14 Outcomes Details screen developed . 35
4.15 Outcomes Dashboards screen developed . 36
4.16 Change Password screen developed . 37

53 53

4.17 Home screen developed . 38
4.18 Add untrackable expenses dialog . 39
4.19 Edit untrackable expenses dialog . 40
4.20 Filter Month Picker Dialog . 41

54

List of Tables

2.1 Comparative list of peers and its features 15

	Abstract
	Resumo
	Contents
	Introduction
	Motivation
	State of Software Products
	State of Personal Finances in Brazil

	Objective
	Justificative
	Work Organization

	Design
	Sector Analysis
	National Market
	International Market

	Ideas grooming

	Requirements Specification
	Functional Requirements
	Non Functional Requirements

	Implementation
	Used Technologies
	Server
	Mobile
	Categorization

	Project and Implementation
	Server
	Mobile
	Categorization

	Tests

	Final Considerations
	Compromises
	Mobile
	Backend Server
	Infrastructure
	Categorization

	Future Perspectives
	Conclusion
	Live Preview and Open-Source

	Bibliography
	List of Figures
	List of Tables

