
Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos

Embedded systems simulator
for robotics applications

São Paulo, Brazil

2024

Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos

Embedded systems simulator
for robotics applications

Work presented to Escola Politécnica da Uni-
versidade de São Paulo for undergraduate
conclusion.

São Paulo, Brazil
2024

Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos

Embedded systems simulator
for robotics applications

Work presented to Escola Politécnica da Uni-
versidade de São Paulo for undergraduate
conclusion.

Universidade de São Paulo – USP

Escola Politénica

Undergraduate Program

Supervisor: Prof. Dr. Bruno de Carvalho Albertini

São Paulo, Brazil
2024

Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos

Embedded systems simulator
for robotics applications

Work presented to Escola Politécnica da Uni-
versidade de São Paulo for undergraduate
conclusion.

Prof. Dr. Bruno de Carvalho Albertini
Supervisor

São Paulo, Brazil
2024

Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos

Embedded systems simulator
for robotics applications/ Antonio Lago Araújo Seixas
Vanderson da Silva dos Santos. – São Paulo, Brazil, 2024-

72p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. Bruno de Carvalho Albertini

Final Paper (Undergraduate) – Universidade de São Paulo – USP
Escola Politénica
Undergraduate Program, 2024.

1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. Orientador. II. Univer-
sidade xxx. III. Faculdade de xxx. IV. Título

This work is dedicated to all robotics enthusiasts and all young people who aspire at least
once to contribute to a better world.

Agradecimentos

Ao nosso professor orientador, Bruno Albertini, por seus conselhos e por sua
paciência ao nos orientar durante todo o trabalho de conclusão de curso.

Aos nossos amigos Lucas Haug e Lucas Schneider, por terem sido nossos padrinhos
no mundo do desenvolvimento de firmware e pelo companheirismo ao longo dos últimos
anos.

À Universidade de São Paulo e a equipe de robótica Thunderatz, não apenas nos
proporcionou uma base teórica e prática incrível durante os meus primeiros cinco anos de
graduação, mas também tornou nossa jornada acadêmica muito mais prazerosa, únicas e
enriquecedoras.

• Vanderson:

Primeiramente, à minha família, que me deram suporte, tanto emocional quanto fi-
nanceiro durante toda a minha vida e graduação. Agradeço também por sempre acreditarem
no meu potencial muito mais do que eu mesmo customo acreditar.

À minha dupla de trabalho de conclusão de curso, Antonio, pelas noites mal
dormidas estudando e trabalhando, tanto no TCC quanto em outras atividades acadêmicas.
Agradeço também pela companhia nesses últimos 5 anos de graduação e por sempre me
lembrar dos compromissos que eu nem lembrava que tinha.

• Antonio:

Começo agradecendo aos meus pais João e Márcia, que sempre estiveram comigo,
me incentivaram, acreditaram e me deram todo o suporte para que eu pudesse ir atrás
dos meus sonhos. Ao meu irmão João, por todos os conselhos e guiamentos que sempre
pude ter em qualquer que seja a situação, sendo peça fundamental para eu me tornar a
pessoa que sou hoje. Ao meu irmão Pedro, o qual eu sei que posso contar com sua ajuda,
não importa qual seja a situação. Agradeço aos meus avós, Jonas e Valdete, que sempre
vibraram e continuam a vibrar por cada conquista que realizo.

Agradeço à minha dupla deste projeto, Vanderson, por compartilhar todo esse
árduo processo de formação em Engenharia Elétrica. Obrigado por toda a parceria nesse
período de graduação, todas as madrugadas realizando trabalhos, todas as competições de
robótica partilhadas e por saber que sempre posso contar com você, seja para os momentos
bons ou ruins.

“Para que serve a utopia?
Serve para isso:

Para que eu não deixe de caminhar”

- Eduardo Galeano

Resumo

A utilização de sistemas autônomos está aumentando tanto em número de disposi-
tivos quanto em número de aplicações. Havendo um propósito específico e a execução de
processamento de hardware, é classificado como um sistema embarcado. Neste âmbito, a
realização de testes para averiguar a execução, segurança e confiabilidade do sitema, de
forma a garantir a exata integração entre o software implementado e o sistema físico são
de extrema importância. De forma a evitar a dependência da eletrônica do dispositivo,
a implementação de um sistema simulado para validação do software é útil e necessário.
Utilizando QEMU para emulação de hardware e Gazebo para simulação do ambiente real,
este projeto procura desenvolver a possibilidade de um poder testar e validar o software
de um sistema embarcado sem necessitar de qualquer componente eletrõnico.

Palavras-chave: sistemas embarcados. robótica. QEMU. Gazebo. simulação.

Abstract

The usage of autonomous devices is growing in number of devices and
applications. For having a specific purpose with hardware processing execution, it is
classified as an embedded system. In this scope, the realization of all tests to determine the
execution, safety and reliability of the system, to guarantee the exact integration between
the physical environment and the implemented software, are of extreme importance. To
avoid the dependency to the electronics, the implementation of a simulated system to
validate the software is useful and necessary.With the using of QEMU for hardware
emulation and Gazebo to simulate the environment, the project looks for a way to develop
and have a full first trial test of an embedded system without needing the presence of any
electronic component.

Keywords: embedded systems. robotics. QEMU. Gazebo. simulation.

List of Figures

Figure 1 – General concept . 21
Figure 2 – Microcontroller basic structure . 22
Figure 3 – GPIO addresses from microcontroller STM32F103C8T6 23
Figure 4 – Protocol Buffer workflow . 24
Figure 5 – Publisher-Subscriber Pattern . 25
Figure 6 – KVM Architecture . 25
Figure 7 – Pioneer 2 . 26
Figure 8 – P2OS Connection . 28
Figure 9 – ESP32 D1 Mini . 38
Figure 10 – Environment model . 44
Figure 11 – QEMU with ROS socket . 45
Figure 12 – Emulation and Simulation complete integration 46
Figure 13 – Test Setup - General . 47
Figure 14 – Test Setup - Hardware . 48
Figure 15 – Test Setup - ESP32 Connections . 49
Figure 16 – Real Robot With Prototype Hardware 50
Figure 17 – Pioneer 2DX - Batteries Informations 50
Figure 18 – Test Setup - Pioneer 2dx Interface . 51
Figure 19 – Test Setup - Encoder Data as Bits Example 52
Figure 20 – Test Setup - PS5 Controller Commands 53
Figure 21 – Test Setup - P2OS Communication Code Organization - Simplified . . 55
Figure 22 – Pioneer 2DX Interface - P2OS Communication Code Organization . . . 71
Figure 23 – Pioneer 2DX Interface - Complete Code Organization 72

List of Tables

Table 1 – P2OS Internal Serial Port Connections ("HOST" JP8) 27
Table 2 – P2OS client command packet . 29
Table 3 – Connection between Esp32 and Bluepill 48
Table 4 – Project main components . 49

Contents

Contents . 13
1 Introduction . 17

1.1 Motivation . 17
1.1.1 Micro-controllers and Embedded Systems 17
1.1.2 Simulations and Robots . 18
1.1.3 Mobile Autonomous Robots . 18

1.2 Objective . 19
1.3 Justification . 19
1.4 Project Organization . 19

2 Conceptual Aspects . 21
2.1 Microcontroller Emulation . 21

2.1.1 What is a Microcontroller . 22
2.1.1.1 General Purpose Input/Output (GPIO) 23

2.2 Environment Simulation . 23
2.2.1 Modeling the environment . 23
2.2.2 Running the environment . 24

2.3 Integration between the simulation and the emulation 24
2.3.1 Protocol Buffers . 24
2.3.2 Publishers and Subscribers . 24

2.4 Kernel Virtual Machine and Emulation . 25
2.4.1 Kernel Virtual Machine . 25
2.4.2 Emulation . 26

2.5 Real Robot hardware and communication 26
2.5.1 Pioneer 2DX . 26

2.5.1.1 Communication . 27
2.6 P2OS - Communication protocol . 28

2.6.0.1 P2OS - Commands Packet 29
3 Methodology . 31

3.1 Development Planning . 31
3.1.1 Choose and emulate the micro-controller 31
3.1.2 Model the environment and the robot 31
3.1.3 Run the environment and the robot 31
3.1.4 Interconnect the emulation and simulation 31
3.1.5 Prototype an electronic interface between the micro-controller and

the robot . 32
3.1.6 Manufacture and test the electronic interface 32

3.1.7 Test development code with the real robot 32
3.1.8 Compare the results with a real device 32

4 Requirements Specifications . 33
4.0.1 Functional . 33
4.0.2 Non-Functional . 33

5 Project Development . 35
5.1 Tools . 35

5.1.1 Main program development . 35
5.1.1.1 C and C++ programming languages 35
5.1.1.2 CubeMX . 35
5.1.1.3 PlatformIO . 35

5.1.2 Microcontroller Emulation . 36
5.1.2.1 QEMU . 36
5.1.2.2 ROS . 36

5.1.3 Simulation . 36
5.1.3.1 Gazebo . 36
5.1.3.2 Blender . 36

5.1.4 Hardware development . 37
5.1.4.1 Altium desing . 37
5.1.4.2 Multisim . 37

5.1.5 Hardware technologies . 37
5.1.5.1 Robot Pionner 2 . 37
5.1.5.2 Bluepill developement board 37
5.1.5.3 Esp32 D1 Mini . 38

5.1.6 Others . 38
5.1.6.1 Max3232 . 38
5.1.6.2 LM317 . 38

5.2 Project and implementation . 39
5.2.1 Microcontroller emulation . 39

5.2.1.1 Choosing the hardware . 39
5.2.1.2 Emulating with QEMU 39

5.2.2 ROS/Gazebo Simulation . 39
5.2.2.1 Robot model . 40
5.2.2.2 Peripherals plugins . 40

5.2.2.2.1 Digital distance sensor plugin 40
5.2.2.2.2 Encoder plugin 41
5.2.2.2.3 Joint motor plugin 42

5.2.2.3 Environment model . 43
5.2.3 Integration . 43

5.2.3.1 Adding ROS to QEMU . 43
5.2.3.2 Complete integration . 45

5.3 Test Setup . 47
5.3.1 Hardware . 47
5.3.2 Real robot . 50

5.3.2.1 Batteries . 50
5.3.3 Pioneer 2DX Interface Firmware . 50

5.3.3.1 Bluepill Connection . 51
5.3.3.2 Ps5 Controller Connection 52
5.3.3.3 Pioneer 2DX communication 54

5.4 Results . 56
5.4.1 Motors command validation . 57
5.4.2 Distance sensors validation . 57
5.4.3 Encoders validation . 58
5.4.4 Dodge obstacles validation . 58

6 Final considerations . 59
6.1 Conclusion . 59
6.2 Contributions . 59
6.3 Prospects for Continuity . 60

Bibliography . 61
APPENDIX A Pioneer 2DX Interface Hardware 65

A.1 Schematics . 65
A.2 PCB . 69
A.3 Components . 69

APPENDIX B Pioneer 2DX Interface Code Organization 71

17

1 Introduction

With the exponential increase in memory and processing capacity of embedded
devices, the complexity of algorithms and applications has significantly grown. However,
as this complexity increases, so does the demand for testing. Unfortunately, the methods
used to test these devices have not kept pace with this exponential growth.

In recent years, we have witnessed serious flaws in embedded software that have
resulted in significant accidents, such as plane crashes involving Boeing aircraft [1] and
pedestrian accidents caused by Uber autonomous vehicles [2]. These incidents highlight
the fact that even market leaders in standalone embedded devices still suffer from firmware
failures due to a lack of proper testing.

To address this problem, the most common method used is to utilize hardware
prototyping boards, such as Arduino [3], which are becoming increasingly popular. However,
only a small portion of professional micro-controller development at a lower level of
abstraction can be considered valid and tested. This approach does not provide an efficient
solution to the problem.

While not yet common, there are tools available today that allow for the simulation
of micro-controllers without the need for physical hardware. However, these tools are
quite specific and lack adequate integration with the external environment to simulate
thermal events, for example. Conversely, there are excellent tools available for simulating
the physical world and its numerous natural phenomena.

The biggest challenge lies in the lack of a tool that integrates these important
simulation tools. If such tools were more readily available, we could explore a world of
possibilities to innovate and create a new way of simulating embedded devices. These
simulations would require testing and validation with stimuli from the physical world and
natural phenomena to ensure they can be used in production without the risk of causing
accidents.

1.1 Motivation

1.1.1 Micro-controllers and Embedded Systems

The usage of micro-controllers to develop applications for embedded systems is
handled by a wide range of companies. In this scope, one of the most famous producer for
those hardware is STMicroelectronics [4].

With a wide variety of devices and different families, the STM32 microcontrollers

18 Chapter 1. Introduction

from STMicroelectronics, or ST, are used in many applications of embedded systems.
Examples of these applications include robot control, Internet of Things devices, and
automation.

STM32 microcontrollers generally work with the ARM architecture and include
a series of functionalities provided by the Hardware Abstraction Layer (HAL), which
optimizes software development for these devices. Combined with its widespread market
usability, this makes it easier and more convenient to implement the desired functionalities
and utilities for embedded systems.

Despite their high presence in this environment, ST microcontrollers lack a way
to test all implemented software without using the physical device itself, which poses a
barrier to development.

1.1.2 Simulations and Robots

In the realm of modern robotics, Gazebo applications are quite common. Gazebo [5]
is a widely used open-source, multi-robot simulation environment that provides a 3D
simulated world where robots, objects like sensors, and entire environments can be modeled
and simulated with native plugins.

In the hardware simulation scenario, the open-source software QEMU [6] stands
out. As a Kernel-based Virtual Machine (KVM), it serves as a generic machine emulator,
leveraging Linux’s kernel to assist in the virtualization of different types of hardware. This
usage allows for the emulation of microprocessor functionalities, enabling the simulation
of embedded software execution within the emulated machine.

1.1.3 Mobile Autonomous Robots

With advances in technology and artificial intelligence, mobile autonomous robots
are becoming increasingly common across various fields, from simple household tasks to
space exploration. These robots can move independently without direct human intervention,
enhancing efficiency and safety in many processes.

An example of a mobile autonomous robot application is the ‘robô hospitalar’,
developed by the Escola Politécnica da Universidade de São Paulo. It assists in delivering
medicines and necessary tools to hospital staff, improving logistics, efficiency, and people
management. This field holds significant interest in robotics and the development of
solutions for the benefit of humanity.

1.2. Objective 19

1.2 Objective
The main goal of this work is to develop a simulator for software testing of embedded

systems using STMicroelectronics microcontrollers applied to mobile robotics, enabling
comparisons with real projects. The primary tools used will be Gazebo for simulating the
environment and data acquisition, and QEMU for hardware emulation.

Using the simulator, it is expected to enable code validation before bench testing
with physical devices.

1.3 Justification
Nowadays, there are not so many options to simulate the functionality of an

embedded system. Most of them are useful to test hardware features, one example is to
use circuit emulators like Proteus Design Suite. Although it is possible to simulate some
micro-controllers with real source code, it is limited to the elements and devices of the
software itself, not being able to stipulate the data flow with a real device.

Other option is the use of Hardware-in-the-loop, which is a validation technique
used to create a realistic testing environment. It is a good way to test complex systems
applied to robotics, giving a safety and risk mitigation before the deploy of the application.
On the other hand, although it is not necessary to have the complete physical setup, to
use this technique it is still necessary to have hardware components to connect to the
simulation environment. Therefore, it is impossible to test only the software that would
be used itself.

Accordingly to this scope, in the current moment it is not possible to test the
software for the whole embedded system with all expected functionalities without a
physical device. This brings a barrier to the development of an application as it brings the
dependency of having a prototype and certifying that it is working correctly.

In this way, the implementation of this project will provide another possibility for
embedded systems software testing, enabling code validation before bench testing through
a complete simulation of both the processor and connected devices. As a result, it is
expected to achieve: reduced development costs, increased safety and reliability in tests,
and fewer evaluations on real-world equipment.

1.4 Project Organization
The chapter 2 introduces the main concepts utilized in this Bachelor thesis. Sub-

sequently, chapter 3 presents the methodology applied during the development of this
work, while chapter 4 lists the functional and non-functional requirements of the project.

20 Chapter 1. Introduction

Following this, chapter 5 discusses the tools used, provides descriptions, and explains how
the entire simulation and test setup was implemented. Additionally, appendix A contains
information on the hardware developed for the project, and appendix B provides details
on the structure of the Pioneer 2DX interface code.

21

2 Conceptual Aspects

Dealing with a complete simulation of an embedded system there are three main
problems: microcontroller emulation, environment simulation and the interconnection
between both.

Microcontroller Emulation: The main aspects of the microcontroller must be
emulated, including: microprocessing, General Purpose Input Output, RAM memory, flash
memory and others peripherals present in the device.

Environment Simulation: The embedded device is always immersed in an
environment, therefore it’s simulation must be able to replicate a variety of natural
physical phenomena, in addition to being easily manipulated and adaptable.

Integration: The integration between them should capture the phenomena ob-
tained from the environment simulation and send the data to the microcontroller emulator
as if they were electrical signals it would receive in reality. Conversely, the integration must
also capture the values calculated by the emulation and send them back to the virtual
environment. This cycle should occur continuously.

Figure 1 – General concept

In this undergraduate final project, those three main problems will be addressed. To
achieve this, industry-standard tools will be used to implement microcontroller emulation,
environment simulation, and design. Additionally, there is currently no available tool
capable of effectively connecting these features.

2.1 Microcontroller Emulation
Embedded devices are designed primarily to execute specific functions or to address

particular applications, with inherent data processing capabilities. Microcontrollers are
widely used to achieve this goal. However, it’s important to have a clear understanding of
their concepts and functioning due to the complexity and diversity of these chips.

22 Chapter 2. Conceptual Aspects

2.1.1 What is a Microcontroller

A microcontroller is a programmable embedded electronic device that integrates a
processor, memory, and peripherals into a single integrated circuit. These devices have
specific architectures that vary depending on the manufacturer and include a range of
peripherals designed to perform specific functions.

Microcontrollers typically feature 8-bit, 16-bit, or 32-bit architectures. Each archi-
tecture organizes information in memory differently, which affects aspects such as storage
capacity and address management, among other factors.

The microcontroller’s peripherals are responsible for communication with external
environment. They play a role in receiving sensor information, managing communication
interfaces, and sending signals, which translates into actions in the external world.

Initially, the peripherals receive and send a series of electrical signals originating
from various sensors and actuators, which access the internal circuits of the microcontroller.
These signals modify the microcontroller’s memory. When the microcontroller reads the
information stored in memory, it detects any changes and, if needed, adjusts its output
behavior accordingly.

Figure 2 – Microcontroller basic structure

Fonte: ElectronicsHub [7]

In the context of simulation, it is essential to replicate these external world func-
tionalities, which are the responsibilities of the peripherals. Due to the specific way each
peripheral accesses reserved positions in the microcontroller’s memory and organizes
information, it is important to explain in greater detail how this process is carried out for
the peripherals that are the focus of emulation in this project.

2.2. Environment Simulation 23

2.1.1.1 General Purpose Input/Output (GPIO)

The GPIOs (General Purpose Input/Output) are fundamental peripherals in
microcontrollers, responsible for handling information in a binary form, represented as 0
or 1. In the context of microcontrollers, it is necessary to specify which PORT and PIN
will be used to configure a particular GPIO. This selection ensures that the appropriate
pin is allocated within the circuit in which the microcontroller is integrated.

GPIOs function as MMOI (Memory Mapped Input/Output), which means they
map a specific memory location to store information related to the PORT and PIN. Each
port corresponds to a specific memory address, while each pin acts as a mask that indicates
the memory position where the information is being stored.

Figure 3 – GPIO addresses from microcontroller STM32F103C8T6

Fonte: STM32F103C8T6 Datasheet [8]

Additionally, the GPIO configuration—such as whether it will be used as an input
or output or for other functions—also influences the memory location that will be accessed
to retrieve the necessary information.

2.2 Environment Simulation

2.2.1 Modeling the environment

The scope of modeling refers to how the simulation will be visualized. The two
main objects that need to be modeled are the room and the embedded system itself. To
achieve this, there is a variety of open-source software that provides modeling tools and
can export the created objects to the simulation environment.

24 Chapter 2. Conceptual Aspects

2.2.2 Running the environment

The running environment integrates the modeled objects, including all their physical
characteristics and interactions. It will also be responsible for exporting and receiving data
to and from an external source.

2.3 Integration between the simulation and the emulation
Nowadays there are many ways to make the interconnection and data exchange

between between two different software.

For this project, it is necessary a non-stop data exchange of both sides between
the emulation and the simulation. To accomplish that, it is interesting to use used
communication protocols that is shown as it follows:

2.3.1 Protocol Buffers

Protocol buffers [9], or protobufs, are mechanism developed by Google used to
serialize different kind of data. Using a language and platform neutral schema definition,
protobufs are really useful to parse and serialize data between software that uses different
types of languages and formats.

To define how the data is structured, it is used the .proto files. These files needs to
be compiled by the proto compiler to generate the source code structuring the data format
in different types of languages. In that way, the same .proto file can used by different
software.

Figure 4 – Protocol Buffer workflow

An important feature of this protocol is how its messages are compact. Using a
compact binary format reduces the network load on the application.

2.3.2 Publishers and Subscribers

This messaging pattern [10] is used to facilitate communication between different
parts of a system or different software components. This pattern is based on what is known

2.4. Kernel Virtual Machine and Emulation 25

as a "topic," which acts as a channel that allows two possible actions: publishing and
subscribing.

Figure 5 – Publisher-Subscriber Pattern

Publishing means sending a message to a topic, making that message visible to
anyone with reading access to the topic. It allows data to be shared via the topic.

On the other hand, subscribing means ‘listening’ to what is published on a topic.
When a topic is published, the subscriber receives a callback notifying them of the message’s
arrival and retrieving the data.

2.4 Kernel Virtual Machine and Emulation

2.4.1 Kernel Virtual Machine

Figure 6 – KVM Architecture
System virtualization is the process of

hosting one operating system (the guest system)
within another (the host system). Through vir-
tualization, the guest system can replicate its
functionalities by leveraging the host system’s
processing power. This allows the host to run
functionalities exclusive to the guest system.

Virtualization is made possible by the use
of a hypervisor, a type of operating system-level
software responsible for managing the host sys-
tem’s computing resources and allocating them
to hosted virtual machines.

In this context, the Kernel Virtual Ma-
chine (KVM) [11] is a technology used for vir-
tualization on Linux systems. It transforms the
Linux kernel into a hypervisor, enabling part of

26 Chapter 2. Conceptual Aspects

the host hardware to be directly utilized for guest system functionalities. For instance,
KVM maps the virtualized guest memory directly to the host memory and allows the host
processor to function as a virtualized CPU.

This approach enables the guest system to run nearly as if it were native, significantly
improving performance, security, and reliability.

For our project, KVM is particularly useful for emulating all the specific components
of a microcontroller (such as an ARM microcontroller [12]), including the processor, memory,
peripherals, and more.

2.4.2 Emulation

In computing, emulation refers to the process of replicating the behavior of one
computer system or software on another system.

In this context, hardware emulation involves replicating the functionalities of
hardware components such as memory management, I/O operations, CPU processing, and
interrupt handling within another system. Unlike simulation, which models how a system
behaves in theory, emulation strives to replicate the original system’s actual operation.
This enables the emulated system to use the same configurations, load identical software,
and adhere to the same standards as the original hardware.

An ideal hardware emulation accurately reproduces every functionality of the
original system, maintaining full compatibility.

2.5 Real Robot hardware and communication

2.5.1 Pioneer 2DX

Figure 7 – Pioneer 2
The Pioneer 2 is a programmable mobile robot

platform widely used in research and educational set-
tings for the development and testing of robotics algo-
rithms and systems worldwide. The Pioneer 2 supports
a variety of sensors and actuators, such as motors, ul-
trasonic sensors, encoders, cameras, and more. This
enables it to perform tasks like navigation, mapping,
and object manipulation in diverse environments.

Designed for research and education, the Pio-
neer 2 serves as a tool for exploring conceptual aspects
of robotics, including kinematics, path planning, and
sensor fusion.

2.5. Real Robot hardware and communication 27

As a commercial robot, there is an operations
manual available for users [13], which includes all hardware specifications and detailed
instructions on how to use the robot correctly.

2.5.1.1 Communication

For communication with the robot, there is a Serial RS232 port available. The pins
for this serial port are listed in Table 1. The TX and RX pins allow external devices to
communicate with the Pioneer 2DX through the P2OS protocol, which is further described
in Section 2.6.

Table 1 – P2OS Internal Serial Port Connections ("HOST" JP8)

Pin # Connection Pin # Connection
1 Gnd 2 P3_12
3 TxD1 4 12 VDC (switched)
5 RxD1 6 Gnd
7 P3_15 8 P3_14
9 Gnd 10 5 VDC (switched)

Source: Pioneer2 Operations Manual [13]

28 Chapter 2. Conceptual Aspects

2.6 P2OS - Communication protocol

Figure 8 – P2OS Connection
The P2OS (Pioneer 2 Operating System) pro-

tocol is used to establish a connection between the
Pioneer 2DX robot and your device. This protocol
enables you to send commands to the actuators and
receive data from the sensors. Additionally, it also al-
lows you to modify the robot’s configuration through
the protocol.

At first, the client device must first establish a
connection with the robot server. After it, the client can
send commands to the server and receive information
from the robot back. In the case of the Pioneer 2, the
communication is done through the Host RS-232 serial
port.

Initially, P2OS starts in an initial state NO-
CONN. To establish this connection, the client appli-
cation must send three synchronization packets consec-
utively to the robot: the SYNC0, SYNC1, and SYNC2
commands packets. For each command, the device must
receive the corresponding responses from the robot. Af-
ter the SYNC0 command, the robot transitions to the
SYNC0 state; after SYNC1, it moves to the SYNC1
state; and after SYNC2, it enters the SYNC2 state.

The feedback from the robot before reaching
the SYNC2 state is a special package containing in-
formation about the robot. This package includes the
name, type, and subtype of the currently connected
robot.

After reaching the SYNC2 state, it is possi-
ble to open the connection using the Open command
packet. Once the open command is sent, the robot
transitions to the CONNECTED state.

After the connection is established, the robot
begins sending information about all available sensors and receives data regarding the
actuators. To maintain the connection with the robot, it is necessary to send a pulse
command at least every 2 seconds.

2.6. P2OS - Communication protocol 29

2.6.0.1 P2OS - Commands Packet

The P2OS protocol has a structured command format for receiving and responding
to instructions from a device. It is possible to observe the whole command packet structure
in the table 2

Table 2 – P2OS client command packet

Component Bytes Value Description
Header 2 0xFA, 0xFB Packet header; same for client and server

Byte Count 1 N + 2
Number of following command bytes plus
Checksum’s two bytes, but not including
Byte Count. Maximum of 200.

Command
Number 1 0 - 255 Client command number; see Table 4-4

Argument Type
(depends on
the command)

1 0x3B or 0x1B
or 0x2B

Required data type of command argument:
positive integer (sfARGINT), negative
integer or absolute value (sfARGINT),
string (sfARGSTR)

Argument
(depends on
the command)

n data Command argument; integer or string

Checksum 2 computed Packet integrity checksum
Source: Pioneer2 Operations Manual [13]

Following that structure, if it is necessary to send a command "0" (which corresponds
to the SYNC0 command), the complete packet will be "0xFA 0xFB 0x03 0x00 0x00 0x00".
If it is necessary to send a command "1" (which corresponds to the SYNC1 command),
the complete packet will be "0xFA 0xFB 0x03 0x01 0x00 0x01".

31

3 Methodology

3.1 Development Planning

Using the concepts mentioned on the previous chapter, this project has as a goal
the building an embedded system simulator. To achieve this objective, the project follows
the methodology composed by the following steps:

3.1.1 Choose and emulate the micro-controller

The first step was chose the micro-controller that will be used. Each kind of micro-
controller has it own specificities and characteristics, and it is essential to chose one with
the demanded features by the simulated device. After this, using an open source framework,
it is fundamental to emulate all the micro-controller essentials functionalities.

3.1.2 Model the environment and the robot

After emulating the micro-controller that will be used, the whole simulated envi-
ronment and the robot will be made and tested. This step is important to determine how
the environment will be and which physical properties it will have. It is important that
this environment and robot to be able to be exported to others software and keep the
same properties.

3.1.3 Run the environment and the robot

With the modelled environment in hands, it is time to run it. In this stage, it will
test if the simulated robot and the environment are working as they should. At this part,
the topic structure will be defined, and will be tested if the simulated robot is publishing
and subscribing to them.

3.1.4 Interconnect the emulation and simulation

With both the emulation and the simulation made, it is time to connect them. To
do this, all the concepts of interconnection mentioned on the last chapter will be used.
Using TCP/IP sockets, the emulated hardware and the simulated environment will share
topics to published and subscribed from both sides.

32 Chapter 3. Methodology

3.1.5 Prototype an electronic interface between the micro-controller and the
robot

After choosing the microcontroller and selecting which pin from the microcontroller
to use, it is essential to create a simple electronic case to gather all the electronic signal
from the microcontroller and send them correctly to the robot.

3.1.6 Manufacture and test the electronic interface

After creating the electronic case, it is essential to find a manufacture, send them
the project, buy the components and assemble the case. After that, it is important to test
everything and check whether it is all working as it should.

3.1.7 Test development code with the real robot

After the electronic case is working, it is time to upload the code to the microcon-
troller and run the program, which was created with the help of the simulation, on the
real robot.

3.1.8 Compare the results with a real device

After all the project implementation, it is time to compare the results of the
simulation with how the real device works. At this stage, it will see how good the
simulation approached reality and in which points the project should be improved.

33

4 Requirements Specifications

This chapter presents the, functional and non-functional, requirements specifications
of the project to be developed.

4.0.1 Functional

Micro-controller Emulation: The project must be able to run the binary of an
embedded system software the same way it would run in a real hardware. Therefore, the
emulation of the functionalities and peripherals of the chosen micro-controller is essential.

Environment and Robot simulation: To reproduce how the physical system
would respond in reality, it is necessary to have a whole simulated environment where the
simulated robot will actuate.

Connection Between the Emulation and the Simulation: Since it is the
simulation of a entire embedded system, it is necessary the connection between the
hardware emulation and the environment simulation.

Embedded System software binary: To test and validate the project, it is
necessary to have a functional software binary to be run by the hardware emulator.
Physical embedded system: To validate the project, it is essential to have a physical
device. With that, it will be possible to see how close from a real system the simulation
will get.

4.0.2 Non-Functional

Simulation Performance: It is important that the simulation has a good perfor-
mance, reducing it’s delay as maximum as possible.

35

5 Project Development

5.1 Tools

5.1.1 Main program development

5.1.1.1 C and C++ programming languages

C and C++ are essential programming languages in embedded systems development
due to their efficiency and control over hardware resources.

C was used not only for developing the firmware for the STM32 microcontroller
(BluePill) but also for the hardware emulation. Its low-level capabilities allow precise
control over microcontroller peripherals and were crucial for simulating the hardware’s
behavior.

C++ extends C with object-oriented features, making it ideal for more complex
system architectures. In this project, C++ was utilized in the robotic simulation, especially
within the ROS environment. Its object-oriented approach helped manage the complexity
of the system, allowing better modularity and code organization, especially when dealing
with ROS nodes and topics.

Thus, C was key in both the firmware development and hardware emulation, while
C++ was primarily used for the simulation environment, leveraging its additional features
for managing higher-level structures.

5.1.1.2 CubeMX

STM32CubeMX is a microcontroller configuration tool provided by STMicroelec-
tronics. It was used for the initial configuration of the STM32F103C8T6 microcontroller,
including generating the base project code and setting up peripherals such as UART,
SPI, and GPIO. The tool simplified pin mapping and system parameter configuration,
facilitating the integration between hardware and software.

5.1.1.3 PlatformIO

PlatformIO [14] is an open-source IDE (integrated development environment). It
simplifies the process of building, debugging, and deploying code to microcontrollers and
other embedded systems.

36 Chapter 5. Project Development

5.1.2 Microcontroller Emulation

5.1.2.1 QEMU

QEMU [6] was used as the hardware emulator for the STM32F103C8T6 microcon-
troller. The specialized version for STM32 microcontrollers allowed for precise simulation
of the microcontroller’s functionalities, particularly in emulating GPIO interfaces, which
are essential for controlling external devices. QEMU enabled testing the firmware behavior
without the need for physical hardware.

5.1.2.2 ROS

ROS [15] was used as middleware for communication between the microcontroller
emulation and the robotic environment simulation. Through ROS topics, the emulated
GPIO input and output signals of the STM32 were sent and received, allowing the emulated
microcontroller to interact seamlessly with the simulation environment.

5.1.3 Simulation

5.1.3.1 Gazebo

Gazebo was the main tool used for simulating the robotic environment. It allowed
for testing the interactions of the microcontroller with the simulation in a visual and
interactive manner, particularly in controlling actuators and reading sensor data. The
integration between Gazebo, ROS, and the emulated microcontroller enabled a more
realistic and efficient simulation of the overall robotic system.

5.1.3.2 Blender

Blender is an open-source 3D modeling and animation software widely used in
various fields, including game development, visual effects, and architectural visualization.
It provides a comprehensive suite of tools for modeling, sculpting, texturing, and rendering,
making it a versatile choice for creating detailed 3D environments.

In this project, Blender was utilized to model the test environment for the robotic
simulation. The detailed 3D models created in Blender were essential for accurately
representing the physical environment in which the robot would operate. Once the modeling
was completed, the environment was exported in a compatible format for integration with
Gazebo, allowing for realistic simulation and interaction with the robot in the virtual
world.

5.1. Tools 37

5.1.4 Hardware development

5.1.4.1 Altium desing

Altium Designer is a professional PCB (Printed Circuit Board) design software
that was used to design a custom circuit board for the project. The PCB was designed
to adapt the system for use in the real robot. Altium Designer offers a complete set of
tools for schematic capture, PCB layout, and component management, making it ideal for
creating custom hardware solutions.

5.1.4.2 Multisim

Multisim is an industry-standard software used for simulating electronic circuits. It
allows for the creation and testing of circuit designs in a virtual environment, offering a
wide range of tools for analyzing circuit behavior under different conditions. In this project,
Multisim was utilized for initial testing of the hardware that was designed using Altium
Designer. Before physically assembling the printed circuit board (PCB), simulations in
Multisim helped validate the planned design, ensuring that key components and circuit
configurations would function as expected when implemented in the real-world system.

5.1.5 Hardware technologies

5.1.5.1 Robot Pionner 2

The Pioneer 2 is a mobile robot platform developed by Adept MobileRobots
(formerly ActivMedia Robotics). It is widely used in academic research and robotics
education due to its robustness and flexibility in various applications such as navigation,
mapping, and autonomous robotics. The Pioneer 2 is equipped with multiple sensors and
interfaces, making it ideal for testing algorithms and embedded systems in real-world
scenarios.

In this project, the Pioneer 2 was chosen as the physical robot for system validation.
It was made available by POLI for use as the real robot platform.

5.1.5.2 Bluepill developement board

The Blue Pill is a small, low-cost development board featuring the STM32F103C8T6
microcontroller, part of the STM32 family from STMicroelectronics. The board is highly
popular in embedded systems projects due to its affordability, versatility, and relatively
powerful ARM Cortex-M3 core. It comes equipped with 64 KB of flash memory, 20 KB of
RAM, and operates at a frequency of 72 MHz, providing sufficient performance for a wide
range of applications.

38 Chapter 5. Project Development

5.1.5.3 Esp32 D1 Mini

Figure 9 – ESP32 D1 Mini

The ESP32 [16] D1 Mini is a development board built
around the ESP32 microcontroller from Espressif Systems.
The board features dual-core processing with a 32-bit Tensil-
ica LX6 microprocessor running at up to 240 MHz. It comes
equipped with 4 MB of flash memory and 520 KB of SRAM,
supporting some connectivity options, like Wi-Fi, classic
Bluetooth, and BLE Bluetooth. These capabilities make the
ESP32 D1 Mini an ideal choice for IoT applications, sensor
networks, and embedded projects in general.

5.1.6 Others

5.1.6.1 Max3232

There are some components on the market capable
of transforming a TTL serial signal into RS232. Among the most reliable components is
the MAX232, which is well known for this signal translation.

5.1.6.2 LM317

There are some components on the market capable of control voltage with high
precision and efficiency. Among the most reliable components is the LM317, which is well
known for its adjustable voltage regulation capabilities and versatility in power supply
designs.

5.2. Project and implementation 39

5.2 Project and implementation

5.2.1 Microcontroller emulation

5.2.1.1 Choosing the hardware

For the system development, a microcontroller from the STM32 family, manufac-
tured by STMicroelectronics [4], was chosen. The decision to use this line of microcontrollers
was driven by several factors, including their versatility, a wide range of integrated fea-
tures, and strong support provided by both the community and STMicroelectronics itself.
Additionally, the STM32 family is well-known for offering development tools, such as
STM32CubeMX [17], which simplifies hardware configuration and code generation, making
the development process more efficient and accessible.

Among the available models, the Blue Pill [18] development board was selected,
which integrates the STM32F103C8T6 microcontroller [8]. This choice was guided by its
low cost, versatility and previous familiarity.

5.2.1.2 Emulating with QEMU

After selecting the STM32 microcontroller, the QEMU hardware emulator was
used to simulate the microcontroller’s environment. A specialized version of QEMU [19],
tailored for STM32 microcontroller emulation, was employed to replicate the functionality
of the STM32F103C8T6.

The primary focus of the emulation was on simulating the GPIO (General-Purpose
Input/Output) functions, which is used for interfacing with the sensors and actuators in
the robotic system. Initially, efforts were made to emulate other functionalities, such as
Pulse Width Modulation (PWM) generation and timers. However, these features did not
function as expected during testing.

Despite these challenges, the emulator allowed for the first round of binary testing,
enabling verification of GPIO pin value changes, the relationship between memory positions,
and overall emulator functionality.

To streamline the execution of QEMU for hardware emulation, a custom bash
script, run.sh, was developed. This script automates the configuration and execution
of QEMU, ensuring that the appropriate firmware binary is linked and loaded into the
emulation environment.

5.2.2 ROS/Gazebo Simulation

The development of the simulation is structured around three main components:
the model of the Pioneer 2 robot [13], the peripheral plugins (sensors, encoders, and

40 Chapter 5. Project Development

motors) and the implementation of the environment where the simulated robot will be
put. Each of these components plays a distinct role in the overall simulation setup.

5.2.2.1 Robot model

For this part, a search was conducted in the developer community for potential
CAD models [20] that could be exported to Gazebo [5] and used as the project’s robot
model. Although an exact version of the Pioneer 2 robot was not found, a model of the
Pioneer 3 robot was available. Since the differences between these models are primarily
related to hardware, the Pioneer 3 [21] CAD model was deemed suitable for use.

This model [22] encapsulates all the necessary information about the robot, including
its physics (such as weight, momentum, dimensions, and degrees of freedom), mechanical
details (such as its wheels and chassis), and overall design.

5.2.2.2 Peripherals plugins

The peripheral plugins were responsible for simulating the operation of the robot’s
sensors and actuators. Through the use of ROS Topics [23] for communication with the
emulation, each plugin acted as an intermediary, either publishing or subscribing to its
respective node.

For sensors, a distance sensor plugin and an encoder plugin were developed and
utilized. For actuators, the joint_motor ROS actuator was employed. Each of these plugins
will be explained in detail in the following sections.

5.2.2.2.1 Digital distance sensor plugin

The digital distance sensor plugin was created to replicate the behavior of a basic
digital proximity sensor. This sensor operates by detecting nearby objects and providing a
binary output based on the presence of an object. It outputs a signal of 0 (low) when no
object is within range and a signal of 1 (high) when an object is detected. This simple
binary response enables effective object detection and basic environmental awareness,
making it a useful tool in applications where obstacle detection is crucial.

The implementation was based on the standard ROS ray sensor [24]. To simulate
the operation of a digital distance sensor, a visibility threshold was set to determine when
an object is considered detected or not, outputting either 1 or 0. The sensor then publishes
this output to a ROS topic, which sends the information to QEMU’s emulation.

Listing 5.1 – Digital distance sensor simulation with ray plugin
1 void DigitalDistanceSensor :: OnNewLaserScans () {
2 this -> range_to_pub = this -> range_msg ;

5.2. Project and implementation 41

3

4 std_msgs :: Int32 digital_value ;
5 if (float(this -> range_msg .range) < float(this -> threshold)

) {
6 range_to_pub .range = 1;
7 digital_value .data = 1;
8 } else {
9 range_to_pub .range = 0;

10 digital_value .data = 0;
11 }
12

13 this ->pub. publish (digital_value);
14

15 if (this -> topic_name != "") {
16 common :: Time cur_time = this ->world -> SimTime ();
17

18 if (cur_time - this -> last_update_time >= this ->
update_period) {

19 this -> UpdateRangeData ();
20 this -> last_update_time = cur_time ;
21 }
22 } else {
23 gzthrow (" digital distance sensor topic name not set")

;
24 }
25 }

5.2.2.2.2 Encoder plugin

The encoder plugin was designed to simulate an absolute encoder. For this sim-
ulation, a 3-bit resolution was chosen, which allows for 8 distinct positions over a full
360-degree rotation. Unlike incremental encoders, which only track movement by counting
pulses, an absolute encoder provides a unique position value for each angle. This ensures
that the system always knows the exact angular position, regardless of any previous
movements or resets.

To implement this, the current position of the wheel joint element, which is
responsible for rotation, was used. The angle position of the wheel joint is then assigned
to one of the eight discrete values. For instance, if the wheel joint’s position is between 0

42 Chapter 5. Project Development

and 1/8 of 360 degrees, the output would be 0, and so on. The output is then published
to a ROS topic to provide the updated position to the system.

Listing 5.2 – Encoder plugin position update function
1 void EncoderPlugin :: OnUpdate () {
2 float wheel_angle = this ->wheel_joint -> Position (0);
3

4 int encoder_value = static_cast <int32_t >(fmod(
wheel_angle ,

5 2 * M_PI) / (M_PI / 4));
6 encoder_value = encoder_value % 8;
7

8 this -> encoder_msg .data = encoder_value ;
9 this -> encoder_pub . publish (this -> encoder_msg);

10 }

5.2.2.2.3 Joint motor plugin

The Joint Motor plugin [25], also sourced from the developer community, was used
to represent the robot’s motors. This plugin was adapted to manage the motor commands
with a 3-bit resolution, allowing control over the robot’s speed.

To implement this, the plugin subscribes to a command node that is published
by the emulation, receiving speed commands to control the robot’s movement. Once the
command is received, the plugin processes the speed value and publishes it to the nodes
responsible for controlling the motors. These nodes then drive the motors accordingly,
ensuring the robot’s movements align with the speed commands provided by the emulation.

Listing 5.3 – Joint motor update function
1 void JointMotor :: UpdateChild () {
2 joint_ -> SetParam ("fmax", 0, ode_joint_motor_fmax_);
3 joint_ -> SetParam ("vel", 0, input_); // input_ is

updated
4 // by node

subscription
5

6 common :: Time current_time = parent -> GetWorld () ->SimTime ()
;

7 double seconds_since_last_update =
8 (current_time - last_update_time_).Double ();
9 double current_speed =

5.2. Project and implementation 43

10 joint_ -> GetVelocity (0u)* encoder_to_shaft_ratio_ ;
11 ignition :: math :: Vector3d current_torque =
12 this ->link_ -> RelativeTorque ();
13 if (seconds_since_last_update > update_period_) {
14 publishWheelJointState (current_speed , current_torque

.Z());
15 publishRotorVelocity (current_speed);
16 last_update_time_ += common :: Time (update_period_);
17 }
18 }

5.2.2.3 Environment model

To create a realistic testing environment, the third-floor ramp of the Electrical
Engineering building at the Polytechnic School of the University of São Paulo was selected
as the basis for replication. This location was chosen not only because of our relation
to the building but also because it offers an ideal environment for testing the robot’s
performance.

The modeling of this environment 10 was done using Blender, which provided the
tools necessary to create a detailed representation of the physical structure. After the
environment was modeled, it was exported for use in Gazebo, ensuring an accurate and
functional setting for testing and validating the robot within the simulation.

5.2.3 Integration

One of the primary challenges of this project was establishing effective integration
between hardware emulation and the Gazebo simulation environment. To achieve this,
ROS topics were chosen as the communication medium between the two systems, a decision
driven by their modularity and compatibility with the Gazebo simulation.

On the other hand, there was no inherent support for ROS on the QEMU side,
which required efforts to overcome this compatibility barrier.

5.2.3.1 Adding ROS to QEMU

One of the initial challenges in integrating ROS with QEMU was the difference
in their native programming languages: ROS libraries are primarily written in C++ or
Python, whereas QEMU is implemented in C.

To address this, it was necessary to find a C-based library capable of implementing
a ROS node. After conducting research, the cROS library [26] was identified as a suitable

44 Chapter 5. Project Development

Figure 10 – Environment model

solution. This library provided the functionality needed to create ROS nodes in a C envi-
ronment. However, integrating this library into QEMU’s codebase presented an additional
challenge.

The integration was achieved by introducing a dedicated thread within QEMU’s
main loop. This thread was responsible for running the ROS main loop, which instantiated
a TCP/IP socket to stablish communication with other nodes. Each node was assigned a
callback function, responsible for publishing or subscribing to a topic, enabling interaction
between QEMU and the broader ROS ecosystem.

In addition to the ROS loop, it was necessary to modify the run.sh script. It was
nedded to specify to which port the socket should connect, and therefore, make the correct
link with the simulation.

The integration between emulation and simulation was achieved by incorporating
a dedicated thread into QEMU’s main loop. This thread executed the ROS main loop,
which instantiated a TCP/IP socket to establish communication with other ROS nodes.
Each node was paired with a callback function, enabling it to publish or subscribe to each
topics, enabling interaction between QEMU and the broader ROS ecosystem.

Additionally, modifications were made to the run.sh script to specify the port
for socket communication. This configuration ensured the proper connection between the

5.2. Project and implementation 45

emulation environment and the Gazebo simulation, establishing the link for real-time
interaction.

Figure 11 – QEMU with ROS socket

5.2.3.2 Complete integration

After integrating ROS into QEMU’s emulation, it was possible to establish full
communication between both systems. To achieve this, the following topics were defined:

• distance_sensor_(1-8): Topics responsible for sending the output of the distance
sensors. These are published by the Gazebo simulation and subscribed to on the
QEMU side.

• encoder_(left/right): Topics responsible for sending the encoder output. These
are published by the Gazebo simulation and subscribed to on the QEMU side.

• motor_(left/right): Topics responsible for sending motor commands. These are
published by QEMU and subscribed to on the Gazebo simulation side.

By running both environments with these topic references and establishing con-
nections between the ROS nodes, the systems were able to communicate effectively—
emulation sending commands to the simulation and the simulation providing sensor
information, completing, finally, the system implementation.

46 Chapter 5. Project Development

Figure 12 – Emulation and Simulation complete integration

5.3. Test Setup 47

5.3 Test Setup
As the main project is a simulation, the best way to validate the project was to

create the same situation that was created in the simulation in real life. With that, it could
compare the performance in the simulated environment with a similar real-life situation.

For it, we choose to use the Pioneer 2 DX [13], the same robot that we used in the
simulation, but as your simulation has not good support for communication protocols and
PWM, we had to add one adapter between the information from the real robot and the
bluepill.

In general, the Pioneer 2 DX adapter is responsible for getting all the information
from the robot by communication protocol and sending it to the bluepill in the form of
digital values with GPIOS. In contrast, the Pioneer 2 DX adapter is also responsible for
getting velocity from each motor that the bluepill has sent and sending it back to pioneer
2DX.

It is possible to visualize the general schema in the figure 13.

Figure 13 – Test Setup - General

5.3.1 Hardware

The hardware of the project has two main functionality:

• Connect the ESP32 D1 Mini with the bluepill

• Connect the ESP32 D1 Mini with the pioneer 2DX

The connection between the Bluepill and the ESP32 is detailed in Table 3. A
transistor is placed between the rst_signal from the Bluepill and the ESP32 D1 Mini. This

48 Chapter 5. Project Development

Figure 14 – Test Setup - Hardware

enables the ESP32 to be reset manually and ensures the signal stays high even when the
Bluepill’s signal is low.

It is possible to check the whole developed pcb for this interface in our github
repository in our organization [27].

Table 3 – Connection between Esp32 and Bluepill
Label Bluepill Pin ESP32 Pin Label Bluepill Pin ESP32 Pin
DD1 PA4 SD3 encoder1_s1 PB4 CLK
DD2 PA5 TCK encoder1_s2 PB3 SD1
DD3 PA6 IO5 encoder1_s3 PB15 IO2
DD4 PA7 IO25 encoder2_s1 PC13 NC
DD5 PB0 IO19 encoder2_s2 PC14 SD2
DD6 PB1 IO18 encoder2_s3 PC15 CMD
DD7 PB10 IO26 motor1_comm1 PB7 TDI
DD8 PB11 SVP motor1_comm2 PB6 IO4
rst_signal PB13 RST motor1_comm3 PB5 IO0
p2dx_con PB12 SD0 motor2_comm1 PA1 IO27

motor2_comm2 PA2 IO25
motor2_comm3 PA3 IO32

To connect the ESP32 D1 Mini to the Pioneer 2DX, we used specific components for
communication. The communication flow is illustrated in Figure 14, and the components’
names and functions are detailed in Table 4.

It is also possible to visualize the whole connection in the figure 15. The whole
schematic can be visualized in Appendix A

Unfortunately, it was not possible to get the Printed Circuit Board (PCB) in time
for this bachelor’s thesis deadline, but to test and demonstrate the whole project, all the

5.3. Test Setup 49

Table 4 – Project main components

Main Component Function

Bluepill Main microcontroller of the project, it is resposible to receive
the same code that is received in the simulation

Esp32 D1 Mini Microcontroller used to create a interface between bluepill and
pioner 2 DX

Max3232 Conversor between Serial TTL and Serial RS232
DB9 Connector Connector type DB9, widely used for serial RS232
2 LM317 Linear regulator Linear regulator for 3.3V and 5V

Figure 15 – Test Setup - ESP32 Connections

circuits that were planned to be used, except the voltage regulators, in the schematic were
built on a protoboard.

Instead of voltage regulators, we are using a small 10,000 mAh Ugreen power
bank [28] to supply 5V and the internal 3.3V regulator of the ESP32 D1 Mini to supply
3.3V to the circuit.

50 Chapter 5. Project Development

5.3.2 Real robot

Figure 16 – Real Robot With Pro-
totype Hardware

As the main PCB of the project could not arrive
in Brazil in time for manufacturing, it was necessary
to build the biggest part of circuit on a protoboard.

On top of the Pioneer 2DX, as shown in Figure
16, there is a Ugreen power bank [28] placed above
the visible wheel. A protoboard is positioned at the
back of the robot. An RS232 cable extends from the
protoboard and connects to the robot’s serial port.

On the top of the robot, there are also three
cables connected to the RS232 serial connector, enter-
ing the robot PCB on the top of the Pioneer 2DX, and
being fixed in a better way. This setup exists to reduce
intermittent contact between the communication pins.

5.3.2.1 Batteries

For the power supply of the entire robot, we are using the Intelbras 12V 7A [29].
The Pioneer 2DX supports up to three of these batteries. For the robot test, we used only
one of them.

Figure 17 – Pioneer 2DX - Batteries Informations

5.3.3 Pioneer 2DX Interface Firmware

The Pioneer 2DX Interface has the mission to perform the computational logic
behind the communication with the Pioneer 2DX and enable for an outside electronic
device to send and receive data from the robot. Being more specific for this project, the
Pioneer 2DX interface firmware has three main tasks:

5.3. Test Setup 51

• Connect the ESP32 D1 Mini with the bluepill

• Connect the ESP32 D1 Mini with a PS5 controller [30]

• Connect the ESP32 D1 Mini with the pioneer 2DX

The Pioneer 2DX interface allows either a PS5 controller [30] or the Bluepill
device to send data to the ESP32, but never simultaneously, as shown in Figure 18. The
complete code developed for this interface is available in the GitHub repository of our
organization [31].

The PS5 Controller was added to the project to make it easier to validate the
robot’s mechanical and electrical flow without needing to use the autonomous code. This
approach allows for identifying issues without suspecting the bluepill code.

Figure 18 – Test Setup - Pioneer 2dx Interface

5.3.3.1 Bluepill Connection

In general, the connection between the Bluepill and the ESP32 D1 Mini is performed
through a digital signal. As there are values that need to be represented as decimal values
to increase the precision, like a velocity of a motor, it is used as a concatenation of bits, in
complement of 2, to send values through the Bluepill to the ESP32 D1 Mini.

For the bit concatenation, for example, there are the pins motor2_comm1,
motor2_comm2, and motor2_comm3. The pin motor2_comm3 represents the
most significant bit, while motor2_comm1 represents the least significant bit. Check
Figure 19 to visualize an example for the encoder 1 data. It is also possible to check all
the connection pins between the Bluepill and the ESP32 D1 Mini in Table 3. The code
logic applied to convert the digital signal into a decimal value is described in the code
example 5.4. It is possible to read the whole code in the project repository [31].

52 Chapter 5. Project Development

This bit transformation is applied for encoder2_s1, encoder2_s2, encoder2_s3,
encoder1_s1, encoder1_s2, encoder1_s3, motor2_comm1, motor2_comm2,
motor2_comm3, motor1_comm1, motor1_comm2, motor1_comm3.

For other values, like all the digital distance sensor values (DDx) and p2dx_con
(responsible for initializing the communication with the robot), the information is passed
through a normal GPIO value.

Figure 19 – Test Setup - Encoder Data as Bits Example

Listing 5.4 – BluepillCommunication::loop() function
1 int16_t linear_vel = (
2 (this ->motor_gpio_state [0] << 2)
3 | (this -> motor_gpio_state [1] << 1)
4 | (this -> motor_gpio_state [2])
5);
6

7 int16_t angular_vel = (
8 (this -> motor_gpio_state [3] << 2)
9 | (this -> motor_gpio_state [4] << 1)

10 | this -> motor_gpio_state [5]
11);

Regarding the digital distance sensor data, the ESP32 D1 Mini retrieves the data
from the ultrasonic sensor on the Pioneer 2DX. Verify if the sensor value is less than half
of the range (this can be easily adjusted in the main code). If it is, set the digital distance
sensor pin to high; otherwise, set it to low.

Regarding the pin p2dx_con, in general, if the ESP32 D1 Mini receives a high
signal on this pin for more than 10 ms, it initiates the connection with the Pioneer 2DX.

5.3.3.2 Ps5 Controller Connection

The connection with the PS5 Controller with the ESP32 D1 Mini is performed by
the Bluetooth BLE [32] and the help of the Arduino library ps5-esp32 [33]. The library in

5.3. Test Setup 53

general allows you to quickly connect with a PS5 controller; it is only necessary to have
the MAC address of the controller.

With the intention of making it easy to control the robot, the buttons to control
the robot were chosen to work similarly to a car video game, which is possible to visualize
in the figure 20.

Figure 20 – Test Setup - PS5 Controller Commands

The logic behind the entire code is possible to be read in the ESP32 D1 Mini
project repository [31], however, the main logic can be checked in the code 5.5, what is a
small part of the whole code.

Listing 5.5 – Part of the main loop() function - PS5
1 while (ps5. isConnected () == true) {
2 if (ps5.Up() && (is_connected < 1)) {
3 is_connected = !(p2os ->setup ());
4 }
5

6 if (ps5.Down () && (is_connected > 0)) {
7 is_connected = p2os -> shutdown ();
8 }
9

10 if (is_connected) {
11 p2os ->loop ();
12 current_r2_val =scale(ps5. R2Value (), 0, 255, 0, 400);
13 current_l2_val =scale(ps5. L2Value (), 0, 255, 0, 400);
14 current_rs_x_val =
15 (-1)*scale(ps5. RStickX (), -128, 128, -170, 170);
16 msg_vel .linear.x = double(
17 double(current_r2_val - current_l2_val) / 1000
18);

54 Chapter 5. Project Development

19 msg_vel . angular .z = double(
20 double(current_rs_x_val) / 100
21);
22 p2os -> set_vel (& msg_vel);
23 if (millis () - last_time_motor_state > 100) {
24 msg_motor_state .state = 1;
25 p2os -> set_motor_state (& msg_motor_state);
26 last_time_motor_state = millis ();
27 }
28 }

5.3.3.3 Pioneer 2DX communication

The Pioneer 2 DX has the mission of establishing a two-way, trustworthy commu-
nication with the robot. For the main emulation of the project, we are using encoders
and digital distance sensors as sensors, and two motors as actuators. The communication
aims to obtain the current position of the robot (which will be converted into the position
of each wheel in the ESP32 logic for the Bluepill), the values from the ultrasonic sensor
(which will be used as digital distance sensor values through a threshold for the Bluepill),
and, simultaneously, transmit specific linear and angular velocities for the robot (derived
from the speed of the left and right wheels for the Bluepill). For a better understanding of
how this transformation occurs for the Bluepill, read the Bluepill connection topic 5.3.3.1.

The Pioneer 2DX between the ESP32 D1 Mini is done by the P2OS Communication,
which was described in the topic 2.6.

For the creation of the base code for this communication protocol, as inspiration, was
used the ROS package P2OS [34], which is available on GitHub in the P2OS repository [35],
specifically in the folder p2os_driver. Unfortunately, this ROS package is designed to be
used on a computer with ROS [15], so for this project, it was necessary to translate most
of the driver to make it compatible with a microcontroller using the Arduino library.

The simplified diagram of the P2OS-developed code is shown in Figure 21. For the
complete diagram, read the appendix B. The explanation of what each code file is doing
can be found below:

• p2os: Class responsible for performing the entire P2OS communication. It includes
methods for startup, shutdown, handling main loop operations, retrieving robot data,
and sending velocity and motor state formatted for the robot..

• p2os_comm: Class responsible for encapsulating parameters, settings, and helper
methods to perform the entire P2OS communication protocol correctly. This class is

5.3. Test Setup 55

Figure 21 – Test Setup - P2OS Communication Code Organization - Simplified

also responsible for managing the entire infinite state machine required to connect
with the robot, as described in the topic 2.6.

• packet: Class responsible for building messages (adding headers and checksums),
verifying received messages, receiving messages from the Pioneer 2DX, and sending
messages to the Pioneer 2DX.

• sip: Class responsible for processing and managing data exchanged with a robot,
such as separating the data into different types of variables and filtering out incorrect
data.

• robot_params: File responsible for managing all Pioneer robot type configurations,
like the distance between wheels, available commands, number of ultrasonic sensors
etc.

• p2os_config: File responsible for maintaining all the P2OS protocol configurations.

• p2os_msgs: File responsible for defining all message types used throughout the
P2OS protocol.

As the p2os.hpp class describes the higher abstraction level of the communication,
it is possible to observe in the main loop of this class how the algorithm works. Basically,
every time the velocity input changes and it is a valid input value, it is sent to the robot,
and the current data from the available sensors is retrieved. The same logic is applied to the
motor state input. Additionally, at a predefined time interval specified in the p2os_config
file, a pulse is sent to the robot to maintain the connection. Furthermore, even if nothing

56 Chapter 5. Project Development

is being sent, the SendReceive data function is called to continue receiving and saving
data from the robot’s sensors.

The main loop is described here in the code example 5.6.

Listing 5.6 – Part of the P2OS::loop() function
1 void P2OS :: loop () {
2 this -> current_time = millis ();
3

4 this ->p2os_comm -> check_and_set_vel ();
5 this ->p2os_comm -> check_and_set_motor_state ();
6

7 if (this ->p2os_comm -> get_pulse () > 0) {
8 if (this ->p2os_comm -> millis2Sec (this -> current_time -

this -> last_time_pulse) > this ->p2os_comm ->
get_pulse ()) {

9 #ifdef P2OS_DEBUG_PRINT
10 this ->debug_serial -> println (" sending pulse");
11 #endif
12 this ->p2os_comm -> SendPulse ();
13 this -> last_time_pulse = this -> current_time ;
14 }
15 }
16

17 this ->p2os_comm -> SendReceive (NULL , true);
18 this ->p2os_comm -> updateDiagnostics ();
19 }

5.4 Results
After completing the project development and documentation, it was possible to

validate the project’s main goal: ensuring that the simulator behaves exactly like the real
robot while running the exact same binaries.

The proof of concept was established through the following tests:

• Motor command data verification

• Distance sensor data acquisition verification

• Encoder data verification

5.4. Results 57

• Obstacle avoidance software testing: A software implementation that enables
the robot to avoid obstacles.

Each component of the emulation-simulation connection was tested individually to
ensure proper functionality and accuracy. For security reasons, the values published on
the simulation’s ROS topics were compared with the values transmitted via the ESP32.
After these comparisons, the binaries were tested by running them in both the real setup
and the simulation, ensuring consistent behavior in both environments.

5.4.1 Motors command validation

The first test aimed to verify the commands sent to the motors. As detailed in
Bluepill Connection5.3.3.1, the command signal was a 3-bit two’s complement value. To
move forward, the robot could receive values between 1 and 3, while for backward motion,
values ranged from -1 to -4.

To validate the motor commands, both the simulation and the real robot were
tasked with executing two simple movements: moving forward and backward. The binary
test initialized the command at 0, then transitioned to 3, back to -4, and finally returned
to 0.

As a first step, the commands published on the ROS topics were compared with
those sent by the ESP32 D1 Mini. Subsequently, the simulation’s behavior was compared
to that of the real robot.

The results showed consistency between the simulation and the real robot. However,
due to the limited precision of the 3-bit command signal, the motor transitions were
somewhat abrupt and lacked smoothness. For improved performance, a higher precision
command range would be recommended to enable smoother motor acceleration and
deceleration.

5.4.2 Distance sensors validation

To verify the functioning of the distance sensors, each sensor was tested individually,
followed by a test of all sensors operating simultaneously. Initially, the values read by the
ROS topics were compared with those obtained from the ESP to ensure consistency.

Next, a more dynamic test was conducted where the robot was programmed to
move forward only when a sensor detected an obstacle. This test was designed to evaluate
the responsiveness of the system.

Finally, the simulation results were compared with the real robot’s behavior. The
real robot responded as expected, validating the accuracy and functionality of the distance
sensors.

58 Chapter 5. Project Development

5.4.3 Encoders validation

The encoder validation primarily focused on comparing the data received from the
simulation with the data obtained from the ESP32. Once the values matched, the encoder
functionality was satisfactory. However, it was not possible to perform a comprehensive
test of the encoders due to precision differences between the simulation and the physical
encoders on the Pioneer 2 robot.

5.4.4 Dodge obstacles validation

After completing the individual component validations, a full robot application
was tested: obstacle dodging. Widely used in mobile robotics, this task combines robot
control and sensor responsiveness, making it an effective demonstration of the simulator’s
comprehensive validation.

The developed software employs a finite state machine (FSM) to guide the robot’s
navigation—a common approach in the field of robotics.

With this software, the project was able to demonstrate practical application in
a real-world scenario. Moreover, the simulator served as a valuable tool for testing the
obstacle-dodging software before deploying it on the physical robot, further reinforcing
the project’s goals and purpose.

As anticipated, the simulation produced satisfactory results, with the real robot
successfully performing the task as intended.

59

6 Final considerations

6.1 Conclusion
In conclusion, this project represents a important advancement in robotics simula-

tion by successfully integrating a hardware emulator with a fully simulated environment.
This achievement not only validated the project’s primary objectives, as shown in the
section 1.2, but also underscored its utility and potential applications. During its imple-
mentation and testing, the simulator proved its value as a self-validating tool and debugger,
particularly when integrated with the Pioneer 2DX system, as described in Section 5.3.

Working on this project has been a gratifying experience, culminating in the delivery
of an innovative solution. The integration of hardware emulation and simulation stands as
a pioneering effort, opening doors for further exploration in this domain. By successfully
bridging the gap between these two technologies, this project lays the groundwork for
future advancements, encouraging others to delve into the field of robotics simulation.

As the first initiative of its kind, this project serves as inspiration for others to
collaborate, innovate, and contribute to the development of new simulators. Such efforts
have the potential to drive even greater progress in robotics, fostering creativity and
accelerating advancements in the field.

6.2 Contributions
As the conclusion of this work, we successfully integrated QEMU with Gazebo,

two completely different technologies. This results demonstrates that it is entirely possible
to fully integrate a microcontroller within an emulation environment and opens for diffent
types of implementation in the future.

Besides covering the entire scope of the project, it was one of the first open-source
initiatives to emulate a wide range of microcontroller peripherals simultaneously, using
ROS to make the GPIOs easily readable and writable outside the emulation, like an
interface. With this strategy, it has the potential to enable much more scalable projects in
the future.

Regarding the test setup of the robot, as described in Section 5.3, it was necessary
to translate the entire ROS P2OS library, originally designed for use on a computer, to
be compatible with a standard microcontroller and arduino IDE. Since no other library
is available to perform the same function, this enables the possibility of making it open
source and adding future contributions to support the work of other students who wish to

60 Chapter 6. Final considerations

use the Pioneer 2DX.

6.3 Prospects for Continuity
As unconvencional and multi area project, there are a plenty of possible improvement

in different aspects.

Regarding the microcontroller emulation, it would be nice to add the possibility to
emulate peripherals derived from timers, such as PWM, ADC, and several communication
protocols. It would also be interesting to build a better architecture in the STM32 QEMU
project.

Regarding the environment simulation, it would be interesting to try different types
of simulators, such as the CARLA simulator [36], which offers alternative ways to model
and visualize sensors and actuators.

Regarding the integration between the emulation and the simulation, it would be
better to use a ROS2 provider instead of ROS Noetic (the last version of ROS1), as ROS1
will reach its end of life around the beginning of 2024 [37]. Furthermore, Gazebo Classic,
also used in the project, will also reach its end of life next year [38], making it necessary
to update. Updating the software versions is extremely important to ensure the use of the
safest and most stable version of the product.

Regarding the test setup, it would be beneficial to manufacture the entire PCB
using the current available schematic and improve the battery support in the robot, as it
is not properly secured at the moment.

61

Bibliography

1 Natalie Rosa. Boeing admite que sabia de falhas de software antes de dois acidentes
fatais. CanalTech, Maio 2019. Disponível em: <https://canaltech.com.br/software/
boeing-admite-que-sabia-de-falhas-de-software-antes-de-dois-acidentes-fatais-138563/l>.
Citado na página 17.

2 Caroline Sassatelli e Guilherme Blanco Muniz. Falha em software pode ter
motivado acidente fatal com autônomo da Uber. autoesporte - globo, Maio
2018. Disponível em: <https://autoesporte.globo.com/carros/noticia/2018/05/
falha-em-software-pode-ter-motivado-acidente-fatal-com-autonomo-da-uber.ghtml>.
Citado na página 17.

3 Arduino. Arduino CC. 2023. New York, New York, United States. Organization - For
Profit. Disponível em: <https://www.arduino.cc>. Citado na página 17.

4 STMicroelectronics. STMicroelectronics. 2023. Geneva, Switzerland. . Disponível em:
<https://www.st.com/content/st_com/en.html>. Citado 2 vezes nas páginas 17 and 39.

5 The Gazebo Team. Robot simulation made easy. 2021. Disponível em: <http:
//gazebosim.org/>. Citado 2 vezes nas páginas 18 and 40.

6 QEMU. QEMU A generic and open source machine emulator and virtualizers. [S.l.],
2024. Disponível em: <https://www.qemu.org>. Citado 2 vezes nas páginas 18 and 36.

7 ELECTRONICHUB. Basics of Microcontrollers – History, Struc-
ture and Applications. Disponível em: <https://www.electronicshub.org/
microcontrollers-basics-structure-applications/>. Citado na página 22.

8 STMICROELECTRONICS. Medium-density performance line Arm®-based 32-bit
MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. interfaces. [S.l.],
2022. Disponível em: <https://www.st.com/resource/en/datasheet/stm32f103c8.pdf>.
Citado 2 vezes nas páginas 23 and 39.

9 Google. Google Protocol Buffers. 2023. Mountain View, California, United States.
Organization - For Profit. Disponível em: <https://protobuf.dev/>. Citado na página 24.

10 Microsoft. Publisher-Subscriber pattern. 2023. Redmond, Washington, United States.
Organization - For Profit. Disponível em: <https://learn.microsoft.com/en-us/azure/
architecture/patterns/publisher-subscriber>. Citado na página 24.

11 Linux KVM Project. Linux Kernel-based Virtual Machine (KVM). 2023. Official
Website. An open-source virtualization technology integrated into the Linux kernel.
Disponível em: <https://linux-kvm.org/page/Main_Page>. Citado na página 25.

12 Wikipedia contributors. ARM architecture family – Wikipedia. 2024. [Online; accessed
10-December-2024]. Disponível em: <https://en.wikipedia.org/wiki/ARM_architecture_
family>. Citado na página 26.

https://canaltech.com.br/software/boeing-admite-que-sabia-de-falhas-de-software-antes-de-dois-acidentes-fatais-138563/l
https://canaltech.com.br/software/boeing-admite-que-sabia-de-falhas-de-software-antes-de-dois-acidentes-fatais-138563/l
https://autoesporte.globo.com/carros/noticia/2018/05/falha-em-software-pode-ter-motivado-acidente-fatal-com-autonomo-da-uber.ghtml
https://autoesporte.globo.com/carros/noticia/2018/05/falha-em-software-pode-ter-motivado-acidente-fatal-com-autonomo-da-uber.ghtml
https://www.arduino.cc
https://www.st.com/content/st_com/en.html
http://gazebosim.org/
http://gazebosim.org/
https://www.qemu.org
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://protobuf.dev/
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://linux-kvm.org/page/Main_Page
https://en.wikipedia.org/wiki/ARM_architecture_family
https://en.wikipedia.org/wiki/ARM_architecture_family

62 Bibliography

13 ROBOTICS, A. Pioneer 2 DX Operations Manual. [S.l.], 2001. Accessed: 2024-12-05.
Disponível em: <https://www.iri.upc.edu/groups/lrobots/private/Pioneer2/AT_DISK1/
DOCUMENTS/p2opman9.pdf>. Citado 4 vezes nas páginas 27, 29, 39, and 47.

14 LABS, P. PlatformIO: Professional Collaborative Platform for Embedded Development.
2024. Accessed: 2024-12-10. Disponível em: <https://platformio.org>. Citado na página
35.

15 ROS FOUNDATION INC. ROS - Robot Operating System. [S.l.], 2024. Disponível em:
<https://www.ros.org>. Citado 2 vezes nas páginas 36 and 54.

16 SYSTEMS, E. ESP32. 2024. Accessed: 2024-12-05. Disponível em: <https:
//www.espressif.com/en/products/socs/esp32>. Citado na página 38.

17 STMicroelectronics. STM32CubeMX: Initialization Code Generator. 2023. Geneva,
Switzerland. Software tool for STM32 microcontroller configuration and code generation.
Disponível em: <https://www.st.com/en/development-tools/stm32cubemx.html>.
Citado na página 39.

18 Generic Manufacturers. Blue Pill Development Board: STM32F103-based
Microcontroller Board. 2023. Widely used open-source development board. Compact,
affordable development board featuring the STM32F103C8 microcontroller. Disponível
em: <https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html>. Citado na
página 39.

19 Beckus and Contributors. QEMU STM32: STM32 Microcontroller Emulator for
QEMU. 2023. GitHub Repository. QEMU-based emulator for STM32 microcontrollers,
enabling simulation of STM32 applications without hardware. Disponível em:
<https://github.com/beckus/qemu_stm32>. Citado na página 39.

20 Autodesk and Other CAD Software Developers. Computer-Aided Design
(CAD). 2023. Digital Design and Modeling Software Tools. Software used for
precision design, simulation, and modeling in various industries. Disponível em:
<https://en.wikipedia.org/wiki/Computer-aided_design>. Citado na página 40.

21 Adept MobileRobots. Pioneer 3 Robot Platform. 2023. Official Mobile
Robotics Development Platform. Versatile robot platform used in research
and education, featuring modular design and advanced sensors. Disponível em:
<https://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx>. Citado na
página 40.

22 Mario Serna and Contributors. Pioneer P3-DX CAD Model Repository. 2023. GitHub
Repository. Open-source CAD model for the Pioneer P3-DX robot. Disponível em:
<https://github.com/mario-serna/pioneer_p3dx_model/tree/master>. Citado na
página 40.

23 Open Source Robotics Foundation (OSRF). ROS Topics: Communication Mechanism
in Robot Operating System. 2023. Online Documentation and Tutorials. Core concept
in ROS enabling publish/subscribe communication between nodes. Disponível em:
<https://wiki.ros.org/Topics>. Citado na página 40.

https://www.iri.upc.edu/groups/lrobots/private/Pioneer2/AT_DISK1/DOCUMENTS/p2opman9.pdf
https://www.iri.upc.edu/groups/lrobots/private/Pioneer2/AT_DISK1/DOCUMENTS/p2opman9.pdf
https://platformio.org
https://www.ros.org
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.st.com/en/development-tools/stm32cubemx.html
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill.html
https://github.com/beckus/qemu_stm32
https://en.wikipedia.org/wiki/Computer-aided_design
https://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
https://github.com/mario-serna/pioneer_p3dx_model/tree/master
https://wiki.ros.org/Topics

Bibliography 63

24 ROS and Ray Project Developers. ROS Ray Sensor: Integration of Ray
Sensors with Robot Operating System. 2023. Online Documentation and GitHub
Repository. ROS package for integrating Ray sensors in robotic applications,
enabling sensor data processing and communication. Disponível em: <https:
//github.com/ray-project/ray/tree/master/python/ray/experimental/ros_sensor>.
Citado na página 40.

25 Nils Europa and Contributors. Gazebo ROS Motors Plugin: Integration of Motors
in Gazebo with ROS. 2023. GitHub Repository. Plugin for integrating motor control in
Gazebo simulations with ROS, enabling realistic motor dynamics and control. Disponível
em: <https://github.com/nilseuropa/gazebo_ros_motors>. Citado na página 42.

26 ROS Industrial Attic and Contributors. CROS: ROS-based Control Software
for Industrial Robots. 2023. GitHub Repository. CROS is a collection of software
for controlling industrial robots in a ROS environment. Disponível em: <https:
//github.com/ros-industrial-attic/cros>. Citado na página 43.

27 TEAM, Q.-G. S. Pioneer 2DX Interface - PCB. 2024. Accessed: 2024-12-06. Disponível
em: <https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/master/PCB_
Project>. Citado na página 48.

28 Ugreen Brasil. Carregador Sem Fio Ugreen 10000mAh 20W Power Bank
Cinza. 2024. Accessed: 2024-12-11. Disponível em: <https://ugreendobrasil.com.
br/produto/carregador-sem-fio-ugreen-10000mah-20w-power-bank-cinza/?srsltid=
AfmBOopIYC9qEaEK-_pi07Ne5WbIGNc5jrGfm3ZDJlUxDqeqGEk3A3U3>. Citado 2
vezes nas páginas 49 and 50.

29 Intelbras. Bateria de Chumbo Ácido 12V XB 1270. 2024. Acessado em:
11 de dezembro de 2024. Disponível em: <https://www.intelbras.com/pt-br/
bateria-de-chumbo-acido-12v-xb-1270>. Citado na página 50.

30 ENTERTAINMENT, S. I. DualSense™ Wireless Controller. 2024. Acesso em: 7 de
dezembro de 2024. Disponível em: <https://www.playstation.com/pt-br/accessories/
dualsense-wireless-controller/>. Citado na página 51.

31 TEAM, Q.-G. S. Pioneer 2DX Interface - ESP32 Code. 2024. Accessed: 2024-12-06.
Disponível em: <https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/
master/code-esp32_d1>. Citado 2 vezes nas páginas 51 and 53.

32 Wikipedia contributors. Bluetooth Low Energy. 2024. Accessed: 2024-12-07. Disponível
em: <https://en.wikipedia.org/wiki/Bluetooth_Low_Energy>. Citado na página 52.

33 BAKISKAN, R. PS5 ESP32. 2023. <https://github.com/rodneybakiskan/ps5-esp32>.
Acesso em: 7 de dezembro de 2024. Disponível em: <https://github.com/rodneybakiskan/
ps5-esp32>. Citado na página 52.

34 H., A. P2OS. 2024. Accessed: 2024-12-08. Disponível em: <https://wiki.ros.org/p2os>.
Citado na página 54.

35 H., A. p2os. 2024. <https://github.com/allenh1/p2os>. Accessed: 2024-12-08. Citado
na página 54.

https://github.com/ray-project/ray/tree/master/python/ray/experimental/ros_sensor
https://github.com/ray-project/ray/tree/master/python/ray/experimental/ros_sensor
https://github.com/nilseuropa/gazebo_ros_motors
https://github.com/ros-industrial-attic/cros
https://github.com/ros-industrial-attic/cros
https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/master/PCB_Project
https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/master/PCB_Project
https://ugreendobrasil.com.br/produto/carregador-sem-fio-ugreen-10000mah-20w-power-bank-cinza/?srsltid=AfmBOopIYC9qEaEK-_pi07Ne5WbIGNc5jrGfm3ZDJlUxDqeqGEk3A3U3
https://ugreendobrasil.com.br/produto/carregador-sem-fio-ugreen-10000mah-20w-power-bank-cinza/?srsltid=AfmBOopIYC9qEaEK-_pi07Ne5WbIGNc5jrGfm3ZDJlUxDqeqGEk3A3U3
https://ugreendobrasil.com.br/produto/carregador-sem-fio-ugreen-10000mah-20w-power-bank-cinza/?srsltid=AfmBOopIYC9qEaEK-_pi07Ne5WbIGNc5jrGfm3ZDJlUxDqeqGEk3A3U3
https://www.intelbras.com/pt-br/bateria-de-chumbo-acido-12v-xb-1270
https://www.intelbras.com/pt-br/bateria-de-chumbo-acido-12v-xb-1270
https://www.playstation.com/pt-br/accessories/dualsense-wireless-controller/
https://www.playstation.com/pt-br/accessories/dualsense-wireless-controller/
https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/master/code-esp32_d1
https://github.com/qemu-gazebo-sim/pioneer_2DX-Interface/tree/master/code-esp32_d1
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://github.com/rodneybakiskan/ps5-esp32
https://github.com/rodneybakiskan/ps5-esp32
https://github.com/rodneybakiskan/ps5-esp32
https://wiki.ros.org/p2os
https://github.com/allenh1/p2os

64 Bibliography

36 CARLA. CARLA Simulator. 2024. Accessed: 2024-12-11. Disponível em:
<https://carla.org>. Citado na página 60.

37 DISCOURSE, R. ROS News for the Week of December 2nd, 2024. 2024.
<https://discourse.ros.org/t/ros-news-for-the-week-of-december-2nd-2024/40997>.
Accessed: 2024-12-11. Citado na página 60.

38 SCOTT, K. Gazebo Classic and Citadel End of Life [x-post Gazebo Sim
Community]. 2024. Accessed: 2024-12-11. Disponível em: <https://discourse.ros.org/t/
gazebo-classic-and-citadel-end-of-life-x-post-gazebo-sim-community/40931>. Citado na
página 60.

https://carla.org
https://discourse.ros.org/t/ros-news-for-the-week-of-december-2nd-2024/40997
https://discourse.ros.org/t/gazebo-classic-and-citadel-end-of-life-x-post-gazebo-sim-community/40931
https://discourse.ros.org/t/gazebo-classic-and-citadel-end-of-life-x-post-gazebo-sim-community/40931

65

APPENDIX A – Pioneer 2DX Interface
Hardware

A.1 Schematics

680R0805

680R0805

680R0805

12 12

P NP N

txd0_micro
rxd0_micro

5v

rst_signal

txd2_micro
rxd2_micro

txd1_i_m232

rxd1_i_m232

txd1_i_m232

rxd1_i_m232

3v3

txd2_micro
rxd2_micro

gnd

gnd

23

12

12 12

1
2
3
4

10 G1

11
G2

9
9

8
8

7
7

6
6

5
5

4
4

3
3

2
2

1
1

J1

SD0
11

TD012
VCC

13
GND14
IO16

15
IO1716
IO21

17
IO2218
RDX

19
TXD20

SD3
21

TCK 22
3V3

23
IO5 24
IO23

25
IO19 26
IO18

27
IO26 28
SVP

29
RST 30

dds_1
dds_2

dds_3
dds_4
dds_5
dds_6
dds_7
dds_8

p2dx_con

A.2. PCB 69

A.2 PCB

A.3 Components

71

APPENDIX B – Pioneer 2DX Interface Code
Organization

Figure 22 – Pioneer 2DX Interface - P2OS Communication Code Organization

Note: p2os_msg.hpp and p2os_config.hpp are used in all files.

72 APPENDIX B. Pioneer 2DX Interface Code Organization

Figure 23 – Pioneer 2DX Interface - Complete Code Organization

	Title page
	Title page
	List of Figures
	List of Tables
	Contents
	Contents
	Introduction
	Motivation
	Micro-controllers and Embedded Systems
	Simulations and Robots
	Mobile Autonomous Robots

	Objective
	Justification
	Project Organization

	Conceptual Aspects
	Microcontroller Emulation
	What is a Microcontroller
	General Purpose Input/Output (GPIO)

	Environment Simulation
	Modeling the environment
	Running the environment

	Integration between the simulation and the emulation
	Protocol Buffers
	Publishers and Subscribers

	Kernel Virtual Machine and Emulation
	Kernel Virtual Machine
	Emulation

	Real Robot hardware and communication
	Pioneer 2DX
	Communication

	P2OS - Communication protocol
	P2OS - Commands Packet

	Methodology
	Development Planning
	Choose and emulate the micro-controller
	Model the environment and the robot
	Run the environment and the robot
	Interconnect the emulation and simulation
	Prototype an electronic interface between the micro-controller and the robot
	Manufacture and test the electronic interface
	Test development code with the real robot
	Compare the results with a real device

	Requirements Specifications
	Functional
	Non-Functional

	Project Development
	Tools
	Main program development
	C and C++ programming languages
	CubeMX
	PlatformIO

	Microcontroller Emulation
	QEMU
	ROS

	Simulation
	Gazebo
	Blender

	Hardware development
	Altium desing
	Multisim

	Hardware technologies
	Robot Pionner 2
	Bluepill developement board
	Esp32 D1 Mini

	Others
	Max3232
	LM317

	Project and implementation
	Microcontroller emulation
	Choosing the hardware
	Emulating with QEMU

	ROS/Gazebo Simulation
	Robot model
	Peripherals plugins
	Digital distance sensor plugin
	Encoder plugin
	Joint motor plugin

	Environment model

	Integration
	Adding ROS to QEMU
	Complete integration

	Test Setup
	Hardware
	Real robot
	Batteries

	Pioneer 2DX Interface Firmware
	Bluepill Connection
	Ps5 Controller Connection
	Pioneer 2DX communication

	Results
	Motors command validation
	Distance sensors validation
	Encoders validation
	Dodge obstacles validation

	Final considerations
	Conclusion
	Contributions
	Prospects for Continuity

	Bibliography
	Pioneer 2DX Interface Hardware
	Schematics
	PCB
	Components

	Pioneer 2DX Interface Code Organization

