
Angela Colas
Carlos Eduardo Jedwab

João Pedro Aras

Synthetic text generation and retrieval text
reduction based on embedding using natural

language processing

São Paulo, SP
2024

Angela Colas
Carlos Eduardo Jedwab

João Pedro Aras

Synthetic text generation and retrieval text reduction
based on embedding using natural language processing

Final thesis presented to the Department of
Computer Engineering and Digital Systems
at the Polytechnic School of the University
of São Paulo to obtain the title of Engineer.

University of São Paulo – USP
Polytechnic School

Department of Computer Engineering and Digital Systems (PCS)

Supervisor: Prof. Dr. Edson Satoshi Gomi

São Paulo, SP
2024

Acknowledgments
This project would not have been possible without the invaluable guidance and sup-

port of Prof. Dr. Edson Satoshi Gomi, who served as the thesis advisor. His expertise,
patience, and insights greatly contributed to shaping the direction and success of this
work. Professor Gomi’s encouragement and constructive feedback were instrumental in
overcoming challenges and achieving meaningful results throughout this research.

Additionally, special thanks are extended to Vinícius Bitencourt Matos, a member
of the current SeSO development team. His assistance, particularly in understanding
the practical intricacies of the SeSO system and its implementation, provided essential
contributions to this project. Vinícius’s collaboration and shared knowledge played a
key role in refining methodologies and ensuring the project’s alignment with Petrobras’s
operational goals.

This research is deeply indebted to their collective efforts, and their support is sincerely
appreciated.

Abstract

Figure 1 – Data Flow Diagram: Synthetic and augmented reports are generated and stored.
Questions and answers are generated for evaluation. Upon user input, relevant
passages are retrieved and summarized for answer generation.

The Semantic Search on Offshore Engineering (SeSO) system was developed by Petrobras
to assist employees in retrieving and understanding information from dense and complex
reports regarding offshore platform operations. Despite its functionality, SeSO faces two
significant challenges: limited availability of real-world failure reports and issues with
handling large, detailed documents during retrieval. This project seeks to enhance SeSO
by addressing these challenges through the generation of synthetic failure reports, dataset
augmentation via rewriting techniques, and the implementation of summarization methods
to optimize retrieval for large passages.
The development process is structured around several key stages. First, synthetic reports
are generated to expand the dataset, simulating realistic operational scenarios. These
reports are further augmented through rewriting techniques to introduce linguistic and
contextual variability. Questions and answers are then generated from both real and
synthetic reports to test the retrieval system’s performance. Upon user input, relevant
passages are retrieved and summarized to provide concise and accurate answers, ensuring
effective handling of lengthy documents and tables.
This workflow supports SeSO in delivering accurate and efficient question-and-answer
capabilities while addressing operational constraints. The proposed methodologies not
only improve data availability and retrieval quality but also lay the groundwork for future
enhancements to Petrobras’s Q&A system.

Contents

1 INTRODUCTION . 8
1.1 Motivation . 9
1.2 Justification . 10
1.3 Objectives . 11

2 OVERVIEW OF SESO . 12
2.1 SeSO’s algorithm . 12
2.1.1 Indexing block . 12
2.1.2 Inference block . 13
2.2 SeSO’s challenges . 13

3 KEY CONCEPTS . 15
3.1 Large Language Models (LLMs) . 15
3.2 RAG . 16
3.3 LangChain . 16
3.4 Embeddings and Semantic Similarity 17
3.5 Similarity Metrics: Euclidean and Cosine Similarity 19

4 METHODOLOGY . 23
4.1 Phase 1: Synthetic expansion of the Reports Dataset 23
4.2 Phase 2: Synthetic Q&A generation 23
4.3 Phase 3: Report Reformulation System 24
4.4 Phase 4: Reduction of Prompt Size 24
4.5 Evaluation Procedures . 25

5 REQUIREMENT SPECIFICATION 26
5.1 Functional Requirements . 26
5.2 Non-Functional Requirements . 27

6 DEVELOPMENT . 29
6.1 Phase 1: Expansion of the Reports Dataset 30
6.1.1 Synthetic Report Generation for Retriever Optimization 30
6.1.2 Implementation of Synthetic Reports for Offshore Inspection 30
6.1.3 Process of Report Generation . 32
6.1.4 Example of a Synthetic Report Prompt and Generated Result 35
6.1.5 Integration of Checklist Tables in Synthetic Reports 36

6.1.6 Iterative Generation of Large Tables . 37
6.1.7 Number of Reports Generated and Justification 38
6.1.8 Anonymization Strategy and Justification 38
6.1.9 Decision to Exclude Images . 38
6.1.10 Technical Challenges and Solutions . 39
6.1.11 Testing and Validation . 39
6.2 Phase 2: Synthetic Q&A Generation 41
6.2.1 Naive Approach . 41
6.2.2 New Approach . 42
6.3 Phase 3: Report Reformulation System 45
6.3.1 Analyze the Code from Petrobras Teams 45
6.3.2 Access the Virtual Machine and Set Up the Working Environment 45
6.3.3 Writing of the code . 46
6.4 Phase 4: Text Reduction System . 56
6.4.1 Text Splitting (Splitter) . 56
6.4.2 Embedding Creation (Embedder) . 58
6.4.3 Similarity Scoring (Scorer) . 59
6.4.4 Filtering (Filterer) . 60
6.4.5 Example Workflow . 60
6.4.6 Integration into Summarization . 61
6.4.7 Evaluation . 61
6.4.8 Conclusion . 70

7 FINAL REMARKS . 72
7.1 General Conclusion . 72
7.1.1 Results and Achievements . 72
7.1.2 Flaws and Challenges in the Methodology 73
7.2 Future Work . 73

BIBLIOGRAPHY . 75

List of Figures

Figure 1 – Data Flow Diagram: Synthetic and augmented reports are generated
and stored. Questions and answers are generated for evaluation. Upon
user input, relevant passages are retrieved and summarized for answer
generation. 3

Figure 2 – Diagram describing the SeSO indexing step 12
Figure 3 – Diagram describing the SeSO inference step 13
Figure 4 – Illustration of the embedding process and visualization. Words are

mapped into a vector space, encoded with semantic attributes, and
visualized in two dimensions. 18

Figure 5 – Visualization of embeddings for "man," "woman," "king," and "queen,"
along with their respective clusters ("Gender" and "Royalty"). 20

Figure 6 – Categorized report types and their relevance. Image credit: Nicolas
Marotti Moreira. 32

Figure 7 – Generated synthetic report for Platform P-XX. 35
Figure 8 – Generated Checklist Tables . 36
Figure 9 – Iteratively Generated Large Tables . 37
Figure 10 – Example rows from the generated Q&A dataset 44
Figure 11 – Global squeme of the rewriting process 46
Figure 12 – Steps to process a pdf given in input 47
Figure 13 – Step of rewriting after division in pieces 48
Figure 14 – Diagram explaining the text reduction basic architecture (Figure 14). . 56
Figure 15 – Splitting a text into non-overlapping chunks. 57
Figure 16 – Splitting a text into overlapping chunks. 57
Figure 17 – Splitting a text into abstract key chunks. 57
Figure 18 – Splitting a table into columns. 58
Figure 19 – Embedding comparing example (Figure 19). 59
Figure 20 – Pseudocode outlining the main evaluation routine for comparing answers

derived from full and summarized texts. 62
Figure 21 – Sample of the generated CSV results, including text, question, summa-

rized text, answers, and similarity scores. 63
Figure 22 – Similarity score distribution for Random Scoring. The 0.9 threshold is

indicated. 64
Figure 23 – Count of Q&A pairs above and below the 0.9 threshold for Random

Scoring. 64

Figure 24 – Similarity score distribution for Direct Embedding (No Formatting).
The 0.9 threshold is shown. 65

Figure 25 – Count of Q&A pairs above and below the 0.9 threshold for Direct
Embedding. 65

Figure 26 – Similarity score distribution for Query-Enhanced Embedding. The 0.9
threshold is marked. 66

Figure 27 – Count of Q&A pairs above and below the 0.9 threshold for Query-
Enhanced Embedding. 66

8

1 Introduction

Petrobras (PETROBRAS. . . ,) is a leading Brazilian company in the oil and gas
industry, specializing in offshore oil extraction. The operation of its offshore platforms
involves numerous potential failure points, both structural and mechanical. Such failures,
when they occur, are documented in detailed reports that describe the problem and its
potential causes. These reports are numerous and information dense, and so, employees
are constantly in need of searching specific information among the vast amount of data.
With the aim of speeding up the answering of employee’s questions, Petrobras invested on
developing an automated question-and-answer (Q&A) system named Semantic Search on
Offshore Engineering (SeSO (GONCALVES et al., 2021)).

In essence, SeSO works similarly to a Retrieval-Augmented Generation (RAG (AWS,
2020)). The user can input a question in natural language, and the model finds relevant
passages within the known reports, and then use the result as a basis for actually generating
an answer. In its latest stage, system is functional, but does not always yield the best
quality results. Both the retrieving and answer generation steps were in need of improving,
and two main challenges were found in the way.

First, relating to the retrieval of passages, a smarter model is being designed. However,
training and testing is limited by the scarcity of failure reports available. Due to the
infrequency and complexity of certain failure events, the number of existing reports is
often insufficient to build comprehensive models capable of supporting the Q&A system
effectively. With that in mind, one of the objectives of this research is to explore the
feasibility of using Artificial Intelligence (AI) to generate synthetic failure reports, thereby
overcoming the limitations posed by the shortage of real-world data.

The other half of the system also faces an important challenge. Since the answer
generation is based on giving an LLM a prompt containing both the question and the
relevant context passages, if the full prompt becomes excessively large — for example
when one of the relevant passages is a giant 1000 lines table — the LLM can forget
portions of the input due to token limit constraints, resulting in incomplete or inaccurate
outputs. To address this issue, a key objective of this research is to investigate whether
using summarized versions of these passages can still produce high-quality answers. That
is, whether we can find a strategy to condense text and tables without loosing vital
information for question answering.

Chapter 1. Introduction 9

1.1 Motivation
In the oil and gas industry, ensuring operational safety and efficiency is critical due

to the high stakes associated with resource extraction and management. Petrobras fre-
quently encounters structural and mechanical failures in its offshore platforms. Thoroughly
documenting and analyzing these failures is essential for identifying root causes and
implementing effective preventive measures. However, the limited number of available re-
ports—due to the infrequency and complexity of such events—poses a significant challenge
for developing predictive models and supporting informed decision-making.

Generating synthetic failure reports using AI presents a viable solution to this data
scarcity issue. However, one of the main challenges faced in this research involves the token
limit constraints of LLMs when using large input prompts. Providing full-length reports
as input often causes the model to truncate or disregard parts of the input, resulting in
incomplete or less reliable outputs. This limitation undermines the effectiveness of AI
models in producing high-quality synthetic data. Thus, the motivation behind this study
is twofold: to explore the feasibility of generating synthetic reports to overcome data
limitations, and to investigate whether using summarized versions of reports can still yield
high-quality outputs. Addressing these issues will enhance the Q&A system’s ability to
provide reliable responses even in data-scarce scenarios, ultimately improving Petrobras’s
operational efficiency and safety.

Chapter 1. Introduction 10

1.2 Justification
The importance on this Thesis lies in the need to support Petrobras’s internal Q&A

system, which plays a critical role in managing and disseminating operational knowledge
based on confidential reports. The scarcity of failure reports currently limits the system’s
ability to provide comprehensive responses, creating a barrier to effective failure detection
and risk management. By generating high-quality synthetic reports, this research aims to
expand the dataset available for AI training, thereby enabling the development of more
robust models to support Petrobras’s Q&A system.

Moreover, addressing the prompt size constraints of LLMs through the use of summa-
rized inputs offers a novel solution to the limitations faced when using large prompts. This
research not only contributes to the advancement of synthetic data generation but also
has practical implications for other industries facing similar data scarcity and input size
challenges. Ultimately, the results of this study will help optimize Petrobras’s operational
decision-making processes, promote more proactive risk management, and enhance overall
platform safety and efficiency.

Chapter 1. Introduction 11

1.3 Objectives
The primary objective of this project is to enhance the efficiency and reliability of

Petrobras’s Semantic Search on Offshore Engineering (SeSO) question-and-answer (Q&A)
system. This enhancement is pursued by addressing two critical challenges identified in
the system’s current implementation: the scarcity of real-world failure reports and the
limitations imposed by prompt size constraints during answer generation. To achieve these
overarching goals, the project is structured around the following specific objectives:

1. Synthetic Generation of Failure Reports:

• Initial Data Expansion: Generate synthetic failure reports to initially expand
the existing dataset, compensating for the limited availability of real-world
reports.

• Report Augmentation: Further increase the dataset size by augmenting both
real and synthetic reports using rewriting techniques, ensuring diversity while
maintaining the integrity of the information.

• Q&A Generation and Evaluation: Create a substantial number of question-and-
answer pairs derived from the synthetic reports. Utilize these pairs to evaluate
and improve the quality of the retrieval system, ensuring that the augmented
data effectively enhances the Q&A performance.

2. Enhancement of Passage Retrieval:

• Summarization Techniques for Future Integration: Develop and assess summa-
rization methods to condense lengthy passages and complex tables. Although
primarily aimed for future adaptation, these techniques will provide valuable
insights and foundational work for integrating efficient summarization into the
real SeSO retriever based on the project’s findings and diverse methodological
approaches.

3. Quality Assessment:

• Evaluation Metrics and Procedures: Establish comprehensive evaluation metrics
and procedures to assess the coherence, relevance, and reliability of answers
produced by the enhanced Q&A system. This includes comparing responses
generated from synthetic data against those derived from real reports to ensure
the synthetic augmentation effectively supports operational inquiries.

By systematically addressing these objectives, the project aims to deliver a robust
and efficient Q&A system that significantly improves information retrieval and answer
accuracy. This will support Petrobras employees in making informed decisions, thereby
enhancing operational safety and effectiveness.

12

2 Overview of SeSO

2.1 SeSO’s algorithm

2.1.1 Indexing block

The existing reports are all pdf files, some of them digitally made, but others scanned
copies. Before any question answering process, we must address how to interpret the
information within these reports, as described in the diagram 2

• First, the pdfs are transformed into a more structured format, in SeSO’s case, xmls
for text and tables, and image files for images within the reports. This is done via a
software called Tornado.

• Secondly, the text and tables from each report is split into multiple smaller passages.
These passages are what we will future aim to retrieve as possible candidates for
having the answer to a given question from the user.

• The passages are then indexed with Elasticsearch (ELASTICSEARCH. . . , 2015).
Once indexed, Elasticsearch can be queried using keyword-based queries, phrases, or
filters. In other words, the index of the passages will be the test point to determine
its relevancy to a given user question.

Figure 2 – Diagram describing the SeSO indexing step

Chapter 2. Overview of SeSO 13

2.1.2 Inference block

The actual answering of a user’s question process is called the inference. The user must
input its question and the system uses it and the indexed passages to generate an answer,
as described in the diagram 3.

• First, SeSO needs to retrieve 10 of the most relevant passages that possibly contains
the answer for the question. Note that it is possible for no passage to contain the
answer, multiple passages to contain different parts of the answer, or a single passage
contain the answer.

• It is possible for the retriever to return many passages and another block, the ranker,
selects a smaller subset via scoring each passage and then selected the top 10 only.
In some versions, for simplicity, the retriever can also just returns those 10 passages
directly without the need for the ranker. (Note: the specific number of 10 passages
was an abstract choice)

• With those context text extracts plus the original question, an LLM tried to generate
an answer.

Figure 3 – Diagram describing the SeSO inference step

2.2 SeSO’s challenges
While SeSO has successfully laid the foundation for an automated question-and-answer

system tailored to Petrobras’s needs, it faces significant challenges that hinder its optimal
performance. These challenges are centered around two main components of the system:
the retrieval of relevant passages and the generation of accurate answers.

Chapter 2. Overview of SeSO 14

Firstly, as outlined previously, the scarcity of available failure reports poses a critical
issue for the retrieval step. The limited dataset reduces the model’s ability to effectively
retrieve relevant passages, particularly for rare or complex failure scenarios. This highlights
the necessity of exploring alternative approaches, such as the generation of synthetic failure
reports, to augment the dataset and improve retrieval performance.

Secondly, the process of answer generation encounters limitations stemming from the
token constraints of large language models (LLMs). When context passages, especially
those containing extensive data such as large tables, exceed the LLM’s token limit, parts
of the input may be truncated, leading to incomplete or unreliable answers. Summarizing
these passages without losing critical information is, therefore, an essential avenue of
research to mitigate this problem and ensure the system’s reliability.

15

3 Key Concepts

3.1 Large Language Models (LLMs)
Large Language Models (LLMs) (LANGUAGE. . . , 2020), such as OpenAI’s GPT

series (CHATGPT. . . , 2022), have revolutionized natural language understanding and
generation through self-attention-based transformer architectures. These models excel in
capturing long-range dependencies in text and can generate coherent, contextually relevant
outputs. Their pretraining on massive datasets provides broad contextual awareness, while
fine-tuning on specific domains allows for highly specialized capabilities. In applications
like Petrobras’s Q&A system, LLMs serve dual roles: generating synthetic data to augment
limited datasets and enhancing the retrieval of semantically relevant content for user
queries.

However, the inherent token limits in LLMs pose a challenge. These models can process
only a fixed number of tokens (e.g., 2048 tokens in GPT-3, 4096+ in GPT-4) at a time,
necessitating careful input management to ensure key content is not truncated. Techniques
such as retrieval text reduction and strategic prompt engineering can help maintain input
coherence and contextual richness within these constraints.

There are different types of LLMs created by several companies. Among the best known
today in 2024 we can cite Chat GPT, Claude, Gemini and Mistral. For its multilingual
skills and its ability to see and be able to read PDFs which sets it apart from its competitors
(MICHARD, 2024) we used the Chat GPT model in the development of our tools.

Below is a comparison table of the different models used in this project:

gpt-3.5-turbo gpt-4o-mini gpt-4
Tokens 4,096 128,000 128,000
Princing in/out 0.15/0.60 0.50/1.50 2.50/10
Speed Fast Fast Moderated

Tasks
Writing texts, solving
simple to moderate
problems.

Writing texts, solving
simple to moderate
problems.

Writing text, solving
more complex problems,
especially calculations.

We primarily used the 4o model for performing complex tasks that required high
quality, which was essential for the continuity of the project. We aimed to leverage the
strengths of each model based on specific needs. For example, for report generation , we
favored the 4o model, as these reports were necessary at every stage of development and
had to meet impeccable quality standards. Additionally, one group member already had a
personal account allowing access to this model.

Chapter 3. Key Concepts 16

For text rewriting, we used the 4o Mini model, which offered a good balance between
cost and performance. During the processing of text excerpts provided by the Retriever,
we opted for the 3.5 Turbo model. Since this step was limited to summarizing data, the
performance of 3.5 Turbo was sufficient. Although its cost-to-performance ratio was less
favorable compared to 4o Mini, we occasionally used 3.5 Turbo because we already had
credits available for this model, whereas using 4o Mini required purchasing additional
credits.

The 4o model was not used for these simpler tasks because its cost was too high,
particularly for processes generating a large number of tokens during each execution. A
test was conducted using the 4o model on a report, but the quality difference compared to
4o Mini was not significant. Therefore, we opted for 4o Mini, which was more affordable
and sufficiently effective for these use cases.

Finally, for the part dedicated to summarizing complex data, we once again used the
4o model. This step involved demanding tasks of extraction, analysis, computation, and
restitution, which justified the use of this more powerful model.

3.2 RAG
The RAG (Retrieval-Augmented Generation) model is an advanced natural language

processing technique that combines data extraction and text generation. It uses artificial
intelligence models to retrieve relevant information from databases and then integrate it
into contextualized responses written in a natural way.

Unlike conventional generative AI, which relies solely on its pre-trained knowledge,
the RAG enriches its responses with specific and up-to-date external data, while clearly
attributing the sources used. This transparency allows users to check source documents
for accuracy or detail, thus increasing confidence in the answers provided. (AWS, 2020)

In addition to providing accurate results, the RAG consolidates the information
extracted to generate unique explanations or instructions, adapted to the context. This
makes it a powerful and reliable solution, combining the best of generative AI and
information-mining-based AI. (COHESITY, 2021)

3.3 LangChain
LangChain (LANGCHAIN. . . , 2022) is a robust library designed to facilitate the

seamless integration of LLMs into complex data processing workflows and decision-making
pipelines. It offers tools to connect LLMs with tasks such as information retrieval, content
generation, natural language understanding, and various AI-based applications.

Chapter 3. Key Concepts 17

Architecture of LangChain

• Chains: Enables the construction of sequential workflows where the output of one
model serves as the input for subsequent processing or decision-making steps.

• Memory: Implements short-term memory mechanisms to maintain contextual
consistency during multi-step interactions.

• Agents: Dynamic entities that decide which tools or methods to use automatically
to solve specific tasks. For example, agents can retrieve data from a database, use
an external API, or directly process text with an LLM.

• Retrievers: Specialized modules for semantic search, integrating large volumes of
data with language models. They support strategies like vector search, embedding-
based retrieval, and full-text search.

• Toolkits: Allow integration with external tools (e.g., APIs, databases, text files) to
enhance the system’s capabilities with additional contextual data.

Advanced Features

• Prompt Templates: Defines templates for creating robust and efficient prompts,
ensuring the model receives the necessary context for accurate responses. It supports
dynamic variables like {user_input} or {contextual_data}.

• Embeddings: Integrates embedding algorithms for semantic search and relevance
ranking. This enables precise comparisons between text snippets to retrieve mean-
ingful information from large datasets.

• Data Augmentation: Enriches model capabilities by integrating external data
sources, such as tables, documents, or APIs. For example, synthetic reports can be
enhanced with live data from external databases.

• Evaluation Tools: Provides mechanisms to assess the quality of generated responses,
including relevance, coherence, and adherence to prompt requirements.

3.4 Embeddings and Semantic Similarity
Embeddings are numerical representations of textual elements such as words, phrases, or

sentences, mapped into a high-dimensional space where semantic relationships are encoded.
These embeddings enable machines to perform mathematical operations to compare and
relate words based on their meanings, rather than just their syntax or form.

Chapter 3. Key Concepts 18

Figure 4 – Illustration of the embedding process and visualization. Words are mapped
into a vector space, encoded with semantic attributes, and visualized in two
dimensions.

Word-to-Vector Mapping

The table on the left of Figure 4 demonstrates how specific words (man, woman,
king, queen) are transformed into vectors based on multiple semantic dimensions such as
living being, gender, royalty, and plural. Each dimension captures an attribute of the word,
assigning numerical weights that represent its contribution. For example:

• Man: [0.6, −0.2, 0.8, 0.9, −0.9, 0.7, −0.7]

– High values for living being (0.6) and human (0.8), reflecting its connection to
humanity.

– A negative value for plural (-0.7), indicating its singular nature.

• Woman: [0.7, 0.3, 0.8, −0.7, 0.1, 0.5, −0.4]

– Similar to man but differs significantly in the gender feature (0.3), capturing
the contrast between masculine and feminine entities.

This transformation allows for precise mathematical operations to analyze word rela-
tionships.

Chapter 3. Key Concepts 19

Embedding Table

The middle table in Figure 4 highlights how embeddings encode subtle differences and
similarities. For instance:

• The vectors for king and queen are very similar in most dimensions, particularly
royalty (0.8 for both), but differ in gender (-0.1 for queen, -0.4 for king). This reflects
their analogous roles while capturing their distinct gender attributes.

• The relationships between man and woman show a similar pattern, with differences
in gender (0.3 vs. -0.2) but alignment in human (both 0.8).

Visualization in Two Dimensions

The right panel in Figure 4 visualizes the word embeddings in a simplified 2D space.
Words with closer semantic meanings, such as man and woman or king and queen, are
placed near each other. This proximity reflects shared features. Additionally:

• The relative positions of king and queen versus man and woman illustrate the
concept of analogical relationships. For example, the directional vector difference
between king and queen closely matches the difference between man and woman.
This property enables embeddings to solve analogies like:

"man" : "woman" :: "king" : "queen"

Applications and Benefits of Embeddings

By leveraging embeddings, machines can compute semantic similarity by measuring
distances or angles between vectors. For instance:

• The cosine similarity between king and queen would be high due to their vector
alignment in key dimensions such as royalty.

• Differences in attributes like gender or plural enable systems to differentiate subtle
nuances.

This capability powers applications like search engines, recommendation systems,
and natural language processing tools. By capturing both relationships and attributes,
embeddings bridge the gap between human language and computational understanding.

3.5 Similarity Metrics: Euclidean and Cosine Similarity
In the context of embeddings, similarity metrics are critical for quantifying the rela-

tionships between vectors. These metrics enable the understanding of how closely related

Chapter 3. Key Concepts 20

two vectors are in a multidimensional space, forming the foundation for various natural
language processing tasks. Two widely used similarity metrics are Euclidean distance
and cosine similarity, and they can be illustrated using the chart below.

Figure 5 – Visualization of embeddings for "man," "woman," "king," and "queen," along
with their respective clusters ("Gender" and "Royalty").

Euclidean Distance

Euclidean distance measures the straight-line distance between two points in the
embedding space. It is defined as:

dE (⃗a, b⃗) =
√√√√ n∑

i=1
(ai − bi)2

Where:

• a⃗ and b⃗ are vectors representing two embeddings.

• n is the dimensionality of the embedding space.

In the chart (Figure 5):

Chapter 3. Key Concepts 21

• The Euclidean distance between man and woman is smaller than the distance between
man and queen, reflecting their closer semantic relationship in terms of gender.

• Similarly, king and queen are positioned closer together within the "Royalty" cluster,
illustrating their shared semantic features.

Cosine Similarity

Cosine similarity evaluates the orientation of two vectors by measuring the cosine of
the angle between them. It is given by:

simcos(⃗a, b⃗) = a⃗ · b⃗

∥a⃗∥∥⃗b∥
Where:

• a⃗ · b⃗ is the dot product of the vectors.

• ∥a⃗∥ and ∥⃗b∥ are the magnitudes of the vectors.

In the visualization (Figure 5):

• Points closer within the same cluster (e.g., king and queen) have vectors that are
more aligned, resulting in a higher cosine similarity.

• Despite having a larger Euclidean distance, man and king might share a moderate
cosine similarity due to their alignment in certain dimensions like "human" or "leader."

Use of Both Metrics

While Euclidean distance captures the absolute differences between embeddings, cosine
similarity emphasizes their proportional relationships. The chart effectively demonstrates
both concepts:

• Euclidean Distance: Measures the physical separation between words, useful for
tasks like clustering and anomaly detection.

• Cosine Similarity: Captures semantic relationships and is widely used in recom-
mendation systems and semantic search.

Insights from the Visualization

• The "Gender" cluster groups man and woman, while the "Royalty" cluster groups
king and queen showing how embeddings encode shared features and relationships.

Chapter 3. Key Concepts 22

• The directional difference between man and woman is similar to the difference
between king and queen, illustrating how embeddings support analogy tasks.

• Words far from a cluster center can be identified as semantically distinct or less
related.

23

4 Methodology

The chosen methodology reflects the need to generate synthetic data that compensates
for the scarcity of real-world failure reports, as well as to optimize the retrieval process to
ensure that the Q&A system retrieves the most relevant information for complex queries.
The two-phased approach aligns with the primary objectives: expanding the dataset with
synthetic failure reports and enhancing the retrieval system through text reduction.

4.1 Phase 1: Synthetic expansion of the Reports Dataset
Given the limited availability of real failure reports, synthetic text generation serves as

a solution to augment the dataset. This phase is designed to create realistic scenarios that
mimic the characteristics of operational failures documented by Petrobras. The following
steps outline the methodology for this phase:

1. Initial study: Study the overall structures of the existing reports, design a few
templates around the structures. This step includes capturing common essential
fields on the reports dataset such as failure description, causes, and context, as well
as common structure elements such as sections, metrics, tables, etc.

2. Synthetic Report Generation: Use Large Language Models (LLMs) prompting
to generate texts and tables that fit the templates. It must produce reports that
align with the structural and contextual characteristics of real reports.

This phase enriches the dataset, thereby enhancing the Q&A system’s ability to respond
to complex queries that require detailed operational context.

4.2 Phase 2: Synthetic Q&A generation
For a more complete evaluation of the previous phases, as well as for the testing and

validation of the next phase, we need a big number of Q&A examples. Therefore, we must
produce our own dataset of questions and answers.

1. Q&A Generation: Using our dataset, generate some number n of question and
answer pairs for each passage of each report.

Chapter 4. Methodology 24

4.3 Phase 3: Report Reformulation System
With the aim of expanding the dataset even further, we propose an augmentation phase

where original and/or synthetic reports can be transformed with rewriting techniques, as
to convey equal information with slightly differentiated text.

1. Report Augmentation: Using either the existing reports and/or the synthetic ones
from the previous step, generate different versions of each, where the text conveys
the exact same information but with modified phrasings.

2. Quality Assessment: Generated reports undergo evaluation using metrics such as
readability, coherence, and similarity to real-world reports. This step may require
iterative adjustments to the model’s parameters to ensure the quality and relevance
of synthetic data for training the Q&A system.

4.4 Phase 4: Reduction of Prompt Size
This phase involves the development of a passages reduction algorithm to be deployed

between the retrieval and answer generation steps of SeSO. For that, we proposed the
following steps:

1. Implement passage extractive summarization (LIU; LAPATA, 2019) De-
velop a stand alone code capable of receiving a question and one passage and assessing
weather the passage should be shortened, if so by how much, and then proceeds to
detect and remove irrelevant text (for text) or columns (for tables) that won’t help
with the answer.

2. Quality Assessment: Compare different approaches and their results when it comes
to removing actually irrelevant information.

3. Deployment: Implement the passage processing code in the SeSO application.

The implementation leverages a layered retrieval approach comprising three main
components: Splitter, Embedder, and Scorer. Each component plays a crucial role in
efficiently identifying and prioritizing relevant information from lengthy documents. We
will go into more detail in the Development chapter, but here is a quick overview:

• Text Splitting (Splitter): Divides passage into smaller, manageable segments
using various splitting techniques like overlapping and non-overlapping methods to
preserve context.

• Embedding Creation (Embedder): Converts text segments into high-dimensional
vectors that encode semantic meaning for accurate comparison.

Chapter 4. Methodology 25

• Similarity Scoring (Scorer): Calculates the similarity between embeddings to
rank and retrieve the most relevant segments.

• Filtering (Filterer): Removes the least important segments from the passage.

By reducing the text in this layered approach, the system minimizes token consumption
and enhances response relevance, making the Q&A system more effective under constraints
of data volume and prompt size.

4.5 Evaluation Procedures
To ensure the effectiveness of the proposed methodology, a series of tests were conducted,

simulating real Q&A queries. These tests are designed to evaluate the retrieval system’s
accuracy, efficiency, and ability to handle various semantic relationships between queries
and document segments. The evaluation includes:

• Relevance Testing: The retrieval scores are analyzed to validate that the system
ranks relevant information higher than less pertinent content, ensuring that retrieved
data aligns with the user’s query.

• Efficiency of Retrieval: Token usage and prompt sizes are monitored to confirm
that the retrieval text reduction effectively optimizes performance while preserving
answer quality.

• Synthetic Report Validation: Responses generated using synthetic reports are
compared to those based on real data, assessing the reliability and quality of synthetic
data in supporting operational inquiries.

This structured methodology provides a comprehensive and replicable approach for
creating an efficient, data-optimized Q&A system. By following this design, Petrobras
gains an enhanced ability to address operational issues with quick, accurate responses,
even with limited access to real-world data.

26

5 Requirement Specification

This chapter outlines the updated requirements for the project, incorporating the
progress made in the development stages and the insights gained from the implementation
process. These requirements are structured into functional and non-functional categories,
reflecting the project’s current focus on enhancing the Q&A system through synthetic text
generation and retrieval optimization.

5.1 Functional Requirements
The system must fulfill the following functional objectives:

1. Synthetic Report Generation:

• Generate synthetic reports for the initial expansion of the dataset, simulating
real operational scenarios.

• Include diverse linguistic and structural variations to enrich the dataset with
broader coverage of failure scenarios and inspection contexts.

2. Data Augmentation and Reformulation:

• Implement text rewriting techniques to produce alternative versions of existing
synthetic and real reports, ensuring variability while preserving information
integrity.

• Create augmented datasets that expand the linguistic and structural diversity
of the training data.

3. Q&A Dataset Generation:

• Generate question-and-answer pairs from synthetic reports to facilitate the
evaluation and validation of the retrieval system.

• Develop questions that are contextually relevant and answers that are explicitly
derived from report passages.

4. Retrieval Summarization:

• Design and test summarization techniques to reduce the size of lengthy text
passages or tables without losing critical information.

• Integrate summarization methods as a foundational experiment for potential
future adaptation in the SeSO retrieval module.

Chapter 5. Requirement Specification 27

5. Evaluation and Deployment:

• Conduct thorough quality assessments of the generated synthetic data and
retrieval outputs, using predefined metrics.

• Prepare the synthetic text generation and summarization modules for seamless
integration into the SeSO framework.

5.2 Non-Functional Requirements
The non-functional requirements ensure the effectiveness, reliability, and usability of

the system beyond its core functionalities. These include evaluation and quality assessment,
which are detailed further below.

1. Data Integrity: All generated synthetic reports and reformulated texts must
preserve the original information’s integrity, ensuring no critical data is altered or
lost during generation or rewriting processes.

2. Scalability: The system should handle a minimum of 100 synthetic reports and
at least 200 to 500 question-and-answer pairs while maintaining computational
efficiency.

3. Diversity: The augmented datasets must exhibit high linguistic and contextual
variance, enhancing their value for training and evaluating the retrieval system.

4. Efficiency: API usage and computational operations must remain cost-effective and
optimized for large-scale text generation and summarization tasks.

5. Evaluation and Quality Assessment:

• Summarization Effectiveness: The summarization methods must achieve high
similarity between answers derived from summarized and full text segments.
Using a threshold of 0.9 cosine similarity as a benchmark, the summarization
should maintain critical information while effectively reducing text length.

• Synthetic Data Validation: Synthetic reports, including reformulated versions,
should undergo rigorous quality checks to ensure readability, coherence, and
relevance. Metrics such as accuracy and Mean Reciprocal Rank (MRR) will
evaluate the retriever’s performance across real and synthetic datasets. The
measure of these metrics with the new dataset must be better than or equal to
the one measured with the initial dataset.

• Statistical Analysis of Results: The system should demonstrate statistically
significant improvements in summarization and retrieval quality over baseline
methods, confirmed through tests such as chi-squared analysis.

Chapter 5. Requirement Specification 28

• Balanced Dataset Utilization: Both original and rewritten reports must con-
tribute equally to the retriever’s performance, ensuring no bias toward one
dataset version during testing phases.

29

6 Development

The development phase of this project was focused on implementing the synthetic
text generation process and optimizing the retrieval system to handle complex queries in
a data-constrained environment. This phase not only involved the technical integration
of various components, but also addressed the confidentiality challenges associated with
handling sensitive operational reports of Petrobras. The focus was on creating a solution
that could enhance the Q&A system’s ability to provide precise and context-rich answers,
even with limited access to real-world data.

Chapter 6. Development 30

6.1 Phase 1: Expansion of the Reports Dataset

6.1.1 Synthetic Report Generation for Retriever Optimization

As explained earlier, a significant part of the work involves expanding the database of
reports. This step aims to address an issue raised by Petrobras collaborators.

The Retriever of the system does not always manage to retrieve relevant passages for
a query, or it ranks them with low relevance, resulting in these passages being excluded
from the top positions by SeSO. For instance, for a question about inspections "on 100%
of the lines," the relevant passages are correctly identified. However, if the wording changes
to "on all the lines," these same passages no longer appear among the top results. The
creation of synthetic data seeks to address this issue by:

• Adding different linguistic variations;

• Enriching the database with scenarios and concepts less frequently found in the
original data.

For confidentiality reasons, the original Petrobras reports could not be used with public
LLM systems. A prior step was necessary to generate anonymized data. The traditional
Retriever, which uses the BM25 algorithm, does not require pre-training on data. Similarly,
the new approach using embeddings with OpenSearch does not require prior model training.
This allows the anonymized reports to be directly used with the Retriever, enabling direct
comparison of the results with those obtained using the real reports. We therefore divided
our generation into two parts:

• Implementation of Synthetic Reports for Offshore Inspection: Creation of a
new anonymized report database based on the real reports;

• Report Reformulation System: Creation of a report reformulation code that
takes reports as input and provides a reformulation of the reports as output.

6.1.2 Implementation of Synthetic Reports for Offshore Inspection

The objective of this process was to generate synthetic reports replicating the structure,
complexity, and content of real offshore inspection reports. These reports encompass
routine checks, integrity assessments, and failure scenarios, thereby enhancing the SeSO
system’s capabilities in retrieving contextually relevant responses to complex queries.

Template Analysis and Development

The process began with an in-depth analysis of 39 original reports provided by Petrobras.
This analysis aimed to identify recurring structures, critical data points, and essential

Chapter 6. Development 31

sections, leading to the classification of six distinct report models. Each model served as a
blueprint for synthetic report generation. The templates developed included the following
components:

• Initial Data Table: Details such as contract information, platform identifiers, and
field locations.

• Objectives and Operational Contexts: Comprehensive descriptions of inspection
goals and the operational environment.

• Detailed Inspection Procedure Descriptions: Step-by-step accounts of inspec-
tion methodologies and measurements.

• Integrity Analysis: Sections highlighting potential issues like corrosion, structural
damage, and wear.

• Recommendations and Preventive Actions: Actionable suggestions based on
identified issues.

Prompt Engineering

Custom prompts were crafted for each of the six identified report models to guide the
GPT-4o model in generating synthetic content aligned with the predefined templates. The
prompt engineering process involved:

• Crafting initial prompts tailored to each report model, specifying the required sections
and their content.

• Iteratively refining prompts based on the quality of the generated reports. Ad-
justments were made to ensure coherence, technical accuracy, and adherence to
operational standards.

• Incorporating additional constraints and examples in the prompts to simulate complex
scenarios, describe observed failures, and propose actionable recommendations.

The original reports were anonymized, retaining only their structural elements and
excluding any proprietary or sensitive content. GPT-4o was tasked with inventing the
context and data necessary to populate the synthetic reports, ensuring the results were
realistic but entirely fabricated.

Report Generation and Dataset Expansion

For each model, the GPT-4o model was tasked with generating at least 10 synthetic
reports, resulting in a total of 60 reports. The process involved:

Chapter 6. Development 32

• Generating reports using the refined prompts, ensuring diversity within each type
while maintaining consistency with the original templates.

• Applying data augmentation techniques to introduce variability. This included
modifying data points, altering scenario descriptions, and varying linguistic styles.

Figure 6 presents a visual summary of the categorized report types and their relevance
to the SeSO system. The categorization was designed to ensure adequate representation
and balance within the synthetic dataset.

Figure 6 – Categorized report types and their relevance. Image credit: Nicolas Marotti
Moreira.

6.1.3 Process of Report Generation

The generation of synthetic reports followed a systematic and reproducible workflow,
leveraging the templates and prompts detailed earlier while introducing specific steps to
ensure clarity and consistency for replication:

1. Analyzing and Structuring Input Data: The process began by examining 39
real offshore inspection reports to identify common structures, critical components,
and essential elements. These reports were categorized into the following types:

• Service Reports: Prototypical reports already processed in the dataset pre-
sentation, totaling 13 examples.

Chapter 6. Development 33

• Anomaly Reclassification Reports: Sets of recommendations and analyses,
including compiled inspection reports, with 5 examples.

• Measurement Reports: Reports focusing on specific components, totaling 2
examples.

• Intervention Reports: Technical intervention reports, such as shallow dive
operations, totaling 6 examples.

• Inspection Reports: Documents similar to anomaly reclassification reports
but focused on specific line inspections, totaling 7 examples.

• Miscellaneous Reports (categorized as Öthers)̈: Including descriptive
memorials, executive procedures, and periodic reports, totaling 6 examples.

Only structural details were retained, and sensitive information was anonymized.
Each report was categorized into one of these predefined models, as outlined in the
Template Analysis section.

2. Developing and Refining Prompts: For each report model:

• An initial prompt was designed based on the identified structure, specifying
required sections (e.g., Initial Data Table, Integrity Analysis).

• Example: A prompt for an integrity analysis report might include: "Generate a
report containing an Initial Data Table, followed by a detailed Integrity Analysis
highlighting corrosion and structural wear."

• Generated outputs were reviewed for alignment with the intended structure.
When outputs deviated, additional constraints or examples were incorporated
into the prompt, iteratively refining the instructions.

3. Generating Synthetic Reports: Using the refined prompts, GPT-4o was tasked
with generating synthetic reports. Parameters such as temperature = 0.7 and max
tokens = 800 were used to balance creativity and relevance. Synthetic reports were
either based on a single type, a mixture of types, or entirely invented models, ensuring
comprehensive coverage of possible scenarios. Each model required the generation of
at least 10 distinct reports, resulting in a total of 60 synthetic reports.

4. Ensuring Data Variability: To enrich the dataset:

• Scenario descriptions were varied to introduce diverse operational contexts (e.g.,
inspections in different environmental conditions).

• Data points, such as metrics and identifiers, were altered within plausible ranges
while maintaining consistency with the model’s structure.

Chapter 6. Development 34

• Linguistic variations, such as rephrased recommendations or different narrative
styles, were introduced to simulate multiple authorships.

5. Final Compilation: The resulting reports were reviewed to confirm they adhered
to the predefined structural templates and exhibited sufficient variability. The
anonymized structures ensured no proprietary data from the original reports was
carried into the synthetic dataset.

Chapter 6. Development 35

6.1.4 Example of a Synthetic Report Prompt and Generated Result

GPT Prompt:

Generate a synthetic offshore inspection report with the following structure:

- Title: "Inspection Report for Platform P-XX"

- Initial Data Table with key operational metrics (e.g., pressure, depth,

temperature)

- Context and Objectives of the inspection

- Detailed procedural descriptions with observations and data measurements

- Integrity analysis highlighting identified issues and providing

recommendations

- Annexes containing supplementary tables and material lists

Generated Report:

Inspection Report for Platform P-XX

Initial Data Table

Metric Value Unit

Operational Pressure 150 bar

Depth 3500 meters

Temperature 85 °C

Inspection Date 2024-11-23

Weather Condition Clear skies

Context and Objectives

The objective of this inspection was to assess the structural and operational integrity of Platform

P-XX. The inspection aimed to ensure compliance with safety standards and operational

requirements, as well as to evaluate the performance of key components, including anchoring

systems, pipelines, and mechanical structures. Specific attention was given to identifying potential

safety risks, ensuring uninterrupted operation, and maintaining compliance with industry regulations.

Detailed Procedural Descriptions

Step 1: General Visual Inspection

A complete visual inspection of all accessible areas of Platform P-XX was carried out. The

inspection began with a visual examination of the topside structures, including the helideck,

accommodation modules, and mechanical components. Observations noted during this step

included minor surface rust on several joints, which will require further monitoring but does not pose

an immediate threat.

Step 2: Subsea Inspection with ROV

An ROV was deployed to assess subsea components, with a particular focus on the integrity of

Figure 7 – Generated synthetic report for Platform P-XX.

Chapter 6. Development 36

6.1.5 Integration of Checklist Tables in Synthetic Reports

The integration of checklist tables into synthetic reports mirrors the detailed format
of the original Petrobras reports, which used structured questions to evaluate inspection
components.

Purpose of Checklist Tables

• Standardize inspection data collection.

• Support query-based retrieval in the SeSO system.

• Highlight anomalies for further review.

Checklist Tables:

Figure 8 – Generated Checklist Tables

The checklist includes:

• Questions like "Was cleaning performed?" with yes/no answers.

• Corrective measures and observations.

Chapter 6. Development 37

• Enhancement of structured queries and anomaly detection.

6.1.6 Iterative Generation of Large Tables

Some synthetic reports include extensive tables, iteratively generated for realism. This
approach ensures consistency across various sections like tension, coating measurements,
and structural analyses.

Generating process

• Iterative prompts guided GPT-4 to fill templates.

• Categories like "Measurements" and "States" informed structure.

Large Tables:

Figure 9 – Iteratively Generated Large Tables

Chapter 6. Development 38

6.1.7 Number of Reports Generated and Justification

A total of 60 synthetic reports were generated during this process, compared to the 39
original Petrobras reports analyzed. This number was chosen to provide nearly double the
volume of data, ensuring diversity and robustness for the training and evaluation of the
SeSO system.

The increased number of synthetic reports allowed for greater variability in operational
scenarios, including:

• Rare failure cases,

• Routine inspections, and

• Detailed integrity analyses.

This ensured that the SeSO system could handle a wide range of queries and situations
effectively.

6.1.8 Anonymization Strategy and Justification

To safeguard proprietary information and comply with confidentiality requirements,
the synthetic reports were carefully anonymized. Key steps in the anonymization process
included:

• Generic Identifiers: Specific platform names, equipment, and operational incidents
were replaced with generic identifiers (e.g., "Platform P-XX").

• Fabricated Data Points: All numerical and operational metrics were fabricated
based on predefined distributions and ranges derived from an analysis of the original
reports, ensuring no direct replication.

• Abstraction of Context: Operational details were generalized to reflect plausible
scenarios without revealing specific strategies or sensitive practices.

6.1.9 Decision to Exclude Images

Images and visual elements were deliberately excluded from the synthetic reports.
This decision was based on the functionality of the SeSO system, which focuses on text-
based retrieval. Including images would not enhance the system’s performance and could
introduce unnecessary complexity in report generation. Instead, the reports emphasize
textual descriptions and detailed tabular data, aligning with the retrieval-focused design
of the SeSO system.

Chapter 6. Development 39

6.1.10 Technical Challenges and Solutions

The development process encountered several technical challenges, particularly related
to the token limitations of LLMs and the need to maintain high-quality input data.
Addressing these challenges involved:

• Managing Prompt Size Limitations: LLMs have constraints on the number of
tokens they can process in a single prompt. To mitigate this, the retrieval system was
optimized to reduce input size through retrieval text reduction, allowing the most
relevant content to be prioritized and ensuring that essential context was preserved.

• Optimizing Embedding Computation: Given the need to process large volumes
of text, the Embedder module was adjusted to balance computational efficiency and
accuracy. Techniques such as batch processing and vector caching were implemented
to minimize memory consumption without sacrificing the quality of the similarity
analysis.

• Ensuring Data Security during Testing: Given the sensitivity of Petrobras’s
operational reports, data security was a primary concern during testing phases. All
synthetic reports generated externally were validated for confidentiality before being
integrated into the testing process, ensuring that no sensitive details were exposed
during the iterative development process.

6.1.11 Testing and Validation

Testing and validation were integral to ensuring that the system met the stringent
requirements of Petrobras’s Q&A operations. This phase involved simulating realistic
queries and measuring the retrieval system’s performance using metrics such as relevance,
accuracy, and response time:

• Relevance Testing: Synthetic and real reports were used to evaluate the retriever’s
ability to rank the most relevant information higher, ensuring that responses aligned
closely with the user’s questions.

• Quality Assessment of Synthetic Reports: The synthetic reports were evaluated
against real reports using predefined metrics, including coherence, readability, and
structural similarity. This step validated that the generated reports provided a
realistic basis for improving the Q&A system’s training.

• Performance under Constraints: Special focus was placed on evaluating the
system’s performance when operating close to the LLMs’ token limits, ensuring that
the retrieval text reduction approach maintained response quality even when input
data was condensed.

Chapter 6. Development 40

The development phase concluded with a validated retrieval system capable of handling
Petrobras’s complex operational queries, backed by a robust methodology for generating
and leveraging synthetic data to overcome the challenges posed by data scarcity.

Chapter 6. Development 41

6.2 Phase 2: Synthetic Q&A Generation
It is essential we create a sufficient amount of Question and Answers pairs extracted

from the dataset we have. This would allow for the testing of the retriever, and the testing
of the r and summarizer from the next phase in this project.

6.2.1 Naive Approach

In the rewriting phase, we created a system that changes passages into rewritten
versions using specific prompts. For this approach, we reused that system but modified
it to work differently. Instead of rewriting passages, we changed the prompt to create
three questions and answers for each passage. This way, the system now generates three
question-and-answer pairs for every passage in each report. This simple change makes it
easier to extract useful information and organize it in a way that is more interactive and
helpful for users.

GPT Prompt

prompt_template = """

Voce e uma IA projetada para gerar pares de perguntas e respostas.

Abaixo voce encontra um trecho retirado de um relatorio.

O assunto da pergunta deve estar contido no trecho, e deve ter especificacoes

relacionadas ao contexto geral.

A resposta deve estar contida no trecho.

Nao invente informacoes, use apenas dados explicitamente citados no texto.

Caso a pergunta gerada nao seja respondida no texto, a resposta deve ser "O

trecho encontrado nao responde a pergunta".

Formato de saida:

Pergunta 1: [Sua pergunta aqui]

Resposta 1: [Sua resposta aqui]

Pergunta 2: [Sua pergunta aqui]

Resposta 2: [Sua resposta aqui]

(continue esse formato ate a Pergunta 3 e a Resposta 3)

Trecho:

{{text}}

"""

Chapter 6. Development 42

Results

Unfortunately, the results of this approach fell short of expectations. A significant issue
was that many of the generated questions explicitly referenced the context in which the
LLM was working. For example, they often included phrases such as "In the text below..."
or "According to the passage..." that directly acknowledged the presence of the input
text. This style of questioning is fundamentally flawed for our purposes, as it reveals the
existence of the passage or report, making it clear that the question is tied to a specific
input text.

The goal of this system is to create questions that appear natural and self-contained,
as if they were being asked without any prior knowledge of the passage or even the report
itself. Questions should be framed in a way that reflects a broader understanding or
curiosity about the subject, without directly pointing to or referencing the source text.
This failure to decouple the generated questions from the input passage undermines the
usability of the output for scenarios where the questions are meant to stand independently
or simulate a real-world user query. Consequently, this aspect of the approach requires
significant refinement to meet the desired standards.

6.2.2 New Approach

With that in mind, we have successfully refined the prompt to better address this
issue. Our adjustments now guide the LLM toward generating the desired output without
inadvertently reinforcing undesired behaviors. Previously, including instructions like "don’t
reference the text directly" often led to the opposite effect; ironically, highlighting that
possibility made the LLM more likely to do exactly that.

GPT Prompt

After many iterations of editing the prompt to fine tune the generation, we have:

template_prompt = """

Voce e uma IA projetada para gerar pares de perguntas e respostas.

Abaixo voce encontra um trecho retirado de um relatorio.

O assunto da pergunta deve estar contido no trecho, e deve ter especificacoes

relacionadas as infos gerais do relatorio.

Imagine que a pergunta nao sabe a principio qual relatorio tem a resposta,

portanto use as infos gerais do relatorio para dar especificidade a que

relatorio a pergunta esta tratando.

A resposta deve estar contida no trecho, nao nas infos gerais. As infos gerais

sao apenas de referencia a resposta esta no trecho.

Nao invente informacoes, use apenas dados explicitamente citados no texto.

A pergunta gerada deve ter resposta no trecho.

Chapter 6. Development 43

A formulacao da pergunta nao pode referenciar o texto diretamente.

A pergunta deve ser altamente tecnica e generica, portanto evite numeros

especificos.

A resposta deve ser curta, e priorizar respostas de numeros, datas e medidas

na resposta se possivel.

Formato de saida:

Pergunta 1: [Sua pergunta aqui]

Resposta 1: [Sua resposta aqui]

Pergunta 2: [Sua pergunta aqui]

Resposta 2: [Sua resposta aqui]

Pergunta 3: [Sua pergunta aqui]

Resposta 3: [Sua resposta aqui]

Pergunta 4: [Sua pergunta aqui]

Resposta 4: [Sua resposta aqui]

Pergunta 5: [Sua pergunta aqui]

Resposta 5: [Sua resposta aqui]

Nao diga mais nada alem das perguntas e das respostas. Sem resumos ou analises

iniciais ou finais.

Infos gerais do relatorio:

{{context}}

Trecho:

{{text}}

"""

Results

In Figure 10 we can see some sample results to exemplify the resulting table of Q&A.

Chapter 6. Development 44

Figure 10 – Example rows from the generated Q&A dataset

Chapter 6. Development 45

6.3 Phase 3: Report Reformulation System
The aim of the project was to create a code that automates the rewriting of texts and

tables in documents, making this process usable by members of the Petrobras team. This
code analyzes text and table elements while ignoring images. The main goal is to rewrite
these elements meaningfully, while preserving the integrity of the information. The code
developed is divided into three main steps, described below.

6.3.1 Analyze the Code from Petrobras Teams

The first step in implementing this project involved a detailed analysis of SeSO, the
system already developed by Petrobras, to understand its operation and determine how
the rewriting code could be integrated. The SeSO code was shared as a Git repository and
consists of the following components:

• SeSO: Website code

• SeSO: Code for training dataset generation

• SeSO: Code for the ranker

• SeSO: Code for the reader

• TBE: Code for handling tables

• Experimentos Busca Sementica: Test code

For developing the document rewriting code, an RAG model from the "Experimentos
Busca Sementica" project was used as inspiration. The elements reused in the code include:

• The function for processing PDF files in a given folder.

• The function creates a Retriever from the text and table elements.

• The function that provides an answer for a given question using a Retriever.

6.3.2 Access the Virtual Machine and Set Up the Working Environment

The developed code combines several computationally intensive operations, such as
extracting large amounts of data, making calls to GPT models that require external APIs,
and using a lot of memory for batch processing and generating and manipulating structured
PDF documents. For these reasons, Petrobras provided us with virtual machines called
TPN.

Chapter 6. Development 46

Since several modules and libraries were needed to run the code, Docker was used.

Dockerfile:

• Python 3.11 usage

• Installation of required libraries: unstructured_inference (for PDFs)

• Working environment configuration: /usr/src/code

docker-compose.yml: orchestrates container deployment
requirements.txt:

• Document manipulation: unstructured, pdfminer.six, fpdf2, langchain ;

• OCR and image extraction: unstructured_pytesseract, pi_heif

• Vector databases and artificial intelligence: langchain, langchain_chroma

• ata model management: pydantic

6.3.3 Writing of the code

The script processes PDF files located in a specific directory, extracts their content
(text and tables), and then rewrites this content using a function (rewrite_texts) that
calls an API (via an API key defined in the script). The modified content is then saved in
a new PDF file in an output directory.

Figure 11 – Global squeme of the rewriting process

Processing of PDFs in input

The function process_input_pdfs(path: str, file: str) -> tuple[list, list]
takes a pdf as input, merges it into separate elements and returns them as two separate
lists.

Chapter 6. Development 47

Figure 12 – Steps to process a pdf given in input

Partitioning
The partition_pdf function is used to segment the pdf file into structured blocks

(text and tables) according to titles, while configuring size limits to group or divide text
contents. By dividing documents into smaller and more defined pieces, it becomes easier to
process them with natural language processing tools or other AI algorithms because these
tools work better on organized data of appropriate size. This also makes it easier to manage
the different sections of the document (tables and text) for differentiated treatment.

raw_pdf_elements = partition_pdf(

filename= path + file,

Unstructured first finds embedded image blocks

extract_images_in_pdf=False,

Use layout model (YOLOX) to get bounding boxes (for tables) and find

titles

Titles are any sub-section of the document

infer_table_structure=True,

Post processing to aggregate text once we have the title

chunking_strategy="by_title",

Chunking params to aggregate text blocks

Attempt to create a new chunk 3800 chars

Attempt to keep chunks > 2000 chars

max_characters=4000,

new_after_n_chars=3800,

combine_text_under_n_chars=2000,

image_output_dir_path=path,

)

Chapter 6. Development 48

Classification of extracted elements
This part of the code goes through the elements extracted from the PDF (raw_pdf_elements)

and classifies them into two categories: "table" type elements and "text" type elements,
according to their type, then adds them to a categorized_elements list as objects
containing the type and associated text.

Categorize by type

categorized_elements = []

for element in raw_pdf_elements:

if "unstructured.documents.elements.Table" in str(type(element)):

categorized_elements.append(Element(type="table",

text=str(element)))

elif "unstructured.documents.elements.CompositeElement" in

str(type(element)):

categorized_elements.append(Element(type="text", text=str(element)))

Code of rewriting

This part of the code reformulates text elements and tables from a document, retaining
their content while changing their wording.

Figure 13 – Step of rewriting after division in pieces

Chapter 6. Development 49

Creation of the prompt
The prompt was to allow for the rewriting of texts in the given input language. The

following requirements were followed (CORBASSON, 2023) :

Role Rewriting Assistant
Context Rewrite the element provided as input (table or text) to expand a

database and allow the LLM using it to provide more context to
the data and better understand it.

Format Format and language similar to the one provided as input. Use of
synonyms, utilization of synonyms.

Tone Same tone as the one used in the input report.
Constraints Each sentence must be different. Do not leave any identical sentences.

The prompt was made in English to be consistent with the code which is entirely
written in English. The following prompt came out:

prompt_text = """Voc um assistente especializado em reformular textos

com o objetivo de ampliar um banco de dados \

que ser utilizado por um modelo de linguagem (LLM). \

Seu papel reescrever trechos de texto fornecidos, garantindo que:

O texto seja reformatado para oferecer maior contexto e clareza, a

linguagem seja ajustada para enriquecer \

a compreenso do modelo, garantindo respostas mais relevantes e precisas.

As informaes originais devem ser mantidas, sem alterar os dados

apresentados.

Reformule frases para que nenhuma permanea idntica ao original, alterando

sua estrutura gramatical, \

ordem das palavras e vocabulrio. Sinnimos apropriados devem ser utilizados

para evitar repetio e criar diversidade no texto.

Todas as porcentagens presentes no texto devem ser convertidas em fraes

expressas por palavras.

Exemplos: ’20%’ deve ser reescrito como ’um quinto’. ’50%’ deve ser

alterado para ’metade’. ’100%’ deve ser substitudo por ’todos’. \

As frases devem ser adaptadas para explorar diferentes estilos de escrita,

respeitando o tom e o formato originais.

Preserve a estrutura e o tom geral do texto fornecido.

Respeite as instrues especficas de estilo ou organizao , caso estejam

presentes.\

Fragmento de texto: {element} """

Chapter 6. Development 50

Call of the LLM model
This prompt is then given to the Chat GPT API configured upstream. The gpt-4o-mini

model was chosen to generate a large amount of data at low cost for this amount and with
decent speed and text creation and calculation performance.

The temperature value that controls how the model chooses among its possible options
to generate a response was chosen to be 0.7. This ensures that the model uses synonyms
while respecting the meaning and structure of the original text and introducing clear
adjustments such as converting numbers to letters. Text Application

The function applies the summary string to each element of text extracted from
documents and produces a reformulated version.

Once the template is configured, it is applied to all text and table elements extracted
in the first step.

LangChain’s batch method allows you to process a set of inputs in parallel, by
successively applying a prompt, a model, and a parser to generate results.

In this code:

• The prompt is used to structure or guide the model’s responses;

• The model generates the summaries based on the instructions provided by the
prompt;

• The parser StrOutputParser() formats and extracts the results into readable text.

In practice, this pipeline is applied to data (tables and texts) via summarize_chain us-
ing batch, multiple elements are summarized simultaneously, with a maximum concurrency
limit (max_concurrency = 5) to optimize speed while controlling processing load.

Summary chain

model = ChatOpenAI(model="gpt-4o-mini", temperature=0.7, api_key=API_KEY)

summarize_chain = {"element": lambda x: x} | prompt | model |

StrOutputParser()

Apply to tables

tables = [i.text for i in table_elements]

table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})

Apply to texts

texts = [i.text for i in text_elements]

text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})

Chapter 6. Development 51

Creation of the pdf
Then, the FPDF library is used to generate an output pdf from the text reformulations

obtained in the previous step.The text has been maintained with a similar font type and
size to the original report. The cell width is set to 100 (cell_width = 100). For each text
in the text_summaries list, we position the cell horizontally in the center of the page by
calculating the margin necessary to center and we add a text cell with several lines, with
an alignment centered inside the cell (align="C"), a width of 100, and a row height of 10.

#create a file pdf

pdf = FPDF()

pdf.add_page()

pdf.set_font("Arial", size=12)

cell_width = 100

for text in text_summaries:

pdf.set_x((pdf.w - cell_width) / 2)

pdf.multi_cell(cell_width, 10, text, align="C")

Writing the test code

Selection of the Q&A dataset
All questions and answers generated in the previous phase could not be used during

the testing phase due to the high cost associated with using the ChatGPT API. We
therefore decided to limit the dataset to 66 questions and answers. The imbalance observed
in the questions selected for reporting is due to initial testing where running the code
with the full set of questions revealed too high a cost. As we will see later, this reduced
number of questions nevertheless proved sufficient to draw relevant conclusions. Below is
the breakdown of the questions selected for each report.

Report name Number of questions relating to this report
Detailed_Relatorio_1 35
Detailed_Relatorio_2 2
Detailed_Relatorio_3 2
Detailed_Relatorio_4 2
Detailed_Relatorio_5 2
Detailed_Relatorio_6 2
Detailed_Relatorio_7 2
Detailed_Relatorio_8 2
Detailed_Relatorio_9 15
Detailed_Relatorio_10 2
Total 66

Input and Output of the program

Chapter 6. Development 52

• input: .txt file containing the 66 questions ;

QUESTION_1 = "Qual foi o foco da inspeo realizada na Plataforma P-XX aps

15 anos de operao contnua ?"

QUESTION_2 = "Em que tipo de ambiente a Plataforma P-XX est operando?"

QUESTION_3 = "Quais aspectos da Plataforma P-XX foram avaliados durante a

inspeo?"

QUESTION_4 = "Quanto tempo a Plataforma P-XX esteve em operao antes de

ser inspecionada?"

QUESTION_5 = "Quais condies severas a Plataforma P-XX enfrenta em suas

operaes?"

• output: “Respostas” folder completed with 66 files. 1 file contains the answer and
the chunks selected by the Retriever.

Pergunta 1: Qual foi o foco da inspeo realizada na Plataforma P-XX aps 15

anos de operao contnua ?

Resposta: O foco da inspeo realizada na Plataforma P-XX aps 15 anos de

operao contnua foi a avaliao abrangente da integridade estrutural,

funcionalidade dos sistemas de ancoragem e a durabilidade dos

revestimentos protetores.

\end{itemize}

Trechos selecionados pelo Retriever:

Trecho 1:

Relatorio de Inspecdo para a Plataforma P-XX

Contexto Geral

A inspecdo realizada na Plataforma P-XX, apds 15 anos de operacdo

continua, teve como foco a avaliacdo abrangente

Building of the Retriever agent

• Processing of the pdfs

• Creation of the prompt: a prompt was created to summarize each chunk that the
Retriever will receive ;

prompt_text = """You are an assistant tasked with summarizing tables

and text. \

Give a concise summary of the table or text. Table or text chunk:

{element} """

Chapter 6. Development 53

• Definition of the model: The gpt-3.5-turbo model is chosen and used via a chain
to execute the summaries.

• Applications of the summary string to text and table elements

• Vector configuration and storage: Data is converted into dense vectors through
embedding models so that similar elements are spatially close in the vector space.
When a query is converted to vector, vectorstore searches for the closest vectors in
space. Once a query finds a relevant vector in the vectorstore, It is often necessary
to access the original document to provide a useful or complete answer, these are
present in the docstore.

The vectorstore to use to index the child chunks

vectorstore = Chroma(collection_name="summaries",

embedding_function=OpenAIEmbeddings(api_key=API_KEY))

The storage layer for the parent documents

store = InMemoryStore()

id_key = "doc_id"

The retriever (empty to start)

retriever = MultiVectorRetriever(

vectorstore=vectorstore,

docstore=store,

id_key=id_key,

)

Selection of the evaluation dataset

To test the performances of the rewriting algorithm, we created three report datasets:

• dataset 1: reports selected from those created in step 1 (10 reports)

• dataset 2: 10 rewrites of reports from dataset 1 (10 reports)

• dataset 3: dataset 1 + dataset 2 (20 reports)

The report dataset was limited to 10 reports to be able to execute the code without
generating too much cost. This quantity was considered sufficient to test the performance
of the tool created. Several reports were tested and the 10 reports were kept which allow
the creativity and calculation capacity of the rewriting code to be tested.

Chapter 6. Development 54

Measuring tools

To measure the Retriever’s certainty, we used the accuracy measure. This tool allows
you to evaluate the number of correct answers provided by the Retriever, a correct answer
adds a weight of 1 and a wrong answer 0:

accuracy = number of questions with correct answers
number of questions asked

For more precision in the measurements, these tools which have not been used at our
level are also interesting and could be explored in a more in-depth analysis of performance:

For more precision in the measurements we also evaluated the MRR. This measurement
takes into account the position of the relevant extract in the extracts selected by the
Retriever. Thus, a correct answer provided by an extract appearing in the first position
has greater weight than one based on an extract appearing in the second position:

MRR = 1
Q

Q∑
i=1

1
pi

1

Q: total number of questions
p1i: position of the correct result for question i

Results obtained

After rewriting, taking into account the 10 reports of dataset 1, we obtain the following
statistics: 49% of the words are identical and 51% are different. 74% of the numbers have
been written in words or replaced by their fractional equivalent.

After running the code for the three datasets, the following results were obtained:

Dataset 1 Dataset 2 Dataset 3
Accuracy 0.68 0.61 0.70
MRR 0.58 0.54 0.62

In the tests carried out, 44% of the texts selected by the Retriever were the rewritten
versions and 66% of the time the original versions. There is therefore a tendency to take
more consideration of the original versions but this remains quite balanced. In 57% of the
time, the first extracts selected are the originals and in 43% the rewrites, which shows a
certain balance in the treatment of the two versions.

Observations

Several interesting behaviors were noticed during the rewrite.
The ChatGPT model often provides overly detailed responses, extracting excessive

information from reports when a concise answer of a few words would suffice. For instance,
answers that could be summarized in 5 words sometimes extend to 100. Dataset 3’s

Chapter 6. Development 55

performance is inconsistent, matching Dataset 2’s responses 33% of the time and Dataset
1’s 25% of the time, making it unpredictable whether the output will be rewritten or remain
unchanged. While Dataset 2 consistently writes out numerical values (90% of cases), Dataset
3 alternates between fully written-out numbers and providing their numerical equivalents
in parentheses. Occasionally, Dataset 3 selects the wrong excerpt initially but corrects itself
later, or it fails to pick the correct excerpt altogether—cases where Dataset 1 performs
better. Additionally, Dataset 3 sometimes introduces errors in numerical rewriting, such
as transforming "6" into "one-sixth," resulting in inaccuracies despite correctly identifying
the targeted text.

The results remain inherent to the chosen Q&A dataset and the analysis could be
deepened by exploring other types of questions. However, this study has already highlighted
some interesting behaviors during the rewriting process, revealing which practices to avoid
and which to favor to improve performance.

Thus, the results obtained confirm the strong and weak points of Chat GPT reported
during a business test carried out by the Harvard Business School and the MIT Sloan
School of Management. (QUISQUATER, 2023) Indeed, Chat GPT would be good for
innovation and creation but bad for problem solving. The use of Chat GPT in reformulation
and in the creation of synthetic data is understandable and the results relevant. However,
when it comes to numbers, their transformation does not require creativity but simply
calculation. For example, 85% should just be replaced by 17/20 and 100% by "all". A simple
replacement calculation algorithm can take care of this task, using regular expressions.

Chapter 6. Development 56

6.4 Phase 4: Text Reduction System
In this phase, we focus on transforming large, complex report passages into concise

and contextually relevant summaries tailored to a user’s query. Figure 14 illustrates how
our system works:

• Splits large text passages into smaller, manageable segments, and questions into
query splits, like key words of the question.

• Embeds these segments and queries into a semantic vector space to capture their
underlying meaning.

• Scores the segments by comparing their embeddings with those of the queries,
identifying the most relevant ones.

• Filters out less useful segments to ensure the final returned text is both relevant
and succinct.

This layered approach ensures that users receive targeted, context-rich information
drawn from extensive and detailed source documents.

Figure 14 – Diagram explaining the text reduction basic architecture (Figure 14).

6.4.1 Text Splitting (Splitter)

The splitter preprocesses lengthy documents into smaller, structured segments (queries
for questions and keys for document sections). By reviewing Figures 15, 16, 17, and 18, we
can see the various techniques considered:

Chapter 6. Development 57

• Non-Overlapping Splits: The document is divided into equal-length chunks
without overlap (Figure 15).

• Overlapping Splits: Adjacent segments share content to maintain continuity
(Figure 16).

• Abstract Splitting: Dynamically identifies logical boundaries (Figure 17).

• Table Splitting: Treats each table column as a chunk, with headers as keys (Figure
18).

Figure 15 – Splitting a text into non-overlapping chunks.

Figure 16 – Splitting a text into overlapping chunks.

Figure 17 – Splitting a text into abstract key chunks.

Chapter 6. Development 58

Figure 18 – Splitting a table into columns.

Our Approaches

• Abstract splitting for queries.

• Overlapping splits for lengthy text passages for the keys, and no overlap for the
values.

• Table splitting for tabular data. The header name is the key, the whole column is
the value.

Pseudocode for Splitting

FUNCTION SplitText(text, max_size, overlap_ratio):
words ← Split text into words
non_overlap_chunks ← partition words into size max_size
overlap_chunks ← []

FOR each chunk in non_overlap_chunks (except first and last):
overlap_chunks ← combine partial segments

from previous and next chunks
to retain context

RETURN non_overlap_chunks, overlap_chunks

6.4.2 Embedding Creation (Embedder)

Once we have queries and segments, we convert them into numerical embeddings.
These embeddings represent the semantic meaning of the text, enabling effective similarity
comparisons.

• Both segments and questions are formatted before embedding (e.g., “query: segment”
for queries).

Chapter 6. Development 59

• We use pre-trained language models (e.g., OpenAI embeddings (INTRODUCING. . . ,
2022)) to convert the text into high-dimensional vectors.

Figure 19 – Embedding comparing example (Figure 19).

Pseudocode for Embedding Preparation

FUNCTION GetEndpoints(queries, keys, formats):
FOR each query in queries:

FOR each key in keys:
FOR each format in formats:

(formatted_query, formatted_key) = format(query, key)
store endpoints and endqueries

RETURN endpoints, endqueries

FUNCTION EmbedText(text_list):
RETURN embeddings from model

6.4.3 Similarity Scoring (Scorer)

We measure relevance by comparing query embeddings with segment embeddings. We
use 1 - cosine similarity since it is common and effective in semantic search contexts.

Chapter 6. Development 60

Pseudocode for Scoring

FUNCTION ScoreKeys(queries, keys, formats, Embed, ScoreFunction):
endpoints, endqueries ← GetEndpoints(queries, keys, formats)
endpoints_emb ← Embed(endpoints)
endqueries_emb ← Embed(endqueries)

scores ← compute raw similarity (dot product)
scores ← ScoreFunction(scores) # e.g., 1 - cosine similarity

best_scores_per_key ← find best match across queries and formats
RETURN best_scores_per_key

6.4.4 Filtering (Filterer)

After scoring, we filter the segments to return only the most relevant ones. We do this
by setting a maximum token size threshold and including only the top segments until we
reach that limit.

Pseudocode for Filtering

FUNCTION FilterSegments(keys_scores, original_text, max_ratio):
max_tokens = CountWords(original_text) * max_ratio
ordered = Sort keys_scores by score

FOR each threshold in ordered:
candidate_text = segments with score <= threshold
IF word_count(candidate_text) > max_tokens:

candidate_text = segments with score < threshold
BREAK

RETURN candidate_text

6.4.5 Example Workflow

1. Input: User query: “A linha de ancoragem #10 da plataforma já apresentou defeitos?”

2. Splitter: Splits a passage into overlapping segments:

• Segment A: “A linha #10 apresentou falhas de corrosão,...”

• Segment B: “...porém a linha #1 não demonstrou nenhum tipo de defeito.”

3. Embedder: Generates embeddings for each segment and the query.

4. Scorer: Computes similarity scores and retrieves Segment A, ranking it highest for
its semantic relevance.

Chapter 6. Development 61

5. Filterer: Removes less useful segments, in this case B, reducing the text size.

6.4.6 Integration into Summarization

This summarization function brings all steps together, using only pseudocode at a high
level.

Pseudocode for Summarization

FUNCTION SummarizeText(embedder, question, formats, text_extract):
queries ← SplitText(question, small_max_size, no_overlap)
keys, keys_overlap ← SplitText(text_extract, larger_max_size, some_overlap)

keys_scores ← ScoreKeys(queries, keys_overlap, formats, embedder, CosineSim)
summarized ← FilterSegments(keys_scores, text_extract, max_ratio=0.5)

RETURN summarized

6.4.7 Evaluation

To assess the effectiveness of the summarization approach in preserving essential
information for accurate question-answering, we conducted three distinct experiments
using the previously generated Q&A dataset. Each experiment varied in the method of
scoring and selecting text segments for summarization. The following subsections outline
the experimental conditions and the corresponding evaluation metrics.

Experimental Conditions

1. Random Scoring (Control): In this baseline experiment, each text segment key
was assigned a random score between 0 and 1. This random assignment simulates an
uninformed selection process, reducing the text length by approximately 50%. The
purpose of this control is to establish a performance benchmark against which more
sophisticated methods can be compared.

2. Direct Embedding (No Formatting): This experiment involved scoring text
segments based on the cosine similarity between the embeddings of the question and
each key segment. Specifically, we computed embed({query}) and embed({key})
for each pair, without any additional formatting. This approach leverages semantic
similarity to identify and retain the most relevant segments related to the question.

3. Query-Enhanced Embedding (With Formatting): Building upon the second
experiment, this approach introduced a string formatting step. For each key segment,
we compared embed("query: key") with embed({key}). The inclusion of the query

Chapter 6. Development 62

within the embedding input aims to provide contextual information, potentially
enhancing the relevance of the selected segments by explicitly linking them to the
question.

The pseudocode for the main evaluation routine is presented below:

PSEUDOCODE: MAIN EVALUATION ROUTINE

load Q&A dataset from file
initialize semantic embedder
initialize output structure

for each (text_segment, question) in dataset:
summarized_segment = summarize(text_segment, question)

answer_full = generate_answer(text_segment, question)
answer_summary = generate_answer(summarized_segment, question)

vec_full = embed(answer_full)
vec_summary = embed(answer_summary)
similarity = cosine_similarity(vec_full, vec_summary)

store (
original_text,
question,
summarized_text,
answer_full,
answer_summary,
similarity

)

Figure 20 – Pseudocode outlining the main evaluation routine for comparing answers
derived from full and summarized texts.

Chapter 6. Development 63

Results

Threshold Justification

Figure 21 – Sample of the generated CSV results, including text, question, summarized
text, answers, and similarity scores.

The similarity threshold of 0.9 was chosen based on manual inspection of the results
presented in Figure 21. It was observed that pairs with similarity scores below 0.9 generally
exhibited significant discrepancies in meaning between the answers derived from the full and
summarized texts. While the threshold is not absolute and some exceptions exist, it serves
as a practical benchmark to differentiate between effective and ineffective summarizations.
This threshold allows for a clear and consistent measure to evaluate the retention of crucial
information necessary for accurate question-answering.

Chapter 6. Development 64

Experiment 1: Random Scoring (Control)

Figure 22 – Similarity score distribution for Random Scoring. The 0.9 threshold is indi-
cated.

Figure 23 – Count of Q&A pairs above and below the 0.9 threshold for Random Scoring.

Chapter 6. Development 65

Experiment 2: Direct Embedding (No Formatting)

Figure 24 – Similarity score distribution for Direct Embedding (No Formatting). The 0.9
threshold is shown.

Figure 25 – Count of Q&A pairs above and below the 0.9 threshold for Direct Embedding.

Chapter 6. Development 66

Experiment 3: Query-Enhanced Embedding (With Formatting)

Figure 26 – Similarity score distribution for Query-Enhanced Embedding. The 0.9 thresh-
old is marked.

Figure 27 – Count of Q&A pairs above and below the 0.9 threshold for Query-Enhanced
Embedding.

Chapter 6. Development 67

The results from the three experiments are summarized as follows:

• Random Scoring (Control): 62.5% of the Q&A pairs achieved similarity scores
above the 0.9 threshold, while 37.5% fell below. This indicates that random segment
selection slightly favors "good" summarizations, albeit without any informed selection
criteria.

• Direct Embedding (No Formatting): A significant improvement is observed,
with 83% of the Q&A pairs surpassing the 0.9 similarity threshold and only 17%
falling below. This demonstrates that leveraging semantic embeddings for scoring
substantially enhances the quality of summarization compared to random selection.

• Query-Enhanced Embedding (With Formatting): In this experiment, 67.5%
of the Q&A pairs exceeded the 0.9 threshold, while 32.5% did not. Although this ap-
proach outperforms the random baseline, it did not achieve the expected improvement
over the Direct Embedding method.

Statistical Analysis

The objective of the statistical analysis is to determine whether the improvements
observed in the Direct Embedding (No Formatting) and Query-Enhanced Embedding
(With Formatting) experiments are statistically significant compared to the Random
Scoring (Control) experiment. To achieve this, we employed the chi-squared test, a suitable
method for comparing categorical data to assess whether there is a significant association
between the type of summarization method and the quality of the summarization outcome.

The chi-squared test (NEWBOLD; CARLSON; THORNE, 2013) is appropriate for
this analysis because:

• Categorical Variables: Both the summarization method (Random Scoring, Direct
Embedding, Query-Enhanced Embedding) and the outcome category (Good, Bad)
are categorical.

• Independence: Each Q&A pair is an independent observation.

• Sample Size: With a sample size of 200 per experiment, the expected frequencies
in each cell of the contingency tables are sufficient to satisfy the chi-squared test
assumptions.

Alternative methods, such as Fisher’s Exact Test (FISHER, 1934) or logistic regression
(HOSMER; LEMESHOW; STURDIVANT, 2013), could be considered. However, Fisher’s
Exact Test is more suitable for smaller sample sizes, and logistic regression is more complex
and generally used when modeling the probability of an outcome based on multiple
predictors. Given the simplicity and adequacy of the chi-squared test for our data, it was
the most appropriate choice.

Chapter 6. Development 68

Chi-Squared Test for Direct Embedding vs. Random Scoring
Hypotheses:

• Null Hypothesis (H0): There is no association between the summarization method
(Direct Embedding vs. Random Scoring) and the summarization quality. In other
words, the proportion of "Good" summarizations is the same for both methods.

• Alternative Hypothesis (H1): There is an association between the summarization
method and the summarization quality. Specifically, the Direct Embedding method
results in a higher proportion of "Good" summarizations compared to Random
Scoring.

Observed Frequencies:
Good Bad Total

Direct Embedding 166 34 200
Random Scoring 125 75 200
Total 291 109 400

Expected Frequencies:

EDirect, Good = 291
400 × 200 = 145.5

EDirect, Bad = 109
400 × 200 = 54.5

ERandom, Good = 145.5

ERandom, Bad = 54.5

Chi-Squared Calculation:

χ2 =
∑ (O − E)2

E
= (166 − 145.5)2

145.5 + (34 − 54.5)2

54.5 + (125 − 145.5)2

145.5 + (75 − 54.5)2

54.5

χ2 = (20.5)2

145.5 + (−20.5)2

54.5 + (−20.5)2

145.5 + (20.5)2

54.5

χ2 = 420.25
145.5 + 420.25

54.5 + 420.25
145.5 + 420.25

54.5
χ2 = 2.89 + 7.72 + 2.89 + 7.72 = 21.22

Degrees of Freedom:

df = (Rows − 1) × (Columns − 1) = (2 − 1) × (2 − 1) = 1

Conclusion: With χ2 = 21.22 and p < 0.001, we reject the null hypothesis at the
95% confidence level. This indicates that the Direct Embedding approach significantly
outperforms Random Scoring in achieving "Good" summarizations.

Chapter 6. Development 69

Chi-Squared Test for Query-Enhanced Embedding vs. Random Scoring
Hypotheses:

• Null Hypothesis (H0): There is no association between the summarization method
(Query-Enhanced Embedding vs. Random Scoring) and the summarization quality.
In other words, the proportion of "Good" summarizations is the same for both
methods.

• Alternative Hypothesis (H1): There is an association between the summarization
method and the summarization quality. Specifically, the Query-Enhanced Embedding
method results in a higher proportion of "Good" summarizations compared to Random
Scoring.

Observed Frequencies:
Good Bad Total

Query-Enhanced Embedding 135 65 200
Random Scoring 125 75 200
Total 260 140 400

Expected Frequencies:

EQuery, Good = 260
400 × 200 = 130

EQuery, Bad = 140
400 × 200 = 70

ERandom, Good = 130

ERandom, Bad = 70

Chi-Squared Calculation:

χ2 =
∑ (O − E)2

E
= (135 − 130)2

130 + (65 − 70)2

70 + (125 − 130)2

130 + (75 − 70)2

70

χ2 = (5)2

130 + (−5)2

70 + (−5)2

130 + (5)2

70

χ2 = 25
130 + 25

70 + 25
130 + 25

70
χ2 = 0.192 + 0.357 + 0.192 + 0.357 = 1.098

Degrees of Freedom:

df = (Rows − 1) × (Columns − 1) = (2 − 1) × (2 − 1) = 1

Conclusion: With χ2 = 1.098 and p = 0.459, we fail to reject the null hypothesis at
the 95% confidence level. This indicates that the Query-Enhanced Embedding approach
does not significantly differ from Random Scoring in achieving "Good" summarizations.

Chapter 6. Development 70

Summary of Findings

• Direct Embedding (No Formatting) vs. Random Scoring:

– Chi-Squared Statistic: χ2 = 21.22

– P-Value: p < 0.001

– Conclusion: The Direct Embedding approach significantly outperforms Ran-
dom Scoring in achieving "Good" summarizations at the 95% confidence level.

• Query-Enhanced Embedding (With Formatting) vs. Random Scoring:

– Chi-Squared Statistic: χ2 = 1.098

– P-Value: p = 0.459

– Conclusion: The Query-Enhanced Embedding approach does not significantly
differ from Random Scoring in achieving "Good" summarizations at the 95%
confidence level.

These results confirm that while the Direct Embedding method provides a statistically
significant improvement over the Random Scoring control, the Query-Enhanced Embedding
method does not offer a meaningful enhancement in summarization quality compared to
random selection.

Implications

Based on the control experiment, the Query-Enhanced Embedding was not as effective
as anticipated, achieving only a modest improvement over random scoring (67.5% vs. 62.5%).
In contrast, the Direct Embedding approach demonstrated a substantial enhancement in
summarization quality, increasing the proportion of "good" summarizations from 62.5% to
83%. Although not perfect, this represents a significant improvement over the baseline
method of simply cropping half of the text without any scoring.

It is interesting to see how our initial proposal of adding more context to the embedding
by formatting the string beforehand was not only insufficient, but detrimental. The simpler
non formatting case is better.

6.4.8 Conclusion

The evaluation of the summarization approach using the Q&A dataset revealed that
embedding-based scoring methods, particularly the Direct Embedding approach, signifi-
cantly improve the preservation of essential information necessary for accurate question-
answering. While the Query-Enhanced Embedding did not perform as expected, the Direct
Embedding method achieved an 83% success rate in maintaining high similarity between

Chapter 6. Development 71

answers derived from full and summarized texts. This performance marks a considerable
advancement over the baseline random selection method, which achieved a 62.5% success
rate.

This substantial improvement highlights the effectiveness of semantic embedding-based
scoring in enhancing summarization quality compared to both random selection and
query-enhanced formatting. Future work should focus on refining embedding techniques
and exploring more sophisticated formatting strategies to further enhance summarization
quality, potentially increasing the proportion of "good" summarizations and approaching
near-perfect information retention.

72

7 Final Remarks

7.1 General Conclusion
This project aimed to address two primary challenges in Petrobras’s Semantic Search

on Offshore Engineering (SeSO) system: the scarcity of real-world failure reports and
the retrieval limitations imposed by large document passages. By generating synthetic
failure reports, augmenting these datasets through rewriting techniques, and implementing
summarization methods, significant progress was made in improving the system’s ability
to retrieve and answer questions effectively.

7.1.1 Results and Achievements

• Synthetic Report Generation: - A dataset of realistic synthetic reports was
generated, effectively mitigating the lack of real-world failure reports. These reports
maintained structural and contextual fidelity to actual operational documents. -
The synthetic dataset allowed for an expanded training and evaluation environment,
contributing to the refinement of SeSO’s retrieval capabilities.

• Augmented Report Generation: - Rewriting techniques produced a 51% variation
in word choices and a 74% accuracy in transforming numerical values into written
fractions or equivalents. - Augmented reports introduced significant linguistic and
contextual diversity, enriching the dataset.

• QA Dataset Generation: - A dataset of 66 question-answer pairs was generated,
providing a baseline for evaluating the retrieval system’s performance. Accuracy for
retrieval ranged from 0.61 to 0.70 across different datasets.

• Passage Summarization: - Summarization methods achieved a high cosine sim-
ilarity score of 0.9 or above for 83% of question-answer pairs using the Direct
Embedding method. - Direct Embedding significantly outperformed both Random
Scoring (62.5% success rate) and Query-Enhanced Embedding (67.5%), demon-
strating its effectiveness in retaining critical information while reducing passage
length.

• Retrieval Performance: - The retrieval system exhibited balanced treatment of
original and rewritten datasets, with rewritten versions selected 43% of the time as
the most relevant segment. - Statistical analysis confirmed the superiority of Direct
Embedding, with a chi-squared value of 21.22 and p < 0.001, indicating significant
improvement over the baseline.

Chapter 7. Final Remarks 73

7.1.2 Flaws and Challenges in the Methodology

Despite these achievements, several flaws and challenges emerged:

• Numerical Rewriting Errors: - While 74% of numerical values were correctly
reformatted, occasional errors (e.g., rewriting "6" as "one-sixth") revealed the limita-
tions of the LLM’s numerical handling capabilities. These inaccuracies highlighted
the need for deterministic algorithms for numerical transformations.

• Over/Under-detailed Questions and Answers: - Questions and Answers gener-
ated by the system were often excessively detailed or not specific enough compared
to actual Petrobras employees expected Questions and Answers. This behavior is
not perfectly reflective of the real world.

• Query-Enhanced Embedding Underperformance: - Contrary to expectations,
Query-Enhanced Embedding did not outperform the simpler Direct Embedding
approach. This indicates that the additional query formatting introduced noise
rather than enhancing relevance.

• High Costs of API Usage: - The extensive reliance on external APIs for generating
synthetic reports and running summarization tasks proved costly, limiting the scale
of experimentation, particularly for larger datasets.

• Dataset Imbalance: - The Q&A dataset’s limited size (66 pairs) and uneven
question distribution across reports (e.g., 35 questions for one report vs. 2 for others)
may have skewed the evaluation results.

• Token Limit Constraints: - The summarization system occasionally faced chal-
lenges in handling very large passages, requiring further optimization for real-world
deployment.

7.2 Future Work
Building on the insights and limitations of this project, several directions for future

work are proposed:

• Improved Numerical Rewriting: - Implement deterministic algorithms for nu-
merical transformations to ensure 100% accuracy in converting numbers to fractions
or written equivalents.

• Scaling Q&A Dataset: - Expand the Q&A dataset with more diverse and evenly
distributed questions across all reports, enabling more robust testing and evaluation
of retrieval and summarization methods.

Chapter 7. Final Remarks 74

• Advanced Summarization Techniques: - Explore more sophisticated summariza-
tion approaches, such as hierarchical models or hybrid methods combining semantic
embeddings with rule-based techniques.

• Cost Optimization: - Investigate cost-efficient alternatives to external APIs, includ-
ing open-source LLMs and on-premise deployment of summarization and rewriting
tools.

• Dynamic Passage Reduction: - Develop adaptive summarization methods that
dynamically adjust passage length based on the complexity of the user query and
the document context.

• Integration with SeSO: - Conduct a pilot integration of the summarization and
rewriting modules into SeSO to evaluate real-world performance and identify further
optimization opportunities.

• Broader Statistical Validation: - Perform additional statistical analyses, such as
logistic regression, to better understand the factors influencing retrieval success and
summarization quality.

• User Feedback and Usability Testing: - Incorporate feedback from Petrobras
employees to refine the system’s interface, answer generation, and summarization
outputs for improved user experience.

• Embedding Optimization: - Experiment with fine-tuned embedding models
tailored to Petrobras’s domain to enhance retrieval accuracy and summarization
relevance.

• Error Correction Mechanisms: - Implement post-processing checks to correct
errors in generated summaries, numerical transformations, and retrieved passages
before presenting them to users.

By addressing these areas, the project’s methodologies can be further refined, scaled,
and integrated into Petrobras’s operations. These advancements will enable SeSO to
provide more reliable, efficient, and accurate question-and-answer capabilities, ensuring its
long-term value in supporting offshore engineering challenges.

75

Bibliography

AWS. Qu’est-ce que la rag (génération augmentée de récupération) ? AWS, 2020. 8, 16

CHATGPT: Optimizing Language Models for Dialogue. 2022. <https://openai.com/blog/
chatgpt/>. Accessed: 2024-11-25. 15

COHESITY. La génération augmentée de récupération (rag). Cohesity, 2021. 16

CORBASSON, A. 6 ingrédients pour faire un (bon) prompt chatgpt. Digitad, 2023. 49

ELASTICSEARCH: The Definitive Guide. [S.l.]: O’Reilly Media, 2015. <https:
//www.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/>. Accessed:
2024-11-25. 12

FISHER, R. A. Statistical Methods for Research Workers. [S.l.]: Oliver and Boyd, 1934. 67

GONCALVES, P. et al. Semantic search in offshore engineering with linguistics and neural
processing pipelines. In: AMERICAN SOCIETY OF MECHANICAL ENGINEERS
(ASME). Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore
and Arctic Engineering (OMAE2021). Houston, Texas, USA, 2021. p. 9. Available from
Internet: <https://bv.fapesp.br/en/publicacao/228263/>. 8

HOSMER, D. W.; LEMESHOW, S.; STURDIVANT, R. X. Applied Logistic Regression.
3rd. ed. [S.l.]: Wiley, 2013. 67

INTRODUCING OpenAI Embeddings. 2022. <https://openai.com/blog/
introducing-text-and-code-embeddings/>. Accessed: 2024-11-25. 59

LANGCHAIN: Building Applications with Large Language Models. 2022. <https:
//github.com/hwchase17/langchain>. Accessed: 2024-11-25. 16

LANGUAGE Models are Few-Shot Learners. Advances in Neural Information Processing
Systems, v. 33, 2020. Accessed: 2024-11-25. 15

LIU, Y.; LAPATA, M. Text summarization with pretrained encoders. In: ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. p. 3730–3740.
Available from Internet: <https://arxiv.org/abs/1908.08345>. 24

MICHARD, T. Comparatif des meilleurs chatbots ia grand public en 2024. Reglo.ia, 2024.
15

NEWBOLD, P.; CARLSON, W.; THORNE, B. Statistics for Business and Economics.
8th. ed. [S.l.]: Pearson, 2013. 67

PETROBRAS Official Website. <https://petrobras.com.br/>. Accessed: 2024-11-25. 8

QUISQUATER, B. C. e. C. C. J.-J. Chatgpt, bon pour créer, mauvais pour solutionner.
La Tribune, 2023. 55

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://www.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/
https://www.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/
https://bv.fapesp.br/en/publicacao/228263/
https://openai.com/blog/introducing-text-and-code-embeddings/
https://openai.com/blog/introducing-text-and-code-embeddings/
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://arxiv.org/abs/1908.08345
https://petrobras.com.br/

	Title page
	Contents
	List of Figures
	Introduction
	Motivation
	Justification
	Objectives

	Overview of SeSO
	SeSO's algorithm
	Indexing block
	Inference block

	SeSO's challenges

	Key Concepts
	Large Language Models (LLMs)
	RAG
	LangChain
	Embeddings and Semantic Similarity
	Similarity Metrics: Euclidean and Cosine Similarity

	Methodology
	Phase 1: Synthetic expansion of the Reports Dataset
	Phase 2: Synthetic Q&A generation
	Phase 3: Report Reformulation System
	Phase 4: Reduction of Prompt Size
	Evaluation Procedures

	Requirement Specification
	Functional Requirements
	Non-Functional Requirements

	Development
	Phase 1: Expansion of the Reports Dataset
	Synthetic Report Generation for Retriever Optimization
	Implementation of Synthetic Reports for Offshore Inspection
	Process of Report Generation
	Example of a Synthetic Report Prompt and Generated Result
	Integration of Checklist Tables in Synthetic Reports
	Iterative Generation of Large Tables
	Number of Reports Generated and Justification
	Anonymization Strategy and Justification
	Decision to Exclude Images
	Technical Challenges and Solutions
	Testing and Validation

	Phase 2: Synthetic Q&A Generation
	Naive Approach
	New Approach

	Phase 3: Report Reformulation System
	Analyze the Code from Petrobras Teams
	Access the Virtual Machine and Set Up the Working Environment
	Writing of the code

	Phase 4: Text Reduction System
	Text Splitting (Splitter)
	Embedding Creation (Embedder)
	Similarity Scoring (Scorer)
	Filtering (Filterer)
	Example Workflow
	Integration into Summarization
	Evaluation
	Conclusion

	Final Remarks
	General Conclusion
	Results and Achievements
	Flaws and Challenges in the Methodology

	Future Work

	Bibliography

