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Computação.

Advisor:

Pedro Luiz Pizzigatti Corrêa
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ABSTRACT

This paper describes the process of developing a quantitative investment strategy from

scratch. Our goal was to implement it by predicting the direction of market changes. We

start with extensive research on predicting market direction, different prediction models

and work on their implementation. We focus our work on exploring the advantages of

polymodels, an ensemble model composed of univariate forecasting models. It is used

to predict the volatility of major American and Brazilian stock indices. This predicted

volatility is then used to estimate the probability that the market will have a positive

return over a given time horizon. Once the forecasting model is implemented, we build

an investment strategy using the inputs from the model’s prediction and test whether it

has the potential to outperform the market. Our results are quite satisfactory, as we were

able to find profitable out-of-sample strategies that outperformed the market benchmark.

Keywords – quantitative investments, polymodel, volatility forecasting, market di-

rection, investment strategies



RESUMO

Este trabalho descreve o processo de desenvolvimento de uma estratégia quantitativa

de investimento a partir do zero. Nosso objetivo era implementá-la prevendo a direção

das variações do mercado. Começamos fazendo uma extensa pesquisa sobre a previsão da

direção do mercado, diferentes modelos de previsão e trabalhamos em sua implementação.

Concentramos nosso trabalho na exploração das vantagens de um modelo conhecido como

polymodels, que consiste numa composição de modelos de previsão univariados. Ele é us-

ado para prever a volatilidade dos principais ı́ndices de ações americano e brasileiro. Essa

volatilidade prevista é então usada para estimar a probabilidade de o mercado ter um

retorno positivo em um determinado horizonte de tempo. Depois que o modelo de pre-

visão é implementado, criamos uma estratégia de investimento utilizando os dados da

previsão do modelo e testamos se ela tem o potencial de superar o desempenho do indice

de referencia do mercado. Nossos resultados são bastante satisfatórios, conseguimos en-

contrar estratégias lucrativas out of sample que superaram o desempenho do benchmark

de mercado.

Palavras-chave – investimentos quantitativos, polymodel, previsões de volatilidade,

direção de mercado, estratégias de investimento
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1 INTRODUCTION

1.1 Motivation

In the dynamic and challenging world of financial markets, the search for profitable

investment strategies remains a primary objective for both individual and institutional

investors. With the advancement of computational techniques and the availability of vast

amounts of financial data, quantitative investment strategies have gained significant pop-

ularity in recent years. In this dynamic context, this work embarks on a comprehensive

journey, delving into the implementation process of a quantitative investment strategy

aimed at predicting the direction of market changes, from initial theory to final backtest-

ing. Our research seeks to answer the key question: Can we build a successful investment

strategy based on predicting the direction of market change?

1.2 Objectives and literature

We start by analyzing the predictability of the market. A substantial body of research

has explored various quantitative investment strategies, ranging from simple moving av-

erages to sophisticated machine learning algorithms. Researchers have primarily focused

on predicting directional trends in excess returns, as highlighted by Nyberg’s [1] study

on directional forecasting. Many of them have documented that only the direction of

excess returns is predictable. According to Christoffersen and Diebold [2], while there’s

an extensive attempt to predict market returns, their random behavior makes them very

difficult and perhaps impossible to predict. It’s said that conditional mean independence

is considered a good approximation to the dynamics of asset returns, and therefore their
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unpredictability is assumed. However, when asset returns are decomposed into the prod-

uct of return sign and return module, as in the equation below, it is shown that these

terms are individually predictable. Later, the same authors attempt, with some success,

to produce direction-of-change forecasts useful for market timing [3].

rt = sign(rt) · |rt|

Their approach had the goal of estimating the probability of future positive returns

- the market direction - and had expected market volatility and expected conditional

returns as key inputs. In order to extend this model, we will focus our research on

volatility forecasting.

According to Campbell [4], changing market volatility affects the expected returns

of all assets, and measuring variations in volatility can help explain changes in expected

returns. In his work, he rejects the hypothesis that volatility changes are unpredictable on

a daily basis, but he doesn’t succeed in finding a trading strategy that generates economic

profits. Hansen and Lunde [5] compare GARCH(1,1) to other ARCH model variations

for predicting daily volatility. Their conclusion is that few models outperform GARCH

and the difference in performance is very small.

In this paper, we will predict volatility by implementing a new model known as poly-

models. The theory of polymodels was first introduced by Raphael Douady in his paper

on StressVaR [6], a new risk indicator. The polymodel consists of a group of so-called

elementary models - univariate models - that share the same objective. Most of its ap-

plications so far have been related to risk. In another article, Douady uses nonlinear

polymodels to manage the downside of strategies [7]. Thomas Barrau and Douady [8]

provide details on the conception and the main advantages of using polymodels, among

them the absence of multicollinearity problems and the possibility of having different

time series with different lengths. The flexibility of polymodels allows them to be used

in different ways, especially when calculating the final output of the model and allowing

more interpretability of the prediction process. Different approaches can lead to different
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aggregation methods for different interpretations [8]. Wang et al. [9] provided an updated

review of the extensive literature on forecast combinations, such as some averaging and

regression methods that we will use in this paper.

In developing an investment strategy, it is critical to have an allocation system that

determines how much to invest in a given asset. Many studies have been done on cali-

bration and position sizing for portfolio strategies. Markowitz’s 1952 paper on portfolio

selection [10] introduced the concept of mean-variance optimization, which has become

a cornerstone of modern portfolio theory and influenced the development of position siz-

ing techniques. Markowitz’s work has paved the way for many practical applications

of position sizing, such as risk parity, minimum variance, and maximum diversification

strategies, which aim to achieve optimal portfolio allocations while effectively managing

risk. Meyer et al. [11] provide a study that analyzes and compares various methods com-

monly used by portfolio managers, including the Kelly criterion, all-or-nothing betting,

and other sizing methods. In this paper, we will use these sizing techniques to build an

investment strategy from our predictions.

Another important step in implementing our investment strategy was backtesting,

which involves testing a trading strategy against historical market data to evaluate its

potential performance. When working with financial time series, the data length isn’t

usually very long, so in order to get the most out of it, it’s important to cross-validate

when training a model. However, we must be careful to avoid data leakage during this

process. Leakage occurs when the training set contains information that also appears in

the test set. One reason why k-fold CV fails in finance is that it cannot be assumed that

the observations come from an IID process [12]. Another potential problem in backtesting

is data snooping, which refers to any statistical procedure that uses sample data with the

with the intention of improving the reported results. Therefore, we use the cleaned cross-

validation [13].

The main contributions of this paper lie in the development of the prediction model

and the predictability of the direction of return changes. First, we extend the model
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proposed by Christoffersen and Diebold [2] by implementing a new volatility prediction

model from scratch. While the authors use GARCH models to predict volatility, we will

use other techniques to better predict volatility. Second, this work will be the first to use

the polymodels theory [8] to predict the direction of market changes. The choice of using

polymodels theory to predict market direction represents a departure from traditional

models that rely on single forecasting techniques. By using polymodels, we introduce

a more versatile and adaptive approach that can capture intricate patterns in market

dynamics.

This work is organized as follows. In Section 2, we focus on the main theory of our

model to estimate the probability of the direction of market change. In section 3, we

go deeper into the theoretical concepts of polymodels and propose a new approach to it.

We also have a review in other volatility prediction models and compare them with the

polymodels. The next section details the methodology of this work, how we manage the

data, implementation of the polymodels and backtesting. Section 5 presents and discusses

the main results of our strategy. Finally, we present the conclusions of this work.
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2 MARKET DIRECTION AND STRATEGY

In this work, we propose to extend the implementation proposed by Christoffersen

and Diebold [2]. In their work, it was revealed a direct connection between asset return

volatility and asset return sign, which we call direction of change. While the authors use

GARCH models to predict volatility, we will implement and make use of the polymodels

with the same goal.

2.1 Probability of positive returns

Let Rt be a series of returns and Ωt the information set available at time t. We define

the probability of a positive return as Pr[Rt > 0]. The conditional mean and variance

are denoted respectively as µt+1|t and σ2
t+1|t. If Pr[Rt+1 > 0|Ωt] varies with Ωt, exists

conditional dependence and the return series is sign predictable. We can denote a generic

distribution of the conditional returns as:

Rt+1|Ωt ∼ (µ, σ2
t+1|t)

Then the conditional probability of positive return can be written as:

Pr[Rt+1 > 0|Ωt] = 1− Pr(Rt+1 ≤ 0|Ωt)

= 1− F

(
−µ

σt+1|t

)

where F is the distribution function of the standardized return (Rt+1 − µ)/σt+1|t.
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In this paper, we are going to use the same way:

Pr(Rt+1 > 0|Ωt) = 1− F

(
−µt+1|t

σt+1|t

)

We can see that with the equation above, we can now calculate the probability of

having positive returns in function of the conditional mean of expected returns in t+ 1|t

and of the expected future volatility at the same time defined by σt+1|t. The next step is

to model and predict these two components of the equation. Using the historical data, the

expected conditional return can be computed on a regression in function of the volatility.

For that, we are going to fit the following estimator for our direction model:

µ̂t = β̂0 + β̂1log(σ̂t) + β̂2[log(σ̂t)]
2 + β̂3[log(σ̂t)]

3, t = 1, ..., k

where k is the length of available data at time k. With this estimator we can estimate

µ̂t+1|t in function of σ̂t+1|t. Following that, we are going to estimate the future volatility

(σ̂t+1|t) in order to estimate the probability of positive returns, Pr(Rt+1 > 0|Ωt). The

polymodels are going to be used in order to predict volatility in different time frames.

This process is going to be explained in detail in the methodology section.

2.2 Position sizing

Given that now we have the probability of having positive returns for a given market,

it is important to have a strategy in order to consistently profit from this information. Our

strategy will be executed in function of different position sizing methods. Their output

corresponds to the percentage in which the strategy will be allocated to the correspondent

asset. These methods are going to be explained below:

Model confidence

In this strategy we will be positioned in the selected asset only if the probability of positive
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returns is bigger than 50%. 
f(p) = p, ifp > 0.5

f(p) = 0, otherwise

where f(p) is the position size and p is the probability of positive returns.

All or nothing

In this strategy we will be fully positioned in the selected asset if the probability of positive

returns is bigger than 50%. 
f(p) = 1, ifp > 0.5

f(p) = 0, otherwise

Full long and short

In this strategy we take a binary position: fully long on the asset if the positive returns

probability is over 50%, otherwise the position is fully short.
f(p) = 1, ifp > 0.5

f(p) = −1, otherwise

NCDF

Lopez de Prado [13] described this position normal cumulative distribution function sizing

method. In this methodology the following H0 hypothesis is tested: p[x = 1] = 1
2
. In case

of probability of positive returns smaller than 50%, we are full short position.
f(p) = 2Z[z]− 1, ifp > 0.5

f(p) = −1, otherwise

z =
p− 0.5√
p(1− p)

∼ Z
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Kelly criterion

Presented by Kelly in 1956 [14], is a mathematical formula relating to the long-term

growth of capital developed.

f(p) = 2p− 1
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3 PREDICTION MODELS

In this section, we are going to dive into the main prediction model used in this paper:

the polymodel. We are also going to have a short review on the random forest algorithm,

since it’s going to be a reference model in which we are going to compare the performance

along with the polymodels. To assure the superiority of the polymodels, we are going

to make some tests comparing its performance against other known models for volatility

prediction.

3.1 Random Forest

The Random Forest algorithm, introduced by Leo Breiman and Adele Cutler in 2001

[15], is a versatile and widely used ensemble learning method for both classification and

regression tasks. It belongs to the family of decision tree-based algorithms and is known for

its robustness, accuracy, and resistance to overfitting. This section provides an overview

of the Random Forest algorithm, its key features, and its applications within prediction

models.

3.1.1 Algorithm Overview

The Random Forest algorithm starts with a training set. It creates several subsets of

this data using bootstrap sampling, and constructs a decision tree for each subset. These

trees are diversified by randomly selecting features at each node. During prediction, each

tree provides its output through voting (for classification) or averaging (for regression).

This ensemble of trees reduces overfitting, increases accuracy, and makes Random Forest
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a robust machine learning algorithm. This process is illustrated in the figure below.

Figure 1: Random forest functioning diagram

3.1.2 Key Features

Random Forests offer several key features that contribute to their popularity and

effectiveness:

• Ensemble Diversity: By using bootstrapped samples and random feature selec-

tion, Random Forests create a diverse set of decision trees, which reduces overfitting

and improves generalization.

• Robustness: Random Forests are less sensitive to noisy or irrelevant features in

the dataset, making them suitable for handling high-dimensional data.

• Out-of-Bag (OOB) Estimation: The bootstrapped samples mean that around

one-third of the data is not used to train each tree. This ”out-of-bag” data can be

used for validation and estimating the model’s performance without the need for a

separate validation set.

• Variable Importance: The algorithm provides a measure of feature importance

based on how much a feature improves the predictive performance of the model.
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This information can be used for feature selection and understanding the underlying

relationships in the data.

3.1.3 Applications

Random Forests have found applications in finance, including:

• Predicting stock prices

• Credit risk assessment

• Fraud detection

In conclusion, the Random Forest algorithm’s ability to create diverse decision trees

through bootstrapped sampling and random feature selection makes it a powerful tool for

prediction modeling. Its robustness, accuracy, and applicability to a wide range of domains

have contributed to its popularity in both academic research and practical applications.

3.2 Polymodels

The polymodels theory was first introduced by Raphael Douady [6] and it consists

in a collection of nonlinear single factor models that represents the same target variable.

These univariate models are called ”elementary models” and they compose the polymodel

providing different perspectives from different sets of data towards a single target. The

equations set below represents a general structure of a polymodel.



Y = φ1(X1)

Y = φ2(X2)

...

Y = φn(Xn)

For a dataset composed of n features, the polymodel is going to be composed of n elemen-

tary models φ with the same target Y . For the final output of the model, it’s necessary
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to implement an aggregation method.

3.2.1 Main advantages

The polymodel presents some advantages in relation to other models in general. They

are consequence of its univariate structure. Some of these advantages are described below.

Overfitting reduction

As the model is composed of univariate models, they are independent between themselves

and do not influence each other. It avoids the common overfitting present in multivariated

models.

Precision increase

When working with univariate models, it is possible to work with non-linear models for

each predictor. As many times the relation between the variable and the target is non-

linear it promotes an increase in the precision.

Robustness

Usually multivariate models like linear regression present low stability in its coefficients in

cause of multicollinearity. It is most noticeable when a new feature is added and usually

there’s a large change in the value of these coefficients.

Flexibility

One of the main advantage of the polymodel is its flexibility concerning the elementary

models. The implementation of these models can be done according to the data. They

can be build from any other model from linear regressions to neural networks.

Different series lengths

As each of the components of the polymodel is an elementary model, during the fitting

process, each model is fitted using only its corresponding feature. As a consequence, the
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series are independent and they can have different lengths. Therefore, the whole model

can be fitted without losing data even if a feature has more samples than other.

3.2.2 The original elementary model

The elementary model aims to represent the target in function of a single variable.

Thomas Barrau and Raphael Douady [8] implement this model in what they call LNLM

- Linear non-linear model.

Y = LNLM(X)

This model is composed in two parts, the first one being a non-linear model and the second

a linear model. The representation below depicts the structure of the LNLM model.

LNLM(X) = ȳ + µ
u∑

h=1

β̂NonLin
h Hh(X) + (1− µ)β̂LinX + ϵ

µ is a parameter to control the linearity and non-linearity weights. And in their method-

ology, as well as in [16], H(X) is an Hermite polynomial.

3.2.3 The hybrid elementary model

In this work, it was developed a new version of the Polymodel, specially concerning

the elementary model. During the implementation process, which will be better explained

in the Methodology section, the elementary model had 3 possible methods: linear, non-

linear and hybrid.

Linear Model

In this case, the elementary model is composed simply by a linear model. In this paper,

the only linear implemented method was a linear regression. As it’s an univariate model,

the model is simply defined as

Y = β0 + β(X)
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and the Polymodel is composed by n linear regressions.

Non-linear model

The non-linear approach consisted in setting the elementary models as non-linear mod-

els. Two models were tested: Polynomial regression and extreme learning machines. The

former consisted in a simple 5 degrees polynomial regression and the latter corresponds

to a single-hidden layer feedforward neural networks that provide good generalization

performance at extremely fast learning speed [17]. Unlike traditional methods that in-

volve iterative parameter tuning, ELMs adopt a feedforward neural network architecture

with a single hidden layer, where the weights connecting the input layer to the hidden

layer are randomly initialized and fixed. The crucial innovation lies in the training pro-

cess, as only the weights connecting the hidden layer to the output layer are adjusted

using a single-pass learning algorithm. In literature, it also shows that these models can

outperform support vector machines in both classification and regression applications [18].

Hybrid model

The hybrid model was implemented in order to capture both the linear and non-linear

behavior of the data. Therefore, the following univariate model was developed:

Y = f(X) + ϵ1

ϵ1 = g(X) + ϵ2

In the first equation, we have the f(X) is a linear model fitting the feature with the

Polymodel target Y . Following that, a non-linear model g(X) fits the residuals of f(X).

3.2.4 Aggregating predictions

For a dataset composed of n features, the corresponding Polymodel will also have n

elementary models. As consequence, when predicting the target, there will be n different

predictions coming from each of these individual models. One may wonder what would
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be the final prediction. As mentioned by Barrau in [8], the Polymodel offers a large

representation of the links that each variable has with our target. Many approaches are

proposed like maxima, minima or percentiles.

For this paper, our goal was to find the best aggregation method for the output of

the elementary models of the polymodel, giving us a final and unique volatility predic-

tion value. Initially, some approaches were tested like weighting each elementary model

forecast by the mean squared error of the model. Other approaches using AIC (Akaike’s

Information Criterion) and BIC (Bayesian Information Criterion) as in the work of Ko-

lassa [19] were tested. To aggregate polymodels predictions, we also tested an entropy

method, using Shannon’s information measure and innovations from the models as in [20].

However, these methods were not forward used because their results were not satisfactory

and their complexity.

The work of Wang et al.[9] mentioned before provided an extensive review of the lit-

erature on forecast combinations. We decided to implement several aggregation methods

within the polymodel. The simplest one was the median value of the predictions. Other

methods tested to aggregate were a linear regression and a random forest algorithm.

Implementing an aggregation model inside the polymodel required the elaboration of

a more complex structure to not have any overfitting or data leakage. Since we had to fit

another model while fitting the polymodel, the solution was to implement a nested cross-

validation. It is a technique used in machine learning to assess a model’s performance

and hyperparameter tuning simultaneously. It involves two layers of cross-validation: the

outer loop splits the data into training and testing sets multiple times to estimate the

model’s overall performance, while the inner loop is used for hyperparameter optimization

(which in this case was the aggregation model fitting) by splitting the training data into

training and validation sets. This process was used to avoid overfitting the aggregation

process and it’s shown below.
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Figure 2: Nested cross-validation scheme

3.3 Polymodels versus other models

In order to use the polymodels in this paper for volatility forecasting, it was important

to assure its superiority against other models. Therefore, we compared the volatility

forecast among some known models for volatility prediction. Based on the work of Karasan

[21] that implemented various models with the same goal, we tested the following models:

ARCH, GARCH, SVR-GARCH, Polymodel and Random Forest.

3.3.1 VIX

The VIX, or CBOE Volatility Index [22], is a widely recognized financial gauge that

reflects market participants’ expectations of future volatility in stock prices. Commonly

referred to as the ”fear index,” the VIX is calculated based on the prices of options con-

tracts for the S&P 500 index. A higher VIX value suggests heightened market uncertainty

and potential for larger price swings, while a lower value indicates calmer market condi-

tions. As a valuable tool for investors and analysts, the VIX provides insights into market

sentiment and risk perception, aiding in decision-making and risk management strategies.

In this case, we use the VIX as the predicted volatility.
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3.3.2 ARCH

One of the first attempts to model volatility by Engle in 1982 [23], the ARCH(p)

model has the form:

σ2
t = ω +

p∑
k=1

αk(rt−k)
2

where rt = σtϵt.

ARCH model is a univariate model and it is based on the historical asset returns.

3.3.3 GARCH

One of the most known volatility prediction models [5], it’s an extension of the ARCH

model, incorporating lagged conditional variance. In this enhancement, ARCH is elevated

by the inclusion of ”p” delayed conditional variance values. Consequently, the GARCH

model transforms into a multivariate entity, representing autoregressive moving average

structures for conditional variance. This structure is defined by incorporating ”p” lagged

squared returns and ”q” lagged conditional variance components.

σ2
t = ω +

q∑
k=1

αkr
2
t−k +

p∑
k=1

βkσ
2
t−k

3.3.4 SVR-GARCH

Support Vector Machines (SVMs) are powerful supervised machine learning algo-

rithms primarily used for classification and regression tasks. SVMs work by finding a

hyperplane that best separates different classes of data points while maximizing the mar-

gin between them.

The core idea of SVMs involves transforming the original data into a higher-dimensional

space using a mathematical function called a kernel. In this higher-dimensional space,

the SVM seeks to find the hyperplane that maximizes the distance between the closest
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data points of different classes, known as support vectors.

The idea of the SVR-GARCH proposed by Karasan [24] is to fit a SVR model with

the components of a GARCH model. This means that the SVR is fitted with squared

lagged returns and squared lagged variance.

3.3.5 Comparison metric: Mean Absolute Scaled Error (MASE)

In order to score and compare different models we make use of an useful metric

proposed by Hyndman in 2006 [25] called Mean Absolute Scaled Error. It serves as

an evaluation tool for assessing the accuracy of a forecasting model by comparing its

performance to that of a simple naive forecasting approach. MASE addresses some of the

limitations of other metrics like Mean Absolute Error (MAE) by providing a normalized

measure of error that is not affected by the scale of the data or the magnitude of errors.

The formula for calculating MASE involves dividing the mean absolute error of the

forecasted values by the mean absolute error of the naive forecast (typically the one-

step ahead forecast). The result is a ratio that indicates how much better or worse

the forecasting model performs in comparison to the simple naive approach. A MASE

value less than 1 suggests that the model’s predictions are better than the naive method,

whereas a value greater than 1 indicates that the model is performing worse than the

naive approach.

3.3.6 Results comparison

The mentioned models were implemented in addition to the polymodels and random

forest. Following that, these models were fitted and generated volatility predictions for

different horizons of time (5,10,22,66 days). As these two models have a bigger flexibility

concerning the input variables, they had as inputs the same features that are going to be

mentioned in the methodology section.

In order to verify if the polymodels would perform any better than the other models,



26

the MASE score was calculated as well as the mean squared error of the predictions.

The only methods that presented a MASE score lower than 1, besides having a lower

MSE, were the polymodels and the random forest model, meaning that they beat a naive

forecast model. The other models presented results indicating that their performance for

the selected forecast horizons weren’t better than a naive model. Therefore, this paper

is going to be continued using the polymodels, as expected and the random forest for

comparison.
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4 METHODOLOGY

The previous sections provided an overview of some theory that is going to be imple-

mented in this paper. The goal is to construct a profitable strategy by forecasting the

direction of change.

To achieve our ultimate goal, we have a two step identification strategy. The first

one involves a comprehensive analysis and testing of the polymodels structure to predict

the market volatility and subsequently estimate the probability of positive returns. Our

predicting architecture is shown in the following diagram.

Figure 3: Market direction prediction architecture

In the second step, we will apply our forecasts to formulate an optimal strategy that

surpasses the benchmark’s returns. This step involves testing different sizing strategies

to measure our exposition to the selected index. We then backtest the strategy and test

if it is statistically better than the selected benchmark.

Our methodology follow the sequence: initially we collect and treat the data, then it

is inserted in a polymodel in order to predict the expected volatility. The next step is

to apply this expected volatility to calculate the probability of positive returns. These

probabilities are then used by a sizing function that will set a portfolio position along

the time. Once the strategy is settled, we will backtest it and execute statistical tests to
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confirm its validity and robustness.

4.1 Data

The data used in this paper consists in a group of financial indicators. Some of the

features are derived from other time series based on economical concepts. As the focus

of this work is the implementation of a model and a strategy, we will not cover the

chosen indicators individually. Most of this data corresponds to tradable instruments and

therefore are available on a daily frequency. These indicators are mostly related to market

surprises and uncertainties, credit spreads and volatility signals.

This data was obtained mostly from Bloomberg terminal and other financial data

platforms. Only stationary series were selected to be used in the model. The final dataset

is composed by 66 features and they have a date range from 2004 to 2021 with over 4000

rows. In the appendix, we present plots to depict the different features that compose the

used dataset.

4.2 Volatility prediction

The first step in our methodology to obtain a direction prediction is to forecast the

market volatility. In order to achieve that, this paper is going to make direct use of the

polymodels.

We are going to make volatility forecasts for the S&P500 index - one of the most

commonly followed US equity indices - and the Ibovespa, the Brazilian stocks index.

Besides that, for each index, the predictions are going to be made for different time

horizons: 5, 10, 22 and 66 days. The model’s target volatility is defined as the log of

the standard deviation of returns calculated in a rolling window of the horizon we are

predicting. We also annualize this value and shift it by the horizon size. This means that
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at time t, the target will be the annualized volatility of the returns H days ahead.

targett = log(std([rt+H , rt]) ·
√
252)

Figure 4: Target visualization for S&P500 22 days volatility

In the previous section, it was presented the hybrid version of the polymodel. In order

to find the best useful volatility prediction, several possible combinations of linear and non

linear models were used to compose the elementary model. Through this work, 11 different

combinations were created and they represent the 3 types of elementary models: linear,

nonlinear and hybrid. For the linear model combinations the Linear Regression model

was tested both with and without intercept fitting. Concerning the nonlinear model, tests

were made using the Extreme Learning Machine (ELM) model and polynomial regressions

of 5 degrees. The different compositions are detailed in the table below.

Combination Elementary type Linear Model Non Linear Model Combiner Model

comb1 linear LinearRegression() None Median

comb2 linear LinearRegression(fit intercept=False) None Median

comb3 linear LinearRegression() None Random Forest

comb4 nonlinear None ELM Median

comb5 nonlinear None ELM Random Forest

comb6 hybrid LinearRegression() ELM Median

comb7 hybrid LinearRegression() ELM Random Forest

comb8 nonlinear None Polynomial Regression Median

comb9 nonlinear None Polynomial Regression Random Forest

comb10 hybrid LinearRegression() Polynomial Regression Median

comb11 hybrid LinearRegression() Polynomial Regression Random Forest

Table 1: Polymodels tested combinations
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4.3 Data snooping and cross-validation

Once set the combinations to be tested, the next step is to run the models and generate

the volatility predictions. When developing a quantitative model, one must be careful

with the dangers of data snooping. It refers to the practice of repeatedly adjusting or

optimizing a trading strategy based on historical data until it appears to yield impressive

results, without considering whether those results are statistically significant or likely to

hold up in future market conditions. The danger of data snooping in backtesting lies

in the potential to create strategies that appear highly profitable solely due to chance

patterns in historical data. Performing multiple tests increases the likelihood that some

variables exceed the predetermined significance level just by luck. In general, the more

inferences are made, the more likely false inferences occur [26].

The cross-validation is a relevant technique applied during this process to improve

the reliability of the backtest. It is used in machine learning to assess the performance

of a model by dividing the dataset into multiple subsets. The model is trained on some

subsets and tested on others, allowing for a more reliable estimation of its generalization

ability than a single train-test split [27]. To generate predictions out-of-sample for the

whole time series and reduce the risk of over fitting and data leakage, the model fitting

and prediction is done with the use of purged cross-validation. The purging removes from

the training set those samples that are build with information that overlaps samples in

the testing set [13].
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Figure 5: Purging illustration, from [13]

At each iteration of the cross validation process, the current training set passed

through a transformation named Quantile Transform. It is a statistical method employed

to transform a dataset’s probability distribution so that the transformed values have a

specified desired distribution, usually uniform or Gaussian (normal) distribution [28].

The models outputs are then re-transformed and undone the log operation by expo-

nentializing the values. The final output is the predicted volatility on a daily frequency.

4.4 Direction prediction and backtesting

Once the volatility predictions are generated, a backtest framework is implemented

as depicted below.
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Figure 6: Backtest framework

In this process, the benchmark - S&P500 or Ibovespa - as well as the volatility forecasts

are given as inputs. For each calendar day, in an iterative process, they are used to fit a

linear regression as stated previously in the section 2.1:

µ̂t = β̂0 + β̂1log(σ̂t) + β̂2[log(σ̂t)]
2 + β̂3[log(σ̂t)]

3

With the expected returns and the predicted volatility, the probability of positive

returns is obtained from the cumulative distribution function of the standardized returns.

The next step in the backtesting process is to apply these probabilities into the different

sizing strategies. Their output corresponds to the percentage in which the strategy will

be long or short in the correspondent index. The remaining percentage is considered as

cash, with no returns.

allocation% = f(p)

Where f(p) is the sizing function. In order to calculate the daily returns of the different

strategies, this work simulates a real environment by adding costs and a delay between the

investment signal and the positioning date, it represents the time necessary to investment

managers to achieve the desired position in the market. This delay is set as two days,

which means that an allocation defined at time t will have its returns reflected in t + 2.

For the costs, the estimated value for trading futures of indexes was of 5 bps (0.05%) over



33

the turnover, which is the variation of the position size.

costs =
0.05

100
· (allocationt − allocationt−1)

For the matter of analyzing if this whole volatility and direction predictions, as well

as the different sizing strategies have some real potential to bring profits, a simulation

was made supposing that the models predict the real volatility, which means predicting

the future with no error.

Figure 7: Real volatility prediction simulation of cumulative returns, S&P500 22 days

The simulation above depicts that the formulated strategy combining probabilities

of positive returns along with a sizing method can achieve great returns potential as

they perform significantly above the benchmark. We can also check the behavior of the

different sizing methods through time, as shown below.

Figure 8: Real volatility prediction simulation of sizing methods, S&P500 22 days
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Even though it is shown the potential of this strategy, it is totally dependent on the

quality of the volatility forecasts. In this work this backtest process is run for the 11

different combinations of polymodels and for the 5 sizing strategies, totalling 55 series of

returns to be analyzed.

4.5 Robustness tests - MCS

During the process of creating an investment strategy and backtesting, many results

can be difficult to be compared among themselves and a consistent method to find the

best strategy is required. Besides that, it is important to have trustful results and to

check if the results are statistically better than the selected benchmark. Therefore, this

paper makes use of a method called Model Confidence Set (MCS).

The inception of the Model Confidence Set (MCS) can be attributed to the work of

Hansen et al. [29], who introduced this methodology with the aim of refining the process

of selecting forecasting models. At its core, the Model Confidence Set methodology seeks

to streamline the extensive array of potential models into a more manageable subset —

known as a model confidence set — which is strategically designed to encompass the most

accurate forecasting model with a designated level of confidence. The defining aspect of

this approach lies in its adaptability to various scenarios, allowing users to tailor their

criteria for the selection of the ’best’ model to align with the specific demands of the given

context.

The Model Confidence Set methodology’s fundamental philosophy is rooted in the

concept of parsimony. The goal is not to inundate decision-makers with an overwhelm-

ing assortment of models, but rather to present a concise collection that captures the

most promising candidates for optimal forecasting. By employing a pre-specified level of

confidence, MCS introduces a level of statistical rigor, ensuring that the selected model

confidence set not only contains the best-performing model but also offers quantifiable

certainty in its efficacy.
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For our strategies selection, our goal was to select the best combination of polymodels

based on the strategy performance from its predictions. Therefore, the MCS methodology

is going to be applied for every set of combinations for each sizing methods backtests.

This means that as previously mentioned, we had 5 sizing methods with 11 polymodels

combinations, then we are going to create 5 different groups. Each group will contain 11

different backtests and strategies performances corresponding to each polymodel combi-

nation. The MCS will then be applied to each one of these groups in order to find the

best strategy inside this group.

The criterion defined in this paper for the MCS to find the best strategy was the

sortino ratio (risk-adjusted performance measure that evaluates an investment’s return

relative to its downside volatility). The MCS output is a value between 0 and 1 meaning

the probability that the respective backtest belongs to the model confidence set of the

best performing strategies.
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5 RESULTS

After running the entire backtesting process, we end up with the performance statistics

of 55 simulations for each selected period and index. The performance metrics of the best

performing combinations are shown in the appendix of this paper.

Figure 9: Cumulative returns of example simulation, Ibovespa 22 days

Some of the key metrics calculated are described below:

Volatility (ann.)

Measure of the variability of an asset’s returns over time, annualized.

Skewness (ann.)

Indicates the asymmetry of a distribution of returns around its mean, annualized.

Kurtosis (ann.)

Quantifies the tail-heaviness of a distribution of returns, annualized.
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Sharpe Adjusted (ann.)

Similar to the Sharpe ratio but adjusts for the skewness and kurtosis of returns, providing

a more accurate risk assessment, annualized.

Tail Ratio

Measures the ratio of the average of the extreme values to the average of the non-extreme

values in a distribution.

Sortino (ann.)

Evaluates the risk-adjusted return by considering only downside volatility, annualized.

Calmar (ann.)

Computes the ratio of the average annual return to the maximum drawdown, providing

insight into risk and return, annualized.

Max Drawdown

Represents the maximum percentage loss from a peak to a trough in an investment’s value.

Historical VaR (Value at Risk)

A quantile-based measure that estimates the potential loss at a specified confidence level,

based on historical data.

Historical Expected Shortfall

Also known as Conditional Value at Risk (CVaR), it estimates the average loss beyond

the VaR level, providing a more comprehensive view of potential losses based on historical

data.

MCS 3Y

Model confidence set, probability of this model to belong to the model confidence set of
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best models. The criterion is the rolling sortino ratio of 3 years.

We will now dive into an analysis of the results obtained for each index and period. In

each analysis, we will show a graph of the best performing strategies in terms of returns

and Sharpe. We will also show a table with the top 5 models (including the benchmark)

in terms of the average MCS of the sizing methods for each combination. The idea of

obtaining the average MCS is to find the most consistent polymodel combination where it

has superior performance across most of the sizing methods. The detailed results tables

with each sizing method and combination are available in the appendix of this paper.

5.1 S&P 500

5.1.1 S&P 500, 5 days

Figure 10: Best results backtest, S&P500 5 days

The table below compares the average Model Confidence Set (MCS) scores of vari-

ous investment models to a benchmark, which has the highest MCS score at 0.94. This

means that while we could find specific combinations of models and sizing strategies that

outperformed the benchmark, on average they weren’t more consistent. The benchmark

emerges as the model with the most confidence in its performance. In particular, comb8

and comb4 show robust performance with MCS scores of 0.8 and 0.6, respectively, demon-

strating substantial confidence but falling slightly short of the benchmark. In contrast,

comb1 and comb2 lag behind with MCS scores of 0.13 and 0.1, indicating a significant

divergence in confidence compared to the benchmark.
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Model MCS 3Y

bench 0,94

comb8 0,8

comb4 0,6

comb1 0,13

comb2 0,1

Table 2: Average MCS per model, S&P500 5 days

5.1.2 S&P 500, 10 days

Figure 11: Best results backtest, S&P500 10 days

The table compares the Model Confidence Set (MCS) scores of various investment

models to a benchmark with an MCS score of 0.74. Interestingly, comb4 outperforms

the benchmark with an MCS score of 0.93, indicating a high level of confidence in its

performance. This suggests that comb4 - a nonlinear elementary model composed by an

Extreme Learning Machine and the individual predictions aggregated by the median -

may represent a strong and reliable investment strategy compared to the benchmark. In

contrast, bench itself, despite having the second-highest MCS score at 0.74, falls short of

comb4, implying that other models may offer more consistent and confident performance.

Furthermore, comb5, comb8, and comb7 exhibit lower MCS scores of 0.27, 0.26, and

0.17, respectively, signaling a notable divergence in confidence compared to the bench-

mark.
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Model MCS 3Y

comb4 0,93

bench 0,74

comb5 0,27

comb8 0,26

comb7 0,17

Table 3: Average MCS per model, S&P500 10 days

5.1.3 S&P 500, 22 days

Figure 12: Best results backtest, S&P500 22 days

For a horizon of one month (22 days), combination 4 stands out with the best results

for all sizing methods. In particular, comb4 stands out with a perfect MCS score of 1,

indicating the highest possible level of confidence in its performance. This implies that

comb4 is exceptionally reliable, potentially making it a strong candidate for consideration

in the investment strategy.

In contrast, the benchmark (bench) has a relatively lower MCS score of 0.23, indicating

a lower level of confidence compared to comb4. In addition, comb5, comb8, and comb6

have MCS scores of 0.03, 0.01, and 0, respectively, indicating a significant divergence in

confidence levels from the benchmark.
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Model MCS 3Y

comb4 1

bench 0,23

comb5 0,03

comb8 0,01

comb6 0

Table 4: Average MCS per model, S&P500 22 days

5.1.4 S&P 500, 66 days

Figure 13: Best results backtest, S&P500 66 days

When working with a longer forecast horizon, the results are less consistent. While

for the other periods combination 4 was consistently the best model choice, for this period

we can see that the benchmark has the best score. comb8 follows closely with an MCS

score of 0.68, indicating a high level of confidence in its performance and making it a

strong contender relative to the benchmark. comb3, with an MCS score of 0.53, shows a

moderate level of confidence.

In contrast, comb4 and comb2 have lower MCS scores of 0.23 and 0.12 respectively,

indicating a significant divergence in confidence compared to the benchmark.
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Model MCS 3Y

bench 0,7

comb8 0,68

comb3 0,53

comb4 0,23

comb2 0,12

Table 5: Average MCS per model, S&P500 66 days

5.2 Ibovespa

5.2.1 Ibovespa, 5 days

Figure 14: Best results backtest, Ibovespa 5 days

For the Brazilian index with a forecast horizon of 5 days, comb5 emerges as the top

performer with an MCS score of 0.95. This high level of confidence positions comb5 as

a standout model in the set. comb5 is the polymodel in which the elementary model

also consists of an Extreme Learning Machine but with a Random Forest as a combiner

model of the individual predictions. comb4 follows with an MCS score of 0.67, indicating

a respectable level of confidence in its performance.

In contrast, the benchmark has a lower MCS score of 0.09, indicating a significant

difference in confidence compared to comb5 and comb4. In addition, comb7 and random-

forest have MCS scores of 0.08, indicating comparable confidence levels, but still lower

than comb5 and comb4. This analysis highlights comb5 as a highly reliable model, out-
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performing both the benchmark and other models in terms of confidence. comb4 also

stands out as a robust performer.

Model MCS 3Y

comb5 0,95

comb4 0,67

bench 0,09

comb7 0,08

randomforest 0,08

Table 6: Average MCS per model, IBOV 5 days

5.2.2 Ibovespa, 10 days

Figure 15: Best results backtest, Ibovespa 10 days

While the benchmark leads the set with an MCS score of 0.69, randomforest follows

closely with an MCS score of 0.6, indicating a significant level of confidence in its per-

formance. This was the only prediction horizon where we found that the Random Forest

model outperformed the different polymodels.

In contrast, comb5 has a lower MCS score of 0.37, indicating a significant difference

in confidence compared to the benchmark and randomforest. comb7 and comb3 both

have an MCS score of 0.19, indicating comparable confidence levels, but lower than the

benchmark and randomforest.

This analysis highlights randomforest as a strong performer, closely following the
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benchmark.

Model MCS 3Y

bench 0,69

randomforest 0,6

comb5 0,37

comb7 0,19

comb3 0,19

Table 7: Average MCS per model, IBOV 10 days

5.2.3 Ibovespa, 22 days

Figure 16: Best results backtest, Ibovespa 22 days

For the one month forecast horizon, comb5 again leads the set with an MCS score

of 0.82. This high confidence level suggests that comb5 is a strong performer compared

to other models and the benchmark. comb4 follows with an MCS score of 0.65, also

indicating a respectable level of confidence in its performance.

On the other hand, comb2 has a lower MCS score of 0.42, indicating a significant

difference in confidence compared to comb5 and comb4. The benchmark has a much

lower MCS score of 0.03, indicating a significant divergence in confidence compared to

the top performing models. Additionally, randomforest has an MCS score of 0, indicating

little to no confidence in its performance based on the model comparison.

This analysis highlights comb5 and comb4 as robust models that outperform both
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the benchmark and other models in terms of confidence.

Model MCS 3Y

comb5 0,82

comb4 0,65

comb2 0,42

bench 0,03

randomforest 0

Table 8: Average MCS per model, IBOV 22 days

5.2.4 Ibovespa, 66 days

Figure 17: Best results backtest, Ibovespa 66 days

For the longer prediction horizon, we can see that the comb3 is very close to the

benchmark. In fact, when analyzing the performance table, it’s remarkable that this

combination has the highest MCS score for the model confidence and kelly sizing methods,

while it underperforms the benchmark for the all or nothing, full long short and NCFD

methods.
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Model MCS 3Y

comb3 0,68

bench 0,6

comb8 0,24

comb11 0,12

comb1 0,01

Table 9: Average MCS per model, IBOV 66 days
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6 CONCLUSION

This thesis presents a detailed approach to developing a profitable investment strat-

egy that predicts the direction of market changes. The research covered every stage of

the process, including comprehensive analysis, strategy construction, and backtesting to

ensure superior statistical results compared to the chosen benchmark. We achieved rea-

sonably satisfactory results, as we were able to identify profitable out-of-sample strategies

that outperformed the market.

We explored the approach in the academic literature that relates market volatility

to future market direction. We also proposed a new version of the Polymodels ensemble

model that was used to predict the volatility of stock indexes, and we focused on exploring

the benefits it provided. The predicted volatility was also used to estimate the probability

that the market will have a positive return over a given time horizon, improving on the

framework proposed by Campbell. We also tested different sizing strategies to measure

the exposure to the selected index.

Our results show that we were indeed able to identify good strategies based on our

predictions. One relevant observation we were able to make was the power of the extreme

learning machines. In all the horizons tested, the combinations 4 and 5 of the polymodels

were the highlight. In both cases, the elementary model consisted only of an ELM and the

difference between the two was the method of aggregation of the predictions, the former

being the median and the latter a Random Forest model.

We could also see that our volatility predictions led to strategies that improved the

Sharpe Ratio relative to the benchmark, meaning that we could get a better relationship
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between returns and volatility, including costs. Since we didn’t have a leveraged strategy,

the main advantage of the proposed methods is a large reduction in drawdown.

This work succeeds in answering the question ”Can we build a successful invest-

ment strategy based on investment strategy based on predicting the direction of market

changes”. We have demonstrated a systematic and rigorous process for achieving prof-

itable results. To extend this work, several approaches are possible. One could try to

improve volatility forecasting with new models or an improvement of the polymodels. On

the sizing side, one could also improve it with new and more active positioning systems.
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Springer US, 2009, pp. 532–538. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-

387-39940-9_565. url: https://doi.org/10.1007/978-0-387-39940-9_565.

[28] Scikit Learn. Quantile Transform. https://scikit-learn.org/stable/modules/

generated/sklearn.preprocessing.QuantileTransformer.html. 2023. (Visited

on 08/10/2023).

[29] Peter R. Hansen, Asger Lunde, and James M. Nason. “THE MODEL CONFI-

DENCE SET”. In: Econometrica 79.2 (2011), pp. 453–497. issn: 00129682, 14680262.

url: http://www.jstor.org/stable/41057463.



52

APPENDIX A – FEATURES

The plots below depict the some of different features that compose the used dataset.

They all correspond to stationary series with a daily frequency.

Figure 18: Features plot
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