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Resumo

Em sistemas de potência, o Optimal Power Flow (OPF) é um dos problemas de otimização
mais relevantes. Seu objetivo é minimizar o custo total de geração em uma rede de energia
(o qual depende dos custos unitários de cada gerador), e, ao mesmo tempo, satisfazer
uma dada demanda e um conjunto de restrições operacionais. Abordagens tradicionais
para a resolução do problema de OPF, como o método do ponto interior, frequentemente
são computacionalmente caras e não escalam bem à medida que o tamanho da rede
aumenta. Portanto, como uma maneira de superar essas limitações, este trabalho explora
o uso de Graph Neural Networks (GNNs) como um método alternativo para resolver o
problema do OPF. Ao aproveitar a estrutura de grafo inerente das redes de energia, as
GNNs podem modelar, de forma efetiva, as complexas dependências e interações entre
diferentes componentes, como buses, geradores e linhas de transmissão, e usar essas
informações para determinar a alocação de potência ótima na rede. Essa representação
baseada em grafos aprimora a capacidade de generalização do modelo, permitindo-o lidar
com diversas topologias, tamanhos e configurações de rede, e possibilitando sua aplicação
mesmo em cenários zero-shot, nos quais, durante a inferência, o modelo deve avaliar
amostras de redes que não haviam sido observadas anteriormente. A arquitetura da GNN
proposta é baseada em um mecanismo de troca de mensagens, no qual os nós trocam
mensagens que contêm informações sobre seu estado e sua vizinhança. O treinamento é
realizado de forma não supervisionada, com a violação das leis físicas e o custo sendo
minimizados diretamente. Além disso, as restrições são aproximadas por meio de funções
de penalização que punem violações. O modelo baseado em GNNs foi testado em várias
redes de tamanhos e complexidades variadas, variando de menos de 10 a mais de 2000
buses. A avaliação experimental demonstra que ele pode ser usado como uma abordagem
viável para resolver o problema de OPF, sendo capaz de gerar soluções comparáveis às dos
solvers padrão, enquanto leva significativamente menos tempo para executar os cálculos —
com uma diferença de 3 ordens de magnitude no caso mais complexo. Além de sua melhor
escalabilidade, o modelo GNN também exibe performance satisfatória mesmo em redes
que não haviam sido observadas durante o treinamento (propriedade de zero-shot).

Palavras-chave: Graph Neural Networks. Optimal Power Flow. Aprendizado zero-shot.



Abstract

In power systems, optimal power flow (OPF) is one of the most relevant optimization
problems. It aims to minimize the total generation cost in a power grid (which depends on
the unit costs of each generator) while satisfying a given demand and a set of operational
constraints. Traditional approaches for solving the OPF problem, such as the interior
point method, are often computationally expensive and do not scale well as the size of
the grid increases. Hence, as a way of overcoming these limitations, this thesis explores
the use of Graph Neural Networks (GNNs) as an alternative method to solve the OPF
problem. By leveraging the inherent graph structure of power grids, GNNs can e�ectively
model the complex dependencies and interactions among di�erent components such as
buses, generators and transmission lines, and use this information to determine the
optimal power allocation in the grid. This graph-based representation enhances the
generalization capability of the model, enabling it to handle diverse grid topologies, sizes
and configurations, and allowing it to be applied even in zero-shot scenarios, where, at
inference time, the model has to evaluate samples from grids that had not been observed
before. The proposed GNN architecture is based on a message passing mechanism, in
which nodes exchange messages that contain information about their state and their
neighbourhood. Training is performed in an unsupervised manner, with the violation of
physical laws and the cost being minimized directly. Furthermore, the constraints are
approximated by means of penalty functions that penalize violations. The GNN-based
model was tested on several grids of varying sizes and complexities, ranging from under 10
to over 2000 buses. The experimental evaluation demonstrates that it can be used as a
viable approach for solving the OPF problem, as it can output solutions comparable to
those of standard solvers while taking significantly less time to execute the computations

— with a di�erence of 3 orders of magnitude in the most complex case. Besides its better
scalability, the GNN model also exhibits the capability of performing satisfactorily even
on grids that had not previously been seen during training (zero-shot property).

Keywords: Optimal Power Flow. Graph Neural Networks. Zero-shot learning.
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1 Introduction

In power systems, Power Flow (PF) analysis constitutes an integral part of the
operation, planning, maintenance and control of energy transmission networks (SALAM,
2020). In simple terms, the power flow study aims at finding the steady-state operating
characteristics of a power system, namely the voltage magnitude and phase at all buses of
the grid, given a particular topology as well as the active and reactive powers of the loads
and generators (GRAINGER; STEVENSON, 1994). By carrying out this analysis for a
variety of scenarios, corresponding to e.g. di�erent power injections, secure and reliable
operation of the system can be ensured (FAN et al., 2019).

One instance of the power flow method, the so-called Optimal Power Flow (OPF)
problem, attempts to not only find the steady-state values of the system variables but also
determine the optimal power output of the generators within the grid in order to meet a
given demand while satisfying a set of operational constraints. Optimality is dependant on
the unit costs of each generator and refers to the total energy production cost for a given
scenario. Due to the non-linear, sinusoidal nature of AC power flow, this optimization
problem is non-convex and, in most cases, hard to solve (CAIN; O’NEILL; CASTILLO,
2012). Indeed, OPF has been proven to be NP-hard (BIENSTOCK; VERMA, 2019). Thus,
considering the importance of the OPF problem to the operation of power grids, extensive
research has been conducted in this field in order to find ways to e�ciently solve this
problem.

1.1 Motivation

Various approaches have been proposed as a way to address the general intractability
of the OPF problem. Among them, one of the most common is to solve a linear proxy of the
problem by means of small angle approximations (commonly referred to as DC-OPF). This
method, however, fails for heavily loaded networks since di�erences in voltage angles become
large (CHATZIVASILEIADIS, 2018). Apart from that, convex relaxation techniques, such
as quadratic, second-order cone programming and Semidefinite Programming (SDP)
relaxations, have been extensively studied (ZOHRIZADEH et al., 2020) and can be
applied so as to deal with the non-convexity of the OPF problem and provide more general
optimality guarantees. Despite that, such relaxations often lead to infeasible or sub-optimal
solutions for certain grid topologies (LOW, 2014).

Recently, several machine learning-based methodologies have been put forward as
an alternative to solve a wide range of problems in the power systems domain (OZCANLI;
YAPRAKDAL; BAYSAL, 2020). Typically, machine learning models can evaluate the
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state of a grid much faster than traditional power grid analyzers and can handle complex
nonlinear relationships more flexibly. In particular, extensive research has been conducted
on the use of machine learning techniques to compute the PF (DONNOT et al., 2018;
DONON et al., 2020; LOPEZ-GARCIA; DOMíNGUEZ-NAVARRO, 2022; HANSEN; AN-
FINSEN; BIANCHI, 2023) and the OPF (PAN; ZHAO; CHEN, 2019; SINGH; KEKATOS;
GIANNAKIS, 2022; OWERKO; GAMA; RIBEIRO, 2020; OWERKO; GAMA; RIBEIRO,
2022) of electrical grids.

Given the broad scope of the machine learning field, it is unsurprising that diverse
architectures have been proposed to solve tasks related to PF and OPF. For instance,
numerous works focus on designing deep neural networks (DNNs) that can output solutions
to these problems (PAN; ZHAO; CHEN, 2019; SINGH; KEKATOS; GIANNAKIS, 2022).
Nonetheless, it should be emphasized that such models struggle with changes in the system
topology and are more prone to overfitting, which limits their generalization capability
(HANSEN; ANFINSEN; BIANCHI, 2023). In light of this, other studies have promoted
the utilization of Graph Neural Networks (GNNs) as an alternative method of performing
PF and OPF (DONON et al., 2020; HANSEN; ANFINSEN; BIANCHI, 2023; OWERKO;
GAMA; RIBEIRO, 2020; OWERKO; GAMA; RIBEIRO, 2022). GNNs are neural network
models that exploit the topology of the underlying graph structure to implement localized
computations, making them decentralized in nature. Therefore, in principle, GNNs can be
applied to grids with di�erent sizes and topologies. This can be especially interesting for
power system analyses, considering that electrical grids can naturally be modelled as a
graph, where nodes correspond to buses and edges represent transmission lines.

Aside from that, approaches predicated on machine learning ideas also display
diversity in how the models are trained. More specifically, supervised learning has been
used to train GNN models that imitate the output of a particular power grid solver,
both for PF (HANSEN; ANFINSEN; BIANCHI, 2023) and for OPF (OWERKO; GAMA;
RIBEIRO, 2020). In contrast to that, unsupervised methodologies rely on the physical
laws that determine the state values of the power system and on the constraints imposed
by the grid infrastructure in order to perform the training of the models. In particular,
(DONON et al., 2020) developed an unsupervised GNN-based architecture to compute
the power flow of electrical grids, which is trained to minimize the violation of Kirchho�’s
laws at each bus. As shown in the experimental results, this model is much faster than
traditional methods (such as the Newton-Rapshon algorithm), while also being able to
generalize to previously unseen topologies in a zero-shot scenario. In a similar fashion, by
making use of concepts from the field of Graph Signal Processing (GSP), (OWERKO;
GAMA; RIBEIRO, 2022) devised a GNN that learns the solution to the OPF problem in
an unsupervised manner by minimizing the total generation cost directly, while penalizing
the violation of the electrical constraints of the grid by means of a custom barrier method.
However, none of these studies consider employing a GNN to create a model capable of
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solving the OPF problem with the zero-shot property, where, at inference time, it can
perform satisfactorily even on grids that had not previously been seen during training.

Hence, in this work, an unsupervised GNN architecture inspired by (DONON et al.,
2020) is proposed, which is designed to solve, in a computationally e�cient and scalable
manner, the OPF in a power grid. The model was conceived to have the capability of
adapting to various network topologies and configurations while aiming to minimize the
total generation cost of the system.

1.2 Goals

Given the inherent complexity of the OPF problem, the primary goal of this work
is to develop a computational framework capable of e�ciently solving the OPF in various
power grids. Specifically, by leveraging advances in machine learning, with a focus on
GNNs, a novel approach for addressing this challenge is presented. The ultimate objective
is to create a GNN model that not only minimizes generation costs in a power grid but
also significantly outperforms traditional solvers in terms of computation speed. Besides
that, the proposed architecture should be able to generalize to topologies not previously
seen during training.

1.3 Justification

Traditional approaches to solving OPF problem are often computationally expensive
and struggle to scale with the increasing size and complexity of modern power grids. By
exploring machine learning-based methodologies, particularly GNNs, it is possible to obtain
significant gains in computational speed and e�ciency, which would in turn allow for
enhanced grid responsiveness, improved system stability, and more e�ective decision-making
in real-time grid operations.

In addition to that, it is important to emphasize that achieving a speedup in
the OPF calculation could benefit several applications. For example, this would allow
faster response times to transient line outages as well as e�cient operation alongside
fast switching power devices. Furthermore, it could also expedite a more comprehensive
security and risk assessment under uncertainty by Transmission System Operators (TSOs).

1.4 Organization of the Manuscript

The rest of this work is organized as follows. In Chapter 2, the theoretical foun-
dations upon which this work is based are thoroughly explained. Chapter 3 presents the
phases this work was divided into and the activities pertaining to each one of them, as
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well as a schedule for the completion of these tasks. Chapter 4 specifies the functional and
non-functional requirements identified for the proposed GNN model. In Chapter 5, the
project and implementation process is described. Afterwards, in Chapter 6, the results
obtained from the performed evaluation are presented and discussed. Finally, Chapter 7
gives concluding remarks.



17

2 Theoretical Foundations

Since GNNs fit well to the graph structure of power grids, using them as a
parametrization to the OPF problem is a promising avenue to find solutions in a fast and
scalable manner. With that in mind, considering that the goal of this work is to develop
a GNN model to compute the OPF of a power grid, it is first important to explain the
concepts underlying the functioning of this kind of neural network, as well as provide
a mathematical formulation of the OPF problem. In this respect, Section 2.1 describes
the main building blocks on which GNNs are based and elucidates the idea of message
passing. In Section 2.2, the notation adopted to model a power grid is presented, and the
PF and OPF problems are expressed in mathematical terms. The model architecture and
the training process detailed in Chapter 3 make use of and build upon the notation and
concepts specified in these sections.

2.1 Graph Neural Networks

In the field of machine learning, a Neural Network (NN) is a type of algorithm
inspired by the structure and function of the human brain. It consists of layers of inter-
connected nodes (called neurons) that process information and make predictions. Each
neuron takes in a set of inputs, multiplies each input by a weight, and then applies an
activation function (usually nonlinear) to the sum of these weighted inputs. The resulting
output is passed on to the next layer of neurons, and the process is repeated until the final
layer produces the network’s prediction.

Training a neural network involves adjusting the weights between neurons to
minimize a cost function, which measures the di�erence between the network’s predicted
outputs and the actual outputs for a given set of training examples. This is done using an
optimization algorithm, typically gradient descent, which iteratively adjusts the values
of the function’s parameters in the direction of the negative gradient of the function,
bringing it closer to one of its minima — which is not necessarily a global minimum, since
non-convex functions may have multiple local minima.

GNNs are a class of neural network models designed to operate on graph structures
while respecting the topological relationships among the nodes. They were first intro-
duced in (SCARSELLI et al., 2009), having since been further developed and successfully
applied to various tasks, such as graph classification (DEFFERRARD; BRESSON; VAN-
DERGHEYNST, 2016), node classification (HAMILTON; YING; LESKOVEC, 2017) and
relational reasoning (SANTORO et al., 2017).
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In order to understand the principle upon which GNNs are based, a few definitions
must first be established. Let G = (V , E) be a graph, where V represents the set of N

nodes and E ™ V ◊ V corresponds to the set of edges. A vector of input features xi œ RD

is assigned to every node i œ V, where D is the number of the input features. Thus,
X =

Ë
x

T
1 , ..., x

T
N

È
œ RN◊D denotes the input matrix for all nodes in the graph.

Additionally, the topology of the graph is defined by a graph shift operator (GSO).
In the context of graph signal processing, a GSO is a mathematical operator that describes
the propagation or transformation of signals from a node to its neighbours, capturing the
notion of how signals di�use or spread across the graph. It is typically represented by a
matrix A œ RN◊N (such as the adjacency or the Laplacian matrix), whose entries specify
the weight of the connections between pairs of nodes in the underlying graph structure. It
should be pointed out that multiplying the GSO by the input matrix can be interpreted
as a shift of the inputs across the graph, i.e., the state of each node is updated by a linear
combination of the states of the neighbouring nodes, in a form of information exchange
among them.

The goal of a GNN model is then to learn a function �(X; W , A) that, for a set
of parameters W , takes the underlying graph topology expressed by A into account and
maps, at node-level, the input features X to a matrix of output features Y œ RN◊F , where
F refers to the number of output features. Therefore, a GNN can be represented by a
cascade of L layers, each of which applies a graph convolution operation followed by a
nonlinear activation function ‡¸:

X
(¸) = ‡¸

Ë
AX

(¸≠1)
W

(¸)
È

, ¸ = 1, ..., L, (2.1)

where X
(0) = X designates the input matrix and W

(¸) œ RF¸≠1◊F¸ is the weight
matrix of the ¸-th layer. At each layer ¸, the state X

(¸) œ RN◊F¸ contains F¸ features and
the state of the last layer X

(L) is taken as the output of the GNN, i.e., �(X; W , A) = X
(L).

Figure 1 depicts a simplified block diagram which illustrates the flow of data in a
GNN and how the final output of the model is computed.

As a subset of GNN models, the Message Passing Neural Network (MPNN) frame-
work (GILMER et al., 2017) generalizes the implicit information exchange of the graph
convolution operation by following an iterative scheme of updating node representations
based on the aggregation of neighbour nodes. The message passing paradigm is typically
expressed in terms of two types of functions: a message function and an update function.

More specifically, for a given node i œ V , its node features x
(¸≠1)
i at layer ¸ ≠ 1 are

encoded by the message function „(¸) into an M -dimensional message m
(¸)
i œ RM :
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Figure 1 – A Graph Neural Network consists of several layers that take a linear combination
of the values of neighbouring nodes AX

(¸≠1) and weight it by W
(¸). The output

of each layer is then obtained by applying a nonlinearity ‡¸ to the result of the
previous operation.

m
(¸)
i =

n

jœN (i)
„(¸)

1
x

(¸≠1)
i , x

(¸≠1)
j , eij

2
, (2.2)

where m is a permutation invariant aggregation function (e.g., sum, mean or
max), N (i) denotes the neighbours of node i in the graph, and eij œ RE (vector with E

dimensions) symbolizes (optional) edge features from node i to node j œ N (i).

This message is then used to compute the node features x
(¸)
i at layer ¸ by means of

the update function Â(¸):

x
(¸)
i = Â(¸)

1
x

(¸≠1)
i , m

(¸)
i

2
. (2.3)

Thus, considering a sequence of L layers, the message passing scheme can be
represented by the following equation:

x
(¸)
i = Â(¸)

Q

ax
(¸≠1)
i ,

n

jœN (i)
„(¸)

1
x

(¸≠1)
i , x

(¸≠1)
j , eij

2
R

b , ¸ = 1, ..., L. (2.4)

Finally, it must be pointed out that the message functions „(¸) and the update
functions Â(¸) should be di�erentiable. They are usually parametrized by neural networks,
whose weights can be learned through gradient descent during the training process.

2.2 Power Grid Modelling and the OPF Problem

An electrical grid consists of a set of buses connected by power lines. These elements
are characterized by certain physical quantities — referred to as features — that have
to be considered when computing the PF and OPF solutions. Most of these quantities
are expressed in the per-unit (p.u.) system, which uses the base power and voltage levels
of the grid in order to normalize the values. This allows for simpler comparisons of the
parameters of distinct grids.
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Therefore, each bus can be described by a set of variables and physical properties.
The voltage magnitude V and the voltage phase ◊ are variables that change depending
on the state of the grid, while the active power demand Pd, the reactive power demand
Qd, the shunt conductance Gs and the shunt susceptance Bs are physical properties of
the bus, which are typically fixed. Besides that, the minimum and the maximum allowed
voltage magnitudes, V min and V max, respectively, are determined by regulation.

Similarly, power lines connecting two buses are characterized by several features,
such as their resistance r, their reactance x, the total line charging susceptance b, the
transformer o� nominal turns ratio · and the transformer phase shift angle ◊shift. In
addition to that, the admittance of the line can be converted to polar form by applying
the transformations y = 1Ô

r2+x2 and ” = atan2(r, x). A line may also have lower and upper
limits on the di�erence in voltage phase between the buses it connects (COFFRIN et al.,
2018), which are, respectively, indicated by �◊min and �◊max.

Furthermore, a bus may have a generator attached to it, which provides active
and reactive power to other elements of the grid. The characteristics of a generator are
represented by its voltage magnitude set point Vg, its active power output Pg and its
reactive power output Qg. The power produced by each generator is constrained to a
certain range by its active power limits, P min and P max, and its reactive power limits,
Qmin and Qmax.

A power grid can be represented by a graph G = (V , E), where V = {1, ..., N}
is the set of N nodes that correspond to the buses and E ™ V ◊ V is the set of edges
which designate the power lines. Additionally, VG ™ V denotes the set of generators in the
network.

With that in mind, the steady-solution of the PF problem can be found by solving
a system of nonlinear equations given by Kirchho�’s laws. Using polar coordinates, the
power balance equations (MILANO, 2010) can be written as:

Pi = Vi

ÿ

jœN (i)
Vj(gij cos(�◊ij) + bij sin(�◊ij)), (2.5)

Qi = Vi

ÿ

jœN (i)
Vj(gij sin(�◊ij) ≠ bij cos(�◊ij)), (2.6)

where Pi and Qi are the net active and reactive power injections at bus i œ V , �◊ij

is the voltage angle di�erence between bus i and one of its neighbours j œ N (i), and gij

and bij are, respectively, the conductance and the susceptance of the line that connects
buses i and j — both of which can be derived from the line admittance.

The goal of power flow balancing is then to determine the voltage magnitudes
and phases that satisfy (2.5) and (2.6). Traditionally, this has been done by means of
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the Newton-Raphson (NR) method, which works by linearizing the power flow equations
through the Jacobian matrix, and then solving the resulting system of linear equations.
This iterative process is repeated until a convergence criterion is reached, which typically
compares the di�erence between the estimated and actual power injections at each bus.
Nevertheless, this procedure is still computationally expensive for large networks and is
not guaranteed to converge, due to the non-convex nature of the problem.

On the other hand, the Optimal Power Flow (OPF) problem is a constrained
optimization problem that aims to minimize the total generation cost in the grid given the
power demanded by the buses, a set of equality constraints (defined by Kirchho�’s laws)
and a set of inequality constraints (related to operational restrictions of the equipment).
Usually, the objective function to be minimized depends on the active power produced by
each generator. Thus, the OPF problem can be expressed through the following equations:

min
V,�◊,Pg ,Qg

ÿ

iœVG

ci(Pg,i) (2.7)

s.t.

Pi =
ÿ

jœVG
i

Pg,j ≠
ÿ

jœVD
i

Pd,j, i œ V , (2.8)

Qi =
ÿ

jœVG
i

Qg,j ≠
ÿ

jœVD
i

Qd,j, i œ V , (2.9)

V min
i Æ Vi Æ V max

i , i œ V , (2.10)

�◊min
ij Æ �◊ij Æ �◊max

ij , (i, j) œ E , (2.11)

P min
g,i Æ Pg,i Æ P max

g,i , i œ VG, (2.12)

Qmin
g,i Æ Qg,i Æ Qmax

g,i , i œ VG, (2.13)

where ci(Pg,i) is a cost function for generator i œ VG (commonly modeled by a
quadratic function). In (2.8) and (2.9), the net power injection at bus i œ V is calculated
by subtracting the power consumed by the loads on the bus from the total power injected
by generators, with VG

i and VD
i denoting the sets of generators and loads connected to bus

i. The power injections Pi and Qi must also be equal to the power flowing into and out of
the bus, which is determined by the power flow equations (2.5) and (2.6). Moreover, the
(complex) power lost due to the shunt admittance Ys,i of the bus is given by Ohm’s law,
which can be written as Ys,i(Vi)2.

The OPF problem can be solved by means of Interior Point (IP) methods, which
are a class of algorithms that can be applied to nonlinear and non-convex optimization
problems. These gradient-based methods iteratively minimize an objective function defined
as a combination of the cost function to be decreased and a barrier function that penalizes
infeasible solutions. At each iteration, the gradient and the Hessian matrix of the objective
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function are used to update the decision variables by means of the Newton-Raphson
method. This process is repeated until the convergence criteria are met. In the context of
power systems, so-called Interior Point Solvers (IPS) are able to yield accurate solutions
to the OPF problem. However, in general, they are computationally expensive and slow
for large networks (CASTILLO; O’NEILL, 2013), and have no guarantee of convergence.
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3 Methodology

In order to guide and organize the development of this work, it was divided into
five distinct work packages, which are described below:

• WP1 - Preliminary work and literature research: research on basic concepts
of machine learning and optimization (non-convex optimization, neural networks
and graph neural networks), literature research on the application of GNNs to power
flow problems, and preparation of the software setup and development environment;

• WP2 - Replication of results of (DONON et al., 2020): implementation of
the training scheme described in the paper, evaluation of the architecture on at least
two power grids, and assessment of the zero-shot property claimed by the authors;

• WP3 - Implementation of a GNN-based algorithm for OPF: development of
a GNN to perform OPF with the zero-shot property, based on the methods presented
by (DONON et al., 2020; OWERKO; GAMA; RIBEIRO, 2020) and other papers
found in the literature;

• WP4 - Analysis and results: evaluation of the proposed architecture against
other OPF algorithms, regarding accuracy on the grid whose data was used for the
training of the algorithms, accuracy when employing the algorithms on grids other
than the one on which the algorithms were trained, and computation time;

• WP5 - Documentation and presentation: delivery of a written report explaining
the performed work, and preparation of a presentation discussing the most important
results achieved.

Taking these work packages into account, the Gantt diagram shown in Figure
2 depicts the planned time periods allotted to each activity. As can be observed, the
work packages WP1 and WP2 should be carried out simultaneously, lasting for about a
month. After the completion of these tasks, the actual implementation of the GNN-based
algorithm for solving the OPF problem, as specified in WP3, should begin, with an
estimated duration of two months. Approximately two weeks before the finalization of
WP3, the phase of evaluating the developed model on various power grid topologies and
analysing the obtained results (e.g., through the generation of plots), as described by
WP4, should commence, with a scheduled completion time of 20 days. Lastly, the process
of producing the written report of the performed work, as defined by WP5, should start
around 20 days after the beginning of the implementation phase (in order to capture the
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most important aspects of this step), being concluded at the end of this project, after
approximately 45 days.

Figure 2 – The time slots allotted to each work package are just an estimation of the
expected duration of each task based on their assessed complexity. The actual
completion time of each work package may di�er slightly according to the
progress made and to the di�culties encountered at each step of the project.
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4 Requirements Specification

In this chapter, the functional and non-functional requirements specified for the
GNN model to be developed are presented and explained. It should be noted that some of
the listed requirements may be more relevant to possible future extensions of this work.

With that in mind, the following functional requirements were identified:

• Optimization accuracy: the GNN model should accurately solve the OPF problem,
ensuring that it minimizes generation costs while satisfying operational constraints
and demand requirements;

• Speed and e�ciency: the primary functional requirement is that the GNN model
performs the OPF calculations significantly faster than traditional solvers, enabling
real-time or near-real-time operation of the power grid;

• Scalability: the model should be capable of handling power grids of varying sizes,
from small distribution networks to large-scale transmission systems with thousands
of buses, while maintaining its computational e�ciency;

• Integration with grid data: the model should be able to accept input data
representing the topology, parameters, and operational constraints of the power grid.
The data include information about buses, generators, loads, transmission lines, and
other components.

Furthermore, the non-functional requirements described below should be taken
into account in the evaluation of the usefulness and adequateness of the proposed model.

• Generalization capability: the GNN model should generalize well to di�erent grid
topologies, configurations, and sizes. It should be able to handle diverse network
layouts without requiring retraining;

• Model robustness and stability: the GNN model should be stable and robust,
providing reliable solutions even in the presence of noisy grid data;

• Resource e�ciency: the model should utilize computational resources e�ciently,
enabling it to be deployed on diverse hardware platforms;

• Memory e�ciency: the model should manage memory usage e�ectively to avoid
excessive memory overhead, enabling it to handle large-scale power grids without
causing memory-related issues (such as memory fragmentation or out-of-memory
problems);
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• Maintainability and extensibility: the GNN model should be designed in a
modular and well-structured manner, facilitating easy maintenance, updates, and
extensions as new features or improvements are introduced;
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5 Development

This chapter describes the development process of the GNN model proposed to
solve the OPF problem. In Section 5.1, the main technologies used for the implementation
are listed. Section 5.2 details the actual project and implementation decisions with regards
to the model, from its architecture to the training procedure.

5.1 Used Technologies

This project was developed entirely in Python 3.10, with the PyTorch (PASZKE
et al., 2019) (version 1.13) and PyTorch Geometric (FEY; LENSSEN, 2019) (version
2.0) libraries being used to create the train and test sets, as well as to define, train and
evaluate the GNN models utilized to solve the OPF problem. Apart from that, the Numpy
(HARRIS et al., 2020) and Matplotlib (HUNTER, 2007) libraries were employed to store
the evaluation results and to generate the plots shown in Section 6.3.

5.2 Project and Implementation

In (DONON et al., 2020), a message passing GNN is proposed to compute the
power flow of an electrical grid. The architecture of the model, which is called Graph Neural
Solver (GNS) by its authors, is based on an iterative process that applies "correction"
updates to the variables of each bus (voltage magnitude, voltage phase and latent message).
The model is trained in an unsupervised manner to directly minimize the violation of
Kirchho�’s laws at each bus — instead of minimizing the distance between its predictions
and the output of a particular solver (HANSEN; ANFINSEN; BIANCHI, 2023; DONON
et al., 2019). One main advantage of the unsupervised method is that this architecture
displays a form of zero-shot property, i.e., a model trained on a specific power grid is
able to achieve, during inference time, decent performance on grids that had not been
previously seen during training, regardless of their topology.

In this section, a new methodology for OPF calculation based on the structure of
the GNS is presented in Subsection 5.2.1. For example, the inequality constraints (2.10)-
(2.13) had to be taken into account in the new architecture. Furthermore, Subsection 5.2.2
details the procedure adopted to train the model.
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5.2.1 Model Architecture

The proposed architecture utilizes a GNN to infer the state of the grid, i.e., the
voltage magnitude and phase at each bus, along with the optimal set point of the generators’
active and reactive power — whereas (DONON et al., 2020) only focus on finding the
steady-state voltage magnitude and phase values in the grid. The model employs an
iterative scheme in which these variables are progressively updated based on the values
of the previous iteration. Additionally, the algorithm makes use of a message passing
mechanism, where d-dimensional messages are exchanged between buses. These messages
can be viewed as a way to encode the state of a bus and information about its neighbours
into an abstract space (DONON et al., 2020).

Figure 3 depicts a block diagram representation of the proposed architecture, with
arrows indicating the flow of data between its elements. The following subsections provide
details on each of the architectural components.

Figure 3 – After the initialization step, the model variables are used to perform the power
flow computation. The results of these calculations, along with the messages
produced by the message-passing GNN, are then passed as inputs to DNNs
that generate the updates to each of the variables and to the MPGNN. This
process is repeated for K iterations.

5.2.1.1 Initialization

The voltage magnitudes of all buses are set to 1 p.u., except for the ones connected
to a generator, for which the voltage magnitude is the voltage set point of the generator.
All voltage phase angles are initialized to 0 radians, and the GNN messages at each buses
are also set to zero.

A DC-OPF solver is run on the grid in order to set the initial active power output of
the generators. This was done due to the fact that DC-OPF has a low computational cost
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and is often used as a warm start to the OPF problem. With regards to the initialization
of the reactive power output of the generators, the following procedure was adopted: firstly,
the ratio between the total reactive power that can be produced by the generators and the
total reactive demand across the entire network is calculated. The initial reactive power of
the each generators is then set by multiplying this ratio by the corresponding maximum
allowed reactive power output.

5.2.1.2 Global Power Consumption Calculation

After the initialization, for each update k = 0, ..., K ≠ 1, by summing the power
consumed by every bus in the grid, it is possible to compute the global active and reactive
power consumption — designated respectively by Pglobal and Qglobal — based on the voltage
magnitude and phase values for each bus, the power line characteristics and the demands
and shunt loads of the buses. The active power consumption must also include the losses
due to Joule dissipation (Pjoule). The calculation of the global power consumption is thus
given by (5.1)-(5.3):

P (k)
global =

A
ÿ

iœV
Pd,i + Gs,i

1
V (k)

i

22
B

+ P (k)
joule, (5.1)

P (k)
joule =

ÿ

(i,j)œE

-----V
(k)

i V (k)
j yij

1
·ij

1
sin(◊(k)

i ≠ ◊(k)
j ≠ ”ij ≠ ◊shift,ij)+

sin(◊(k)
j ≠ ◊(k)

i ≠ ”ij + ◊shift,ij)
2

+
Q

aV (k)
i

·ij

R

b
2

yij sin(”ij) +
1
V (k)

j

22
yij sin(”ij)

-----,

(5.2)

Q(k)
global =

A
ÿ

iœV
Qd,i ≠ Bs,i

1
V (k)

i

22
B

. (5.3)

5.2.1.3 Local Power Imbalance Calculation

Furthermore, the local active and reactive power imbalance given by �P and �Q,
respectively, can be calculated for each bus at update k through (5.4) and (5.5). These
equations can be seen as a measure of the violation of Kirchho�’s laws, which, in simple
terms, state that the power flowing into a bus should be equal to the power flowing out
of that bus. It should be noted that, in the equations below, power lines connecting two
buses are denoted by their "from" and "to" sides, which are represented by the sets U and
D, respectively, and indicate the direction of the energy flow:
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�P (k)
i =

3
P (k)

g,i ≠ P (k)
d,i ≠ G(k)

s,i

1
V (k)

i

224

+
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iœU
jœN (i)
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�Q(k)
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(5.5)

5.2.1.4 Message Passing Mechanism

Besides the attributes that relate to physical properties of the buses, a message
variable is attributed to each bus in the grid. These messages carry no direct physical
meaning, but their propagation through the network has been shown to be a suitable way
to compute the power flow (DONON et al., 2019).

The message function „ is performed by a deep neural network, which takes as
input a vector m

(k) = [m(k)
1 , ..., m(k)

N ] containing the messages associated with every bus,
as well as the physical characteristics of all the power lines in the grid, represented by
l = (y, ”, b, · , ◊shift). The output of this neural network is a vector of processed messages
m

(k) with entries for each bus:

m
(k) = „

1
m

(k), l

2
. (5.6)

By multiplying the vector m
(k) by the incidence matrix A, that indicates which

buses are connected by a power line, it is then possible to obtain a vector z
(k) that stores,

for each bus, the sum of the processed messages of all its neighbours. This aggregation
operation can be interpreted as the propagation of messages among neighbouring buses:

z
(k) = A

1
m

(k)
2T

. (5.7)
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5.2.1.5 Neural Network Update

The rules used to update the voltage magnitudes and phases of each bus, the
messages, and the active and reactive power outputs of the generators are described
by (5.8)-(5.12). The term s

(k) =
1
V

(k), ◊(k), m
(k), �P

(k), �Q
(k)

2
contains the values of

the voltage magnitude and phase, the message, and the local active and reactive power
imbalance for every bus in the grid at update k, while z

(k) is given by (5.7). The terms s
(k)
g

and z
(k)
g are defined similarly to their counterparts, but only include information about

buses that are attached to generators:

V (k+1)
i =

Y
_]
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V (k)
i + L(k)

v,i

1
s

(k), z
(k)

2
, otherwise

, (5.8)

◊(k+1)
i = ◊(k)

i + L(k)
◊,i

1
s

(k), z
(k)

2
, i œ V , (5.9)

m(k+1)
i = m(k)

i + L(k)
m,i

1
s

(k), z
(k)

2
, i œ V , (5.10)

P (k+1)
g,i = P (k)

g,i + L(k)
p,i

1
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(k)
g , z

(k)
g

2
, i œ VG, (5.11)

Q(k+1)
g,i = Q(k)

g,i + L(k)
q,i

1
s

(k)
g , z

(k)
g

2
, i œ VG. (5.12)

The functions L(k)
v , L(k)

◊ , L(k)
m , L(k)

p and L(k)
q are deep neural networks which are

specific to an iteration k and are trained to perform updates to the model variables based
on the state of the grid and on the sum of messages exchanged between neighbouring nodes.
The parameters of these neural networks, as well as those of the message function (5.6),
are learned during training through gradient descent. In the equations above, the subscript
i was utilized to indicate the i-th element of the vector returned as the output of these
functions. Moreover, as defined in (5.8), the voltage magnitude of the buses connected
to a generator remains fixed at the voltage set point of their respective generator. It is
important to emphasize that, in contrast to (DONON et al., 2020), who use a custom
compensation rule to control the active power output of each generator (in order to ensure
a global active equilibrium) and do not even consider the global reactive power balance in
the grid, the proposed algorithm makes use of neural networks with learnable parameters
to calculate the active and reactive power outputs of the generators.

It should be noted that these functions could be realized through other approaches.
For instance, considering that the the updates to the model variables take the values
of the previous iterations into account, one valid alternative would be the utilization
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of Long Short-Term Memory (LSTM) modules to perform the update steps. LSTMs
(HOCHREITER; SCHMIDHUBER, 1997) are a type of recurrent neural network (RNN)
architecture designed to be able to capture long-range dependencies and relationships
between sequential data e�ectively. In order to do that, they make use of so-called gates,
which allow them to selectively update, retain, or discard information at each time step.
However, after preliminary tests, it was verified that using LSTMs instead of regular
DNNs lead to significantly longer training and inference times - which can most likely be
attributed to the sequential nature of LSTMs. Thus, in the proposed architecture, deep
neural networks are used to perform the update functions.

5.2.2 Training

In regards to the training process, the learnable weights of the GNN model are
optimized against a multi-objective function that takes into account the local power
balance at each bus, the constraints defined by (2.8)-(2.13) and the total generation cost
in the grid. Given a batch of T samples, at the end of each update k, the violation of
Kirchho�’s laws ((5.4) and (5.5)) is computed for each bus of every sample t = 1, ..., T .
The loss function ¸ used to minimize the local power imbalance is then defined by the
following weighted average:

¸ = 1
T

Tÿ

t=1

Kÿ

k=1

“
K≠k

÷

N
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i=1

51
�P (k)

i,t

22
+

1
�Q(k)

i,t

226
, (5.13)

where the discount factor 0 < “ < 1 and the weighting factor ÷ Ø 1 are hyperpa-
rameters of the model. The discount factor gives more weight to the contribution of later
iterations, while the weighting factor can be adjusted to further control the magnitude of
the local loss for each update.

As discussed in Chapter 2, besides the generation cost function that is to be
minimized (2.7), the OPF problem consists of a set of equality constraints (2.8)-(2.9)
related to the flow of active and reactive power in the grid and of several inequality
constraints (2.10)-(2.13) that establish limits on the range of values the voltage magnitude
and phase of the buses, as well as the active and reactive power outputs of the generators
can assume. Hence, considering the complexity of solving the OPF directly, due to its
non-convex nature, its constraints can instead be approximated by means of penalty
functions, which quantify the degree to which the constraints are violated. By minimizing
the penalized objective function, approximate solutions that satisfy the constraints to
some extent can thus be computed. This leads to an unconstrained minimization problem
that can be solved, e.g., through gradient descent, if the chosen penalty functions are
di�erentiable. Nevertheless, it should be noted that the parametrization obtained through
this approach may result in outputs that are infeasible for the constrained problem.
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Therefore, in order to ensure a global power equilibrium in the grid, i.e., that the
power produced by the generators satisfies the power demanded by the buses, the mean
squared error was used as an equality penalty function for both the active and the reactive
power, being denoted by Peq and Qeq, respectively. This constraint is applied to every
update, leading to the loss functions below:
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For the inequality constraints (2.10)-(2.13), the extended log-barrier function
introduced in (OWERKO; GAMA; RIBEIRO, 2022) was chosen as a penalty function.
This function makes use of the extended logarithm log’ , which is defined as:

log’(u) :=

Y
_]

_[

log(u), if u Ø 1/’

’(u + 1
’ ) ≠ log

1
1
’

2
, otherwise

, (5.16)

The parameter ’ Ø 0 determines the maximum value of the function’s derivative.
The extended log-barrier function is then defined as:

µ›(u) := ≠(1/›)log’(≠u), (5.17)

where › > 0 is a parameter, with larger values of › providing better approximations
to the indicator function. Unlike the traditional log-barrier method (BOYD; VANDEN-
BERGHE, 2004), the extended log-barrier function is defined on R+ and can be applied to
infeasible values, i.e., values that violate the constraints — whereas the classical logarithm’s
output is undefined for values outside the feasibility set. This is important since the model
parameters are randomly initialized and, at first, may not produce feasible solutions.

The total generation cost in the grid depends on the active power output and on
the unit costs of each generator. Therefore, the cost function can be defined as the average
generation cost across all samples for the last update K:
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Finally, the complete objective function, which is to be minimized by means of
gradient descent, is given below:
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The weight parameters ⁄i Ø 0, i = 1, ..., 12, can be adjusted so as to strike a balance
between the optimality and the feasibility of the solutions. For instance, by increasing the
value of the parameter ⁄12, it would be possible to achieve results with lower generation
costs, but that could lead to more constraint violations. On the other hand, adding more
weight to the terms related to the constraints could trade o� a reduction in the number
and severity of the violations for less optimal solutions.



35

6 Evaluation

This chapter discusses the results obtained from evaluating di�erent trained in-
stances of the proposed model on various power grids. Section 6.1 explains the methodology
applied to the generation of the used datasets. In Section 6.2, the di�erent metrics against
which the model was evaluated are presented. Finally, Section 6.3 examines the actual
performance of the model with regards to the considered evaluation metrics.

6.1 Dataset Generation

In order to construct the datasets utilized both for training and evaluation purposes,
a methodology similar to the approaches used in (DONON et al., 2020) and (OWERKO;
GAMA; RIBEIRO, 2022) was followed. In this sense, for a particular power grid, the values
of the parameters r, x and b of the power lines, the active and reactive power demands of
each bus, as well as the cost coe�cients used to calculate the unit cost of every generator,
are sampled from a uniform distribution around 90% and 110% of their reference values.
The voltage set point of the generators are sampled uniformly between 0.95 p.u. and 1.05
p.u., and their initial reactive power outputs are obtained by sampling from a uniform
distribution around 95% and 105% of the values obtained after performing the initialization
step described in Subsection 5.2.1.1. Therefore, it is possible to generate various samples
that correspond to distinct power grid states, helping improve the generalization capability
of models trained on that dataset.

6.2 Evaluation Metrics

With respect to the metrics employed to evaluate the proposed architecture, it
is important that they relate to the requirements specified in Chapter 4. With that in
mind, the metrics chosen to accomplish this were the computation time taken by the GNN
model to calculate the OPF in a power grid as well as the generation cost of the produced
solutions.

Hence, by comparing the model to an IP solver with regards to these metrics,
it is possible to determine if the GNN-based approach is able to adequately minimize
generation costs and to compute solutions to the OPF problem faster than traditional
methods. In addition to that, analyzing the computation time of the model across various
grid sizes allows for the verification of its scalability. Moreover, its generalization capability
can be evaluated by checking if an instance of the model can achieve good performance
when tested on grids not seen during training.
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Lastly, it is relevant to emphasize that, although these metrics alone do not capture
all of the non-functional requirements listed in Chapter 4, the model was carefully designed
so as to ensure robustness and e�cient use of computational resources (especially memory),
and the code was developed in a way that facilitates its maintenance.

6.3 Evaluation Results

This section discusses the evaluation results obtained after training the proposed
algorithm on di�erent power grids — all of which are available in MATPOWER (ZIMMER-
MAN; MURILLO-SáNCHEZ; THOMAS, 2011). In Subsection 6.3.1, the consistency of the
model’s solutions are validated using the IP method as a ground-truth. For that, separate
models where trained on four di�erent cases (case9, case14, case39 and case118 ) and their
outputs were compared to those of the IPS with regards to active power flow. In Subsection
6.3.2, both methods are compared in terms of total generation cost and computation
time, with a model trained on multiple cases being used for the evaluation. It is shown
that the GNN is able to produce results with lower generation costs than an interior
point solver, while being much faster than the latter. Furthermore, the generalization
capability of the architecture is examined by training a model on a single case (case300 )
and evaluating its performance (also based on generation cost and computation time) on
previously unseen grids. Lastly, Subsection 6.3.3 analyzes the computational scalability of
the proposed method for di�erent grid sizes, ranging from fewer than ten to over 2000
buses. The achieved results demonstrate that the GNN model (trained on case2383wp)
scales much better than a traditional OPF solver as the number of buses increases —
considering that the computation time of the former stays basically constant regardless of
the size of the grid.

Table 1 shows the most relevant hyperparameters of the models trained on only
one of the considered power grids: case9, case14, case39, case118, case300 and case2383wp.
These values were selected empirically after an analysis of the performance of the models
on the test sets. The training datasets of each grid consisted of 1000 samples generated
according to the methodology described in Section 6.1.

Case Epochs Batch size Correction updates

case9 200 512 10
case14 150 512 10
case39 100 512 15
case118 150 512 10
case300 100 128 10

case2383wp 100 128 10

Table 1 – Selected hyperparameters of the best-performing models trained on a single
power grid.
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Apart from that, another model was trained with 2500 samples distributed evenly
across multiple power grids (case9, case14, case39, case118 and case300 ). Taking the
higher amount of training samples into consideration, this model was trained for 50 epochs
with a batch size of 128.

Additionally, for every trained model, the dimension of the latent messages was set
to 10, the number of hidden layers used in the neural networks was set to 2 and leaky ReLU
was chosen as the activation function of the neural networks. Besides that, a discount
factor of “ = 0.5 was used for the loss function related to the local power imbalance of the
buses.

For the models trained exclusively on case9, case14, case39 or case118, the Adam
optimizer with a learning rate of 3 ◊ 10≠3 was utilized for all parameters except for the
ones related to the neural networks responsible for updating voltage and phase values, for
which a learning rate of 1 ◊ 10≠3 was used. For the GNN instances only trained on case300

or case2383wp, given the larger number of buses in these grids and the wider range of
values that can be assumed by the model variables, in order to avoid instability during
training, the learning rate was reduced to 3 ◊ 10≠4 for all parameters, with the exception
of the ones associated with the neural network that performs the message function. For
the update of these parameters, a learning rate of 6 ◊ 10≠4 was used. Lastly, for the model
trained on multiples cases, the parameters corresponding to the update of the voltage
magnitude and phase of the buses had a learning rate of 3 ◊ 10≠4, while the learning
rate of the neural networks which update the power outputs of the generators was set to
6 ◊ 10≠4, and the learning rate of the message passing module was defined as 1 ◊ 10≠3.

In all cases, the exponential decay rates of the first and second moments were
set to —1 = 0.9 and —2 = 0.999, respectively. Gradient clipping was also applied, with a
maximum clip value of 1 ◊ 10≠3. All models were trained and evaluated on an NVIDIA
GTX 1080Ti GPU with 11GB of VRAM, except for the one trained on multiple cases, for
which a Tesla T4 GPU with 16GB was utilized.

6.3.1 Model Validation

In this and in the following subsections, the default interior point solver from
PYPOWER (LINCOLN, 2011) (which is a port of MATPOWER to Python) was utilized
for all comparisons with the proposed algorithm. Firstly, as a way to check the validity
of the outputs produced by the GNN, Figure 4 displays, for a random test sample, a
juxtaposition between the solution of a model trained on case9 and the one of the IPS in
terms of the generators’ active power output and of the active power flowing through the
lines connecting the buses.

As illustrated by this plot, the GNN generates results that closely resemble those of
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Figure 4 – Comparison of the active power output of the generators (nodes 1-3) and of
the active power on the lines when solving the OPF for case9 using the GNN
model (left graph) and the IPS (right graph). The model was trained on case9.

the IP method, considering that the mean and maximum deviations of the active set points
of the generators with respect to the IPS were 5.57 % and 8.76 %, respectively. In the case
of the active power flow on the lines, the mean and max deviations were, respectively,
8.15 % and 18.81 % — with most lines having a deviation of less than 10 %. This suggests
that the model indeed learns how to compute the OPF of a grid in a meaningful way.

Moreover, Figure 5 shows the total di�erence of the GNN model when compared to
the IPS with respect to the active flow on the power lines. In this experiment, we compare
the solutions of the GNN when tested with data from the same grid on which the model
was trained. Similarly to (DONON et al., 2020), only the 50% largest active flows (in
absolute value) were kept for the calculation of the relative error, since the percentage
of error can explode for small power flows. As can be observed, the models are able to
achieve results that are reasonably close to the outputs of the IPS, indicating that the
proposed architecture can indeed be used as a valid way of solving the OPF problem —
also considering that, since the problem is non-convex, the IP method does not necessarily
compute optimal solutions. It should be pointed out that the test sets only contain samples
that converged with the IP method.

Figure 5 – Relative deviation (20th percentile, median, 80th percentile) of the proposed
model with regards to the IPS in terms of active flow of the power lines.
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6.3.2 Evaluation on Standard IEEE Power Grids

In this subsection, we compare the cost and speed of the proposed algorithm to the
solutions provided by the IP method. To this end, two models were used: one of them was
trained on data from multiple power grids (case9, case14, case39, case118 and case300 ),
while the other was trained on a dataset based on case300 (using the hyperparameters
described at the beginning of Section 6.3). The latter was evaluated on various other power
grids not seen during training — as a way to verify the zero-shot property.

Furthermore, given that the models may occasionally produce outputs which violate
the maximum active power limits of the generators, the excess power was redistributed
across the generators of the grid according to the merit order principle, i.e., the excess
power is first distributed to the generator with the cheapest generation cost that still has
not expended all of it active generation capacity, then to the second cheapest generator
and so on. In the case of the reactive power, violations are redistributed proportionally
to the remaining reactive capacity of the generators. The application of these techniques
ensures that no power constraints are violated. Also, it should be noted that no voltage
magnitude and phase violations occurred for any of the test samples.

Figures 6 and 7 depict, respectively, the relative generation cost and the computation
time of the GNN model trained on multiple cases and evaluated on each one of them,
when compared to the IPS. In Figure 6, it can be seen that the model outputs solutions
with slightly lower generation costs on average for all test cases. Besides that, Figure 7
shows that the GNN is much faster (at least by one order of magnitude) and scales much
better than the IP method: while the average computation time of the GNN remained
basically constant, the computation time of the IPS becomes longer as the number of
buses increases.

Figure 6 – Relative generation cost of a GNN model with regards to the IPS, when trained
on multiple cases and tested on each one of them. In the smaller grids, since
each grid element has a stronger contribution to the final result, the noise
added to the features of the test samples leads to a higher variance.
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Figure 7 – Comparison of the computation time of the GNN model (red bars) and the IPS
(blue bars), when trained on on case9, case14, case39, case118 and case300

and tested on each of these power grids.

On the other hand, Figure 8 showcases the generalization capability of the proposed
architecture, considering that the model which was only trained on case300 can achieve
good performance even on grids that had not been seen during training (zero-shot property).
It is also important to highlight that, for case118 and case300, the relative generation
costs of this model are quite close to those of the previous one — although it must be
noted that this instance of the GNN calculated solutions with marginally higher generation
costs for the smaller grids. Similarly to the results presented before, computation time
was significantly improved in relation to the IPS, as shown in Figure 9. For case9, due
to the small size of this grid, the values attributed to the properties of each grid element
have a larger impact on the calculations performed by the model. Thus, the noise injected
in the test samples causes a high variance in the computation time.

Figure 8 – Relative generation cost of a GNN model with regards to the IPS, when trained
on case300 and tested on other power grids.
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Figure 9 – Comparison of the computation time of the GNN model (red bars) and the
IPS (blue bars), when trained on case300 and tested on other power grids.

6.3.3 Scalability Evaluation

In addition to the analyses of the previous subsections, we validate whether this
architecture is applicable to much larger and more complex networks (especially with
respect to computation time). To this end, a model was trained on case2383wp, which
represents the Polish power system during winter 1999-2000 peak conditions. To the best
of the author’s knowledge, there is no other work that solves the AC variant of the OPF
problem beyond the 118-bus system test case.

As can be seen in Figure 10, the GNN model is able to generate solutions whose
cost is reasonably close to that of a traditional IPS. In particular, for case2383wp, the
generation cost was on average approximately 5% higher when compared to the IP method.
This indicates that, with respect to the cost metric, the proposed model is able to achieve
satisfactory performance even in very large networks.

Figure 10 – Relative generation cost of a GNN model with regards to the IPS, when
trained on case2383wp and tested on other power grids. The results obtained
for case2383wp are highlighted.



Chapter 6. Evaluation 42

With regards to computation time, Figure 11 demonstrates that the model outper-
forms the IPS by a considerable margin. This is especially noticeable for case2383wp, in
which the GNN was 103 faster, given that its average computation time was approximately
6 ◊ 10≠2 s and that the IPS took around 90 s on average to calculate the OPF of the
grid. Lastly, it should be once again emphasized that, regardless of the size of the grid,
the computation time of the GNN model remained below 10≠1 s, denoting much better
scalability.

Figure 11 – Comparison of the computation time of the GNN model (red bars) and the
IPS (blue bars), when trained on case2383wp and tested on other power grids.
The results obtained for case2383wp are highlighted.

Being able to solve the OPF problem so fast could bring several benefits to the
operation of power grids. For example, it could help system operators make timely decisions
to minimize the overall operational costs and to ensure reliable grid operation, improving
the economic e�ciency of the power system. In addition to that, during emergency
situations or contingencies, such as equipment failures, fast computation of the OPF would
allow for the impact on the grid to be quickly assessed and dealt with, helping minimize
downtime and secure the resilience of the system.
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7 Final Remarks

This work explored the application of GNNs for solving the OPF problem in
electrical grids. The experimental results demonstrated the potential of GNN-based models
in addressing this complex optimization problem and highlighted the advantages they o�er
over traditional approaches such as the interior point method. Hence, further research
on the use of GNNs to tackle other problems in the power systems domain could yield
auspicious results.

7.1 Conclusion

In this paper, a generalizable and scalable GNN architecture was proposed to solve
the OPF problem. As shown by the evaluation on diverse power grids, the model is able to
compute the OPF of an electrical grid much faster than traditional methodologies. Thus,
the main goals of this research (described in Section 1.2) were successfully achieved.

One notable feature of GNNs is their ability to capture and leverage the underlying
graph structure of the power grid, enabling them to model the dependencies and interactions
between di�erent components. This graph-based representation enhances the generalization
capability of the model, allowing it to adapt to and achieve good performance on various
grid topologies, sizes and configurations.

Another significant benefit of using GNNs to solve the OPF problem refers to
their scalability. By processing local neighborhood information iteratively, GNNs can
handle computing the OPF for large power systems (with hundreds to thousands of
buses) much faster than traditional numerical approaches. This scalability is essential for
practical application in real-world power grids, where the number of buses, generators,
and transmission lines can be substantial.

7.2 Contributions

Among the main contributions put forward as a result of this work, the following
ones should be emphasized:

• Computational speedup: the experimental results showcase that the GNN model
is able to compute solutions to the OPF problem much faster than traditional
methods. Systems that operate under restrictive time limits could especially benefit
from this speedup.
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• Generalization capability: through its graph-based representation, the proposed
architecture displays the capacity to to seamlessly adapt across diverse grid topologies
and configurations (zero-shot property).

• Scalability: e�cient processing of information from local neighbours enables the
model to scale well across power systems with varying sizes, ranging from tens to
even thousands of buses.

7.3 Future Perspectives

This work focused on proving the applicability of GNNs to solve the OPF problem.
Future work could aim at improving the accuracy of the GNN by, e.g., performing
a thorough hyperparameter tuning process, as the performance of GNN models can be
sensitive to the choice of hyperparameters, such as learning rates, regularization parameters
and batch size. Adjusting the training process, e.g., by modifying the dataset generation
strategy, increasing the number of training samples, or experimenting with di�erent loss
functions, could also be an interesting way to achieve better results. Besides that, future
work could focus on addressing the challenge of applying the methodology to real-world
data, which are potentially more complex than the test cases used in this thesis, especially
considering that the behaviour of actual power grids may evolve over time.
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