
Igor Nunes Ferro

IoT Forensics: Current State-of-the-Art and the
Creation and Extension of a Forensic Tool

São Paulo, SP

2023





Igor Nunes Ferro

IoT Forensics: Current State-of-the-Art and the Creation
and Extension of a Forensic Tool

Trabalho de conclusão de curso apresentado
ao Departamento de Engenharia de Com-
putação e Sistemas Digitais da Escola Politéc-
nica da Universidade de São Paulo para
obtenção do Título de Engenheiro.

Universidade de São Paulo – USP

Escola Politécnica

Departamento de Engenharia de Computação e Sistemas Digitais (PCS)

Orientadora: Profa. Dra. Cíntia Borges Margi

São Paulo, SP
2023



 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

Ferro, Igor Nunes
        IoT forensics: current state-of-the-art and the creation and extension of a
forensic tool / I. N. Ferro -- São Paulo, 2023.
        147 p. 

        Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

        1.INTERNET DAS COISAS 2.INVESTIGAÇÃO CRIMINAL
3.PROTOCOLOS DE COMUNICAÇÃO I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Computação e Sistemas Digitais
II.t.



Acknowledgements

I would like to acknowledge and thank many people, but firstly, God. I am here
and can write this because of Him. I would like to thank my parents, Lazaro and Andréa,
for always being there by my side, motivating me, showing me the purpose of what I do,
and that I am capable of doing everything that I want and focus on. I would also like to
thank my supervisor, Profa. Dra. Cíntia Borges Margi, for helping and guiding me in this
academic journey. Also thanks to my supervisor of my Master Thesis from Belgium, Prof.
Ramin Sadre, and my colleague and co-author of it, Merlin Camberlin.

I would like to convey my warmest thanks to all my friends who have been with
me throughout this entire journey, spanning from Brazil to Belgium and back. While it is
challenging to mention everyone, I want to specifically acknowledge Luís, Caio, Lorena,
Rodrigo, Fernando, Matheus, Gabriel Henrique, Gabriel Morghett, Emi, Amanda, and
Giuliano. I am also grateful to my friends from my church in Belgium who welcomed me
and made me feel at home — thank you, Antoine, Helène, Chloé, Amy, Zack, Christelle,
Mike, Isaías, Ben, and especially my pastors, Robbie and James. Special appreciation
is extended to my international friends in Belgium, including Michele, Niklas, María
Fernanda, María Isabel, Thomas, Anna, Elisa, Theresa, Joana, Paola, Irene, and others. To
my friends from the “ABU na Poli” group, who supported me during my university years,
a heartfelt thanks to Jônatas, Giulia Moreira, Giulia Viana, Arthur, Bianca, Matheus,
Ian, Isaac, Jhonny, and everyone else involved in this project. Another round of special
thanks goes to other friends from Poli: Vinícius, Pedro, Lucas, Igor, Guilherme, Nathan,
and Henrique.





Resumo
Em investigações criminais atuais, os peritos digitais examinam rotineiramente equipamen-
tos de computação tradicionais, como laptops, telefones celulares e tablets. No entanto, o
aumento dos dispositivos de Internet das Coisas (IoT) apresenta novos desafios, dificul-
tando a aplicação de métodos forenses convencionais. Este trabalho investiga frameworks,
procedimentos e ferramentas existentes no âmbito de forense aplicada à IoT, avaliando sua
relevância em contextos investigativos. Há uma lacuna crítica na identificação de dispositi-
vos IoT em cenas de crime, pois esses dispositivos podem assumir diversas formas e estarem
integrados a objetos do cotidiano. Reconhecendo a dificuldade que os policiais enfrentam
na identificação de dispositivos IoT, especialmente aqueles que não estão familiarizados
com estes, este trabalho apresenta uma solução: um software capaz de identificar e localizar
diferentes tipos de dispositivos IoT, equipado com uma interface gráfica do usuário (GUI)
de fácil utilização. O software proposto permite a exibição em tempo real de dispositivos
IoT ativos nas proximidades que utilizam protocolos WiFi, Bluetooth Low-Energy, ZigBee
e 6LoWPAN, sendo exaustivamente testado e validado, encontrando todos os dispositivos
nas cenas de teste em um tempo hábil.

Palavras-chave: Forense em IoT, Casas Inteligentes, Investigações Digitais, Ferramentas
Forenses





Abstract
In contemporary criminal investigations, computer forensic investigators routinely examine
traditional computer equipment like laptops, mobile phones, and tablets. However, the surge
in Internet of Things (IoT) devices presents novel challenges, hindering the application of
conventional forensic methods. This work investigates existing frameworks, procedures,
and tools in the realm of IoT forensics, assessing their relevance in investigative contexts.
A critical gap emerges in the identification of IoT devices at crime scenes, as these devices
can assume diverse forms and seamlessly integrate into everyday objects. Recognizing
the difficulty police officers face in identifying IoT devices, particularly those unfamiliar
with IoT technology, this work introduces a comprehensive solution: a software capable of
sniffing and locating different types of IoT devices, equipped with a user-friendly Graphical
User Interface (GUI). The proposed software enables real-time display of active IoT devices
in proximity of the protocols WiFi, Bluetooth Low-Energy, ZigBee, and 6LoWPAN, being
thoroughly tested and validated, finding all of the devices on the testing scenarios in a
reasonable amount of time.

Keywords: IoT Forensics, Smart Homes, Digital Investigations, Forensic Tools
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1 Introduction

1.1 Motivation
The Internet of Things (IoT) is a promising combination of technologies that has

the potential to revolutionize many sectors by automating processes and enabling new
services and applications. Various studies predict the number of IoT devices is expected
to increase significantly in the coming years (COLUMBUS, 2016).

The rise of the Internet of Things has led to an explosion in the number of connected
devices in our environments. In particular, smart homes are becoming increasingly popular
and equipped with IoT devices, ranging from smart locks and security cameras to smart
thermostats and home assistants. According to a report by Statista, the global number of
households in the smart home market is expected to continuously increase between 2023
and 2027 to reach 672.57 million households by 2027 worldwide, up from 360.67 million in
2023 (LASQUETY-REYES, 2023).

Currently, the state-of-the-art literature can be summarized on two fronts: frame-
works and procedures. Frameworks are more theoretical, and procedures are more practical.
Each has its pros and cons, and there is a complement between each within the exist-
ing literature. In addition, there is research that determines how to conduct a forensic
investigation related to these devices. The divisions in the state of the art will be better
explained in chapter 2.

1.2 Objectives
The objectives of this work are twofold. On one hand, this work contributes to the

field of IoT computer forensics by conducting a study of the current existing frameworks,
procedures, and research for conducting investigations in environments that evolved IoT
devices such as smart homes. It also highlights the various challenges encountered by
investigators when dealing with IoT devices.

On the other hand, this work aims to provide a solution of software equipped with a
Graphical User Interface (GUI) tool that can assist investigators in the process of locating
IoT devices at a crime scene. The GUI will be designed to be user-friendly and intuitive
and will be developed using the latest software engineering methodologies and tools.

Overall, this work tends to answer the following questions: What are the existing
frameworks and procedures used for conducting digital investigations in IoT-based crime
scenes? What are the existing tools to support IoT forensics? How can we help police
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officers identify and locate connected objects at crime scenes?

1.3 Context and Justification

This growing adoption of IoT devices has made them a common presence in our
environments constituting new sources of evidence for judicial investigations. IoT devices
are closely integrated into users’ daily lives and constantly interact with and scan the
physical world. They act as silent witnesses, quietly recording and storing information
at a crime scene. This provides a wealth of information for criminal investigations. They
can potentially be used by police officers in several ways to assist with investigations at a
crime scene. The data collected can be used to establish timelines, identify suspects, or
shed light on what happened before, during, and after an event that transpired. This is
particularly true in cases involving smart homes. For instance, smart locks and security
cameras can record the time and date of entries and exits to a home. Smart home assistants,
such as Amazon Alexa or Google Assistant, can store voice recordings and transcripts of
conversations. This information represents a source of information that police investigators
cannot overlook anymore as part of their investigation.

Nowadays, most police departments have computer forensic investigators who
examine and analyze computer equipment for evidence recovery. In the context of criminal
investigations, this happens routinely for standard computer equipment, such as laptops,
mobile phones, and tablets. Procedures and practices for evidence recovery from traditional
computer equipment have been established and refined over several decades. In contrast,
procedures and best practices are much less clear for modern IoT devices. The field of
IoT device forensics is still in its early stages, and there is much less clarity about how to
conduct examinations of IoT devices for evidence recovery.

Police officers also face new challenges when using IoT devices for evidence recovery.
Among them, there is a diversity of IoT devices in terms of hardware, software, and
network connectivity. IoT devices may also not be immediately recognizable as such, as
they can take a variety of different forms and may be integrated into everyday objects.
Chapter 3 will go into more detail about other challenges brought by IoT devices.

In this context in which police officers are working and highlighting the growing
importance of IoT devices in crime scenes, there is an increasing need for procedures,
techniques, and specialized tools to help them effectively investigate crime scenes that
involve IoT devices.



1.4. Methodology 21

1.4 Methodology

This section outlines the key phases in the development of this work, covering
requirements specification, design, implementation, and testing. The detailed processes and
outcomes of each phase are elaborated in subsequent chapters. The structured approach
employed underscores the significance of the literature review, design, and development
stages in crafting effective software tools for IoT forensics.

1.4.1 Requirements Specification

Initially, as in every other work, it is necessary to establish the current state of
literature on the topic of the work. Therefore, the primary objective was to conduct a
comprehensive review of existing literature in IoT forensics. This focus must be even
greater in this work, given that part of it is to define and explore the state-of-the-art of
this field. Afterward, with the analysis of the current literature, we analyzed the current
problems in IoT Forensics. Then we chose a field inside it to explore and develop a tool
that can be applied to help the investigators even more, and the area chosen is the location
and identification of IoT devices in crime scenes. The detailed specification for this project
will be described in chapter 4, having a whole description of the current problems of IoT
forensics and the specification for the tool developed for the problem chosen to be tackled
in this work.

1.4.2 Design

Building on the insights gained from the literature review, the design phase involved
formulating a plan for developing the software tool aimed at locating IoT devices in crime
scenes. We identified the specific objectives, functionalities, and features of the software.
This phase translated our literature review findings into a coherent design, outlining
how the software would address the identified gaps. This included trying to develop a
user-friendly GUI in the software, thinking about the possible users not having much
experience with computers, and trying to make it not necessary to modify the source code
as possible. The design choices have been further expanded in chapter 5, more specifically
in 5.2 with emphasis on each of the devices and the choices made on why using them.

1.4.3 Implementation

With a well-defined design, we proceeded to the implementation phase. The devel-
oped tool was created using the Python programming language. During this phase, we
transformed our design into operational software code, considering the specific requirements
and capabilities outlined in the design phase. It is also further documented in chapter 5.
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1.4.4 Testing

The testing phase played a pivotal role in validating the developed tool. We
established a series of tests to assess the functionality, reliability, and performance of the
tools based on a real scenario of an investigator trying to find devices around a crime
scene. These tests revolved around real scenarios that the investigators could find during
their work, and they consisted of distributing devices around a house and trying to locate
them with the tool. The outcomes of the testing phase allowed us to see the efficiency of
the software, ensuring that it met the intended objectives and performed as intended.

1.5 Work Structure and Disclaimer
This work is an expansion of the works by Ferro and Camberlin (2023), co-authored

by the author of this monograph. With previous knowledge and authorization, the super-
visor and the other author of the Master Thesis allowed its contents to be used in this
work and to be further developed. Both the Master Thesis and this Monograph have been
written as a part of a double-degree program between the Universidade de São Paulo,
Brazil, and the Université catholique de Louvain, Belgium, with the accordance of both
universities in this partnership program for the reutilization of the contents. Therefore,
the structure of this work is very similar to the one in the other work, given that it needs
the whole context and the base tool developed, so the contents of the Master Thesis will
be reused and further expanded here, with new implementations and new contents being
added to it.
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2 Conceptual Aspects

2.1 Internet of Things (IoT)

2.1.1 IoT Definition

The concept of the Internet of Things has been around for over 15 years and refers
to the interconnectivity of physical objects through the use of advanced information and
communication technologies. The term was originally coined in relation to the work of
the Auto-ID Labs at MIT on networked radio-frequency identification (RFID) infrastruc-
tures but has since evolved to encompass a wider range of technologies and applications
(WORTMANN; FLÜCHTER, 2015).

The International Telecommunication Union (ITU), defines IoT as “A global
infrastructure for the Information Society, enabling advanced services by interconnecting
(physical and virtual) things based on, existing and evolving, interoperable information
and communication technologies” (BIGGS et al., 2016, p. 10).

The official definition of IoT formulated by the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC) takes up
a vision centered on value creation through services by generalizing the notion of infras-
tructure: “An infrastructure of interconnected objects, people, systems, and information
resources together with intelligent services to allow them to process information of the
physical and the virtual world and react” (ISO, 2017, p. 3).

Despite the widespread use of the term, there is still no unique globally accepted
definition of IoT. Several definitions are currently used by different groups. Those definitions
do not disagree: they highlight different aspects of what the IoT term covers. Some
definitions mention the most important attributes of the IoT phenomenon (connected
objects, Internet-related aspects), others describe what the term refers to and others focus
on use cases in which the IoT devices are used (ROSE; ELDRIDGE; CHAPIN, 2015).

In this work, the interpretation of the Internet of Things taken is the following:
The Internet of Things refers to the interconnected network of physical objects that are
embedded with sensors, processing ability, software, and network connectivity, allowing
them to collect and exchange data for management, data mining, and access to the data
they generate.
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2.1.2 IoT Devices

IoT devices are used in a wide variety of contexts, including smart homes, wearables,
and industrial settings. Smart homes incorporate IoT devices such as smart thermostats,
lighting systems, security cameras, and voice assistants to enhance convenience, energy
efficiency, and security. Wearables can monitor health and fitness metrics and enable
connectivity with other devices, such as smartphones. Industrial IoT devices are employed
in manufacturing plants, transportation systems, and agriculture to improve the efficiency
of the operation and collect data to make decisions in real time.

IoT devices exhibit several key characteristics that distinguish them from traditional
computing devices. Firstly, IoT devices are often designed with limited processing power,
as their primary function is to gather and transmit data rather than perform complex
computations. This limitation is imposed to optimize their energy consumption and ensure
efficient operation within resource-constrained environments. Additionally, IoT devices
typically have limited amounts of memory, restricting their ability to run memory-intensive
applications. Furthermore, due to their embedded nature and the need for compact
form factors, IoT devices are equipped with limited battery capacities, emphasizing the
importance of energy-efficient algorithms and power management strategies. Finally, IoT
devices are characterized by their embedded nature, integrating into various objects and
environments, making them ubiquitous and often inconspicuous in their presence.

2.1.3 IoT Architecture

In the rapidly expanding world of the Internet of Things (IoT), various actors play
distinct roles in the functioning of IoT systems. These actors, including devices, gateways,
cloud platforms, and users are typically organized into multiple layers, each serving a
specific purpose and composed of specific types of devices. The common layers in the
architecture of IoT systems are described below (BURHAN et al., 2018) (JAMALI et al.,
2019).

Perception and Action Layer This layer contains the IoT devices. They can be catego-
rized into 2 types. On the one hand, there are sensors that perceive and collect data
from the environment. It includes temperature sensors, motion detectors, cameras,
and other types of sensors. On the other hand, there are actuators that perform
physical actions to change the environment. It includes smart lights, speakers, sockets,
and other types of actuators.

Network Layer The network layer is responsible for the communication and connectivity
between the devices in the IoT ecosystem. It involves networking technologies such
as WiFi, Bluetooth, and ZigBee, which allow the devices to transmit data to each
other and to other layers of the architecture.



2.1. Internet of Things (IoT) 25

Gateway Layer The gateway layer acts as a bridge between the devices and the cloud.
Gateways perform protocol translation to transmit the data over the internet to the
backend services.

Cloud Layer This layer encompasses cloud platforms or backend servers that receive and
store the data collected from the devices. It provides computational resources, storage
capabilities, and data management infrastructure for processing and analyzing the
data.

Application Layer The application layer consists of user interfaces, applications, and
software that allow users to interact with the IoT system. Users can monitor and
control devices, access data insights, and perform various tasks through applications
or web interfaces.

2.1.4 IoT Communication Protocols

Standard communication protocols do not suit IoT devices’ communications due to
their limited processing power, amount of memory, and limited energy. There are specific
protocols developed for IoT devices, but there are also some protocols that were created
before this concept and are convenient for their applications. Among all of these protocols
are IEEE 802.11, IEEE 802.15.4, ZigBee, BLE, and 6LoWPAN. They represent different
layers, but this will be explained in the following parts.

IEEE 802.11 (WiFi)

The IEEE 802.11 standards, commonly known as WiFi, define the specifications
for wireless local area networks. These standards outline the protocols and technologies
used for wireless communication between devices in a network. WiFi is a widely adopted
wireless communication protocol that enables IoT devices to connect to local area networks
and the Internet. It provides high-speed data transmission and compatibility with existing
internet infrastructure.

The WiFi network protocol is commonly utilized by IoT devices that have a
continuous external power source. Due to the higher computing power requirements
of WiFi, this technology tends to consume more energy, making it less suitable for
resource-constrained IoT-embedded devices. Therefore, WiFi is typically employed by IoT
devices that can maintain a constant power supply such as smart lights, smart speakers,
thermostats, and security cameras, enabling them to benefit from its higher data transfer
rates and broader coverage range. However, for IoT devices with limited processing power
and battery life, alternative communication protocols such as IEEE 802.15.4, ZigBee, and
BLE are often preferred, as they offer more energy-efficient solutions.
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The IEEE 802.11ba, or Wake-Up Radio (WUR), is an enhancement to WiFi
designed to address power efficiency challenges in IoT devices. WUR introduces a low-power
interface for transmitting control information, allowing devices to stay in a switched-off
state while still receiving communication from access points. This is particularly beneficial
for battery-powered IoT sensors, extending their lifespan by minimizing the need for
constant activity.

This advancement aims to improve upon existing power-saving mechanisms like
Target Wake Time (TWT), mitigating issues such as clock inaccuracy associated with
traditional methods. While promising, challenges remain, including addressing signal
reliability, interference, and optimizing power management. Ongoing research is needed to
fully realize the potential of IEEE 802.11ba in real-world IoT applications.

The IEEE 802.11ba exemplifies the commitment of the IEEE 802.11 Working
Group to adapt wireless protocols, providing a foundation for more energy-efficient and
sustainable IoT connectivity solutions (BANKOV et al., 2019).

Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless communication technology designed for
data transfer between devices. It is a variant of the classic Bluetooth technology and was
introduced with Bluetooth 4.0. Compared to traditional Bluetooth, BLE is optimized for
low power consumption making it ideal for battery-operated devices, such as IoT devices
where power efficiency is crucial. BLE also uses 2.4 GHz radio frequencies but with a
simpler modulation system optimized for transmitting small amounts of data. It offers
data rates up to 2 Mbps, but most BLE applications use lower data rates to save energy
(BLUETOOTH SIG, 2021).

Because BLE is optimized for low power consumption and designed for low-to-
moderate data rate applications, it is widely used in IoT applications. BLE is extensively
used in fitness trackers, smartwatches, and other wearables to connect with smartphones
and transmit data such as health and fitness information. BLE is also used in smart home
applications where it enables the control and monitoring of various IoT devices, including
lighting systems, thermostats, door locks, sensors, and appliances. Besides that, BLE is
also used for asset tracking. BLE beacons are used for proximity-based services and asset
tracking. They can be placed on objects or in physical spaces to transmit signals that can
be detected by BLE-enabled devices.

In 2014, version 4.2 introduced more features for the IoT environment, such as
Low Energy Data Packet Length Extension and Low Energy Secure Connections, and it
continued to implement features for those devices with version 5 (BLUETOOTH SIG,
2014), increasing the usage in IoT devices even more.
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IEEE 802.15.4

IEEE 802.15.4 is another standard for wireless communication specifically designed
for low-power, low-data-rate applications. This makes it an ideal choice for battery-powered
devices that require long-term operation without frequent battery replacements (IEEE,
2003).

With low energy consumption but low data rates, IEEE 802.15.4 is ideal for
applications that require periodic transmission of small amounts of data for battery-
powered devices. It also provides robustness in the face of interference, making it reliable
in noisy environments. The standard is widely used in industrial automation, home
automation, and smart energy management.

IEEE 802.15.4 serves as the foundation for several higher-level protocols, such
as ZigBee and Thread. It offers energy-efficient and cost-effective solutions for devices
with limited processing power and battery life. Its versatility and support for different
network topologies make it applicable in various IoT domains, including home automation,
industrial monitoring, healthcare, and smart cities.

ZigBee

ZigBee is a wireless communication technology created by ZigBee Alliance (now
called Connectivity Standards Alliance) and built on top of the IEEE 802.15.4 standard. It is
specifically designed for low-power, low-data-rate applications, making it well-suited for IoT
devices with limited processing power and battery life (CONNECTIVITY STANDARDS
ALLIANCE, 2022). ZigBee operates in the 2.4 GHz frequency band and provides a mesh
network topology, enabling devices to form self-organizing networks.

Additionally, ZigBee offers reliable and secure communication through its built-in
security features, including encryption and authentication mechanisms. This ensures that
data transmitted between ZigBee-enabled devices remains protected from unauthorized
access, making it suitable for applications that require robust security measures.

IoT devices that employ ZigBee technology benefit from its energy efficiency, which
allows for extended battery life and reduced power consumption. This makes ZigBee
a popular choice for various applications, including home automation, smart lighting,
industrial monitoring, and healthcare devices. The low-power characteristics of ZigBee
enable IoT devices to operate for extended periods without the need for frequent battery
replacement or recharging.

6LoWPAN

The IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) is a
communication standard designed to enable the transmission of IPv6 packets over low-
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power, low-rate wireless networks. It specifically addresses the challenges of connecting
devices with limited processing power and memory, common in IoT deployments. Like
ZigBee, it is based on the IEEE 802.15.4 standard, adapting the principles of IPv6 to
suit the constraints of resource-constrained devices commonly found in IoT deployments
(MONTENEGRO et al., 2007) (THUBERT; HUI, 2011).

6LoWPAN facilitates the integration of IoT devices into the broader Internet by
allowing them to leverage the benefits of IPv6 addressing. This protocol is particularly
well-suited for applications that require seamless communication between IoT devices and
the global Internet, such as smart home automation, industrial monitoring, and healthcare
systems.

The protocol achieves its efficiency by optimizing the packet format and header
compression mechanisms, enabling the transmission of IPv6 packets over networks with low
data rates and limited energy resources. This makes 6LoWPAN an essential solution for
IoT devices that operate on battery power or have restricted computational capabilities.

Moreover, 6LoWPAN supports mesh network topologies, allowing devices to form
self-organizing networks, which enhances reliability and coverage. The adoption of 6LoW-
PAN in IoT deployments contributes to the interoperability of devices, as it ensures a
standardized approach to IPv6 communication over low-power wireless networks based on
IEEE 802.15.4.

Importantly, other protocols used in IoT environments, such as Thread, use 6LoW-
PAN as a foundation for their communication. This shows the importance of 6LoWPAN
as a fundamental protocol that not only addresses the specific challenges of low-power
wireless networks but also serves as a building block for higher-level protocols in the IoT
ecosystem.

It’s also interesting to mention that the Internet Engineering Task Force (IETF)
has established dedicated working groups, such as 6lo and ROLL, for the expansion of
6LoWPAN and to address the specific requirements of Low Power and Lossy Networks
(LLNs). The 6lo working group extends the adaptation layer to various link layers, including
Bluetooth Low Energy (BLE), broadening the applicability of 6LoWPAN. Meanwhile, the
ROLL working group focuses on routing protocols for LLNs, ensuring efficient communica-
tion within these resource-constrained networks (HONG et al., 2023) (THUBERT; ZHAO,
2021).

In summary, 6LoWPAN serves as a key enabler for connecting resource-constrained
IoT devices to the Internet, providing a standardized and efficient way to transmit IPv6
packets over low-power wireless networks. Its adaptability to constrained environments,
coupled with its foundation on IEEE 802.15.4, makes it a valuable protocol in various IoT
applications, contributing to the growth and integration of IoT devices in global networks.
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The following table summarizes the aforementioned protocols, comparing some of
their aspects:

Table 1 – Comparison of IoT Communication Protocols

Protocol Power Ef-
ficiency

Data
Rate

Topology Security
Features

IEEE 802.11
(WiFi)

Moderate High Many,
including
Pt-Pt/Pt-
Mt

WPA3,
802.11i

IEEE 802.11ba
(WUR)

High High Pt-Pt/Pt-
Mt

WPA3,
802.11i

IEEE 802.15.4 High Low Pt-
Pt/Mesh

AES-128

ZigBee High Low Mesh/Star AES-128,
Auth.

BLE High Low/Mod. Pt-
Pt/Mesh

AES-128, Se-
cure Conn.

6LoWPAN High Low Mesh/Star AES-128

2.2 Forensics

2.2.1 Forensic Definition

Forensic refers to the application of scientific principles and techniques in a criminal
investigation process to establish facts. Forensic science encompasses a wide range of
disciplines, including chemistry, biology, physics, and engineering, which can be used to
analyze physical evidence from crime scenes. The goal of forensic investigation is to gather,
preserve, analyze, and interpret evidence in a way that is objective and unbiased so that it
can be used to establish the truth about what happened and to help solve crimes. Forensic
evidence can be used in criminal court to help establish the guilt or innocence of a suspect,
but it can also be used in other competencies of law, for example, in civil cases to establish
liability or to resolve disputes.

2.2.2 Digital Forensics

Digital forensics, also known as computer forensics, is a subfield of forensic science
that specifically deals with the investigation of digital devices, data, and systems. Digital
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forensics involves the recovery and analysis of data from computers, servers, mobile
devices, and other electronic storage media to gather evidence for use in criminal or civil
proceedings.

The main difference between forensic science and digital forensics is the type of
evidence being analyzed. On the one hand, forensic science involves the analysis of physical
evidence, such as fingerprints, DNA, fibers, and other physical materials. Digital forensics,
on the other hand, involves the analysis of digital data, including files, emails, texts, and
other electronic communications. Digital forensics requires specialized knowledge and tools
to extract and analyze this data, and it often involves the use of computer software and
programming skills.

2.2.3 IoT Forensics

IoT Computer Forensics is a subfield of digital forensic science that specifically
deals with IoT devices and their related environment. The IoT device takes part in an
ecosystem following the IoT architecture described in section 2.1.3. It evolves IoT devices,
communication network devices, cloud platforms, applications, and services.

IoT computer forensics is commonly divided into 3 sub-levels of digital forensics
namely: device-level forensics, network forensics, and cloud forensics. Device-level forensics
involves the collection of local memory data retrieved from IoT devices, network forensics
involves network logs extraction and analysis, and cloud forensics involves getting the data
and logs from the cloud provider that is linked to the IoT devices of interest (ZAWOAD;
HASAN, 2015).

Smart Home Forensics

Smart home forensics can be defined as a specialized field inside IoT forensics that
focuses on the investigation and analysis of digital evidence found in homes that have smart
devices in their environment. Smart homes can be equipped with various interconnected
devices and systems that provide automation and control functionalities.

2.2.4 IoT Forensics vs Digital Forensics

Compared to traditional digital forensics, IoT forensics have several differences
that are worth noting (STOYANOVA et al., 2020). In a traditional crime scene, evidence
collection involves traditional computer systems such as laptops, tablets, and mobile
phones. The widespread adoption of wireless technologies has resulted in a vast number
of IoT devices. In an IoT-based crime scene, evidence collection involves a wide range of
devices, including household appliances like thermostats, lighting, locks, dishwashers, and
baby monitors. These IoT devices are typically smaller, simpler, and more specialized than
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general-purpose computers, and they often have limited processing power and storage
capacity. This makes them more challenging to analyze from a forensic perspective.

Digital Forensics (DF) investigations typically began with a few devices, such
as desktop computers, and gradually expanded to include other devices on the desk,
such as USB drives, external hard drives, and mobile computing devices like tablets and
smartphones. The focus on these devices is driven by the potential for them to contain
information that may be relevant to DF investigations (ORIWOH et al., 2013). The IoT
devices in the environment, along with their gateways, communication infrastructure,
platforms, and interfaces, all produce a large amount of information including sensor
readings, logs, and communications which can be used as evidence in forensic investigations.
This data is distributed across multiple devices and networks. This means that in an
IoT-based crime scene, the focus should be on the system as a whole rather than individual
components.

Additionally, there are new sources of evidence that must be analyzed due to the
architecture of IoT systems. Figure 1 summarizes the different sources of evidence in an
IoT ecosystem. There are two main sources of evidence in the IoT: internal and external
networks. The internal network refers to the local environment of connected objects and
local access points, where raw measured data, information about device communication,
and network configuration data can be found. The external network includes networking,
service, and interface layers, and may include weblogs, virtual machines, sensor data, and
network logs. This external network evidence is particularly important in the IoT due
to the diverse range of devices and communication protocols used in this environment
(ATLAM et al., 2020).

Figure 1 – Sources of Evidences in Internet of Things Systems (ATLAM et al., 2020)
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2.3 Conclusion
In conclusion, this chapter provided a comprehensive overview of the key concepts

and background information necessary for understanding the subsequent chapters. We
explored the definition and architecture of the Internet of Things, as well as the communi-
cation protocols of IoT devices. The chapter also introduced the field of forensics, including
digital forensics and its application in IoT environments. This foundational knowledge
sets the stage for the in-depth exploration of IoT forensics in the following chapters.
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3 Literature Review

3.1 IoT Forensics Frameworks

IoT forensic investigation frameworks are structured approaches or methodologies
used for conducting digital forensic investigations in IoT ecosystems. They provide a
general outline or structure for the investigation process by defining the key components of
the investigation, such as data collection, analysis, evidence preservation, and presentation.
This high-level view of the investigation process is used as a guide to follow for investigators.

By utilizing digital forensic frameworks, several benefits can be achieved. It helps
investigators stay organized and focused, ensuring that the investigation process is thorough
and comprehensive, increasing the precision of the investigation and reducing the possibility
of human error and so increasing the chance of being admissible in a court of law. These
frameworks can streamline repetitive tasks of the case, freeing up investigators’ time to focus
on the more intricate aspects of the case. Overall, the utilization of high-level frameworks
in IoT forensics can result in more efficient, accurate, and consistent investigations even
when investigations are carried out by different teams or organizations, leading to stronger
cases in the court of law.

3.1.1 Standards in IoT Forensics Frameworks

A standard is a norm or set of criteria established and widely accepted by the
expert scientific community to guide and regulate practices and processes in a specific
area. Standards provide common guidelines and references for achieving a uniformly high
level of authenticity, veracity, integrity, and reliability. Standardized frameworks provide a
common ground for consistent practices, methodologies, and techniques.

Adherence to recognized forensic analysis standards and procedures is crucial to
the acceptance of evidence in a court of law because it guarantees the evidence collected
meets the necessary legal requirements and can withstand scrutiny in court. Evidence
obtained and analyzed in a manner that does not comply with established procedures is
more likely to be challenged or excluded from the case.

The Complexity of Establishing Standards in IoT Forensics

Establishing standards in the realm of IoT forensics is a complex undertaking. The
initial barrier to IoT standardization results from the fact that IoT devices differ in formats,
features, functionalities, and manufacturers. There is a lack of uniformity and consistency
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among them. When trying to establish standardized frameworks for conducting forensic
investigations, this diversity poses significant obstacles.

The quick development of IoT technology is another factor that makes standard-
ization difficult. Existing standards are quickly rendered obsolete as new technologies and
communication protocols are developed. The IoT environment is dynamic, necessitating
continuous efforts to adapt and revise standards to keep up with developments. Forging a
thorough and broadly accepted framework will be extremely challenging given the ongoing
cycle of technological evolution and standardization.

The standardization process is further complicated by privacy and legal concerns.
IoT devices process sensitive personal data, creating questions about privacy rights and
legal compliance. Developing standardized frameworks that preserve both investigative
criteria and individual rights presents extra issues due to the need to balance the need for
efficient forensic investigation methodologies with privacy protection.

Last but not least, the complexity of standardizing is further increased by the
multidisciplinary nature of IoT Forensics. Collaboration and cooperation between pro-
fessionals from several domains, such as computer science, network engineering, and law
enforcement, are essential for the success of standardization initiatives. A fundamental
problem in the standardization process is integrating viewpoints from different disciplines
and bridging the gap between technical and legal considerations. Also, the standardization
process involves a variety of parties with various goals, privacy concerns, and interests.
Industry experts, manufacturers, researchers, judicial authorities, and regulatory agencies
are some of them. It will be difficult for this heterogeneous group to come to an agreement
because each entity may have different viewpoints, objectives, and limits.

Coming Efforts in Standardization

Despite the complexities involved, the importance of standardization in IoT Foren-
sics cannot be overstated. At the time of this work, the field of IoT device forensics is still
relatively new and there are currently no widely established standards for conducting IoT
forensic investigation.

However, there are international standards and guidelines for digital forensics
investigation in general, which in some cases may be applied to IoT device investigations.
These standards include ISO/IEC 27037 (TECHNIQUES, 2012), which provides guidelines
for the identification, collection, acquisition, and preservation of digital evidence, and the
ISO/IEC 27042 (ISO/IEC, 2015), which provides guidelines for digital forensic evidence
analysis.

Similarly, the European Network of Forensic Science Institutes (ENFSI) and the
National Institute of Standards and Technology (NIST) have published guidelines and rec-
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ommendations for digital forensic investigation in general (INSTITUTES, 2015) (GRANCE
et al., 2006). Even if the authors claim that “The publication is not to be used as an
all-inclusive step-by-step guide for executing a digital forensic investigation or construed
as legal advice.” (GRANCE et al., 2006, 1-1), these guidelines cover various aspects of
the investigation process, including data acquisition, data analysis, and reporting, and
may serve as a starting point for developing standards in the future. Those guidelines and
recommendations may be adapted for IoT device investigations if special care is taken
to deal with the new challenges raised by IoT. Indeed, when it comes to IoT forensics,
there are several challenges that impeach resorting to traditional digital forensics. These
challenges will be covered in sections 4.1 and 4.2. They necessitate the development
of specialized guidelines and recommendations. To give a brief example, the seizure of
IoT devices presents a notable difference compared to traditional devices in the context
of digital forensics. Unlike conventional devices, IoT devices often have embedded and
interconnected components, making the acquisition and preservation of evidence more
complex. Traditional methods of seizing devices, such as physically disconnecting them
from the network or shutting them down, may not be viable options for IoT devices as they
can disrupt ongoing processes or affect the network’s integrity. Special considerations need
to be taken into account to ensure the proper handling and preservation of IoT devices
during the seizure process (BOUCHAUD; VANTROYS; GRIMAUD, 2021).

While efforts have been made to develop guidelines and recommendations for IoT
forensics, the development of standard IoT forensics frameworks is still needed and requires
further research and active participation in standardization activities.

3.1.2 Overview of Existing IoT Forensics Frameworks

The literature contains reviews and surveys that studied the existing IoT forensic
frameworks. Due to the intricate nature of the processes in IoT forensics, a number of
models have been proposed. In their paper, Yakubu, Babu and Adjei (2018) reviewed
the IoT forensic literature and identified gaps and limitations in the sampled paper. In
particular, they noticed a lack of standardized methodologies, tools, and techniques that
can handle the heterogeneity of devices. On the basis of their research, they concluded
that “none of the forensic models that have been proposed can reliably and timely extract
evidence” (p. 920) and that further research around IoT forensics is required.

In their paper, Lutta et al. (2021) provide a systematic literature review of the
current advancements in IoT forensics. They studied thirteen methodologies, models, and
frameworks and their respective variants that were proposed to contribute to IoT forensics.
From their paper, we noticed that the majority of research on IoT forensic frameworks is
focused on industrial applications for post-incident investigations. These frameworks are
often based on prior actions or specific setups before an incident occurs. This limits their
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applicability and relevance for investigations at a crime scene. In their paper, they also
studied the practicality of the available IoT forensics frameworks and methodologies. They
concluded that the majority of recent studies are more theoretical than practical and that
more pragmatic strategies are required to address the special IoT forensics challenges.

More recently, another systematic literature review was published in April 2023.
In their paper, Al-Hussaeni et al. (2023) surveyed eighteen IoT forensics frameworks and
identified for each proposed framework the IoT challenge addressed. As shown in their
paper, there is currently no unique IoT forensic framework that can address all of the IoT
challenges. Nevertheless, they also showed that existing IoT forensic frameworks could be
combined with one another to address all of the IoT forensic challenges.

In summary, all of the existing literature reviewed tends to draw the same conclu-
sions. There is a lack of implementation and testing of proposed frameworks. Most of the
existing research is theoretical and lacks pragmatism.

Common IoT Investigation Process

Among all the frameworks and models proposed in the literature, there are simi-
larities that are worth mentioning. Each framework covers, at least partially, a process
that can be divided into 4 phases. The four phases identified are the readiness phase, the
pre-investigation phase, the investigation phase, and the post-investigation phase.

1. The readiness phase: This phase takes place prior to the identification of incidents.
The purpose of the readiness phase is to ensure that all necessary preparations and
prerequisites are in place. It guarantees that the IoT environment will be ready
for later forensic examination (KEBANDE; RAY, 2016). This readiness phase is
typically implemented in industrial use cases and may not be applicable to domestic
scenarios.

2. The pre-investigation phase: This phase is the preparation step of the investi-
gation phase. It involves securing the scene and maintaining it ’as is’ to preserve
evidence, obtaining legal authority permission, conducting preliminary assessments,
checking necessary tools and resources availability, and ensuring the presence of
trained personnel. The goal is to establish a solid foundation for the next crucial
phase.

3. The investigation phase: This phase is the core phase of the forensic process. It
can be divided into the following five steps.

a) Identification: This step is responsible for the identification of the potential
source of evidence, their location, and their role in the IoT ecosystem. As
illustrated in Figure 1 from section 2.2.4, investigators may identify several
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potential storage locations for relevant data, ranging from IoT devices up to
cloud servers.

b) Collection: This step focuses on physically gathering the identified potential
sources of evidence from the IoT environment while preserving their integrity.

c) Acquisition: This step involves creating a forensic image or copy of the collected
evidence for analysis purposes in the next step.

d) Analysis: This step consists of examining and interpreting the acquired evidence
to extract meaningful information and draw conclusions.

e) Preservation: This step focuses on preserving the evidence in the states as they
were acquired. It involves securely storing them to prevent any unauthorized
modifications or tampering.

For each of its sub-phase, three levels of forensics, following the 1-2-3 zone approach
proposed by Oriwoh et al. (2013), must be considered: cloud forensics, network
forensics, and device forensics.

4. The post-investigation phase: This phase is the last one. It includes the reporting
of findings ensuring compliance with legal requirements, the presentation of evidence
in court, and the progress of legal proceedings.

Additionally, some frameworks include another phase that can be concurrent
with the previous ones. It involves legal proceedings such as obtaining authorization,
documentation, preserving the Chain of Custody, and preserving physical evidence.

The above phases are similar to those of the traditional digital forensics framework.
They differ with the greater emphasis on IoT device identification, the various sources of
evidence, and the difficulties in preserving volatile data. Between existing frameworks, the
main differences lie in their approach, their scope, the specific steps involved, the level
of detail provided, and the emphasis on different aspects of IoT forensics. Several tables
from the literature categorize the contribution of the existing research in IoT forensics
based on different aspects. Different works here presented review and classify the already
present forensic methods. Atlam et al. (2020) categorizes existing work in terms of forensics
investigation models, forensics acquisition, forensics challenges, forensics analysis, data
synchronization, and privacy-aware forensics. Lutta et al. (2021) presents a categorization
of the existing works, taking into account the limitations and gaps concerning the practical
application of the research in the IoT forensic process, and Al-Hussaeni et al. (2023)
compares the models and frameworks based on the challenges they address and whether
they were implemented and tested.
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3.1.3 Smart Home Forensic Frameworks

Most of the proposed frameworks do not suit domestic IoT devices, especially for
smart home environments. The issue relies on the readiness phase which requires a set of
measures to make the environment ready for further IoT forensic processes. Incorporating
a forensic component, such as the collection of logs for centralized storage, into domestic
IoT environments would only increase the complexity and cost of devices, which would
conflict with the manufacturers’ objectives.

The literature contains few research that tries to seek the challenges of domestic
IoT devices. Conti et al. (2018) conducted a literature review and concluded that smart
home forensics is understudied compared to smart home security or other digital forensics
topics.

In their paper, Goudbeek, Choo and Le-Khac (2018) proposed yet another investi-
gation framework but this time for smart home automation systems and with pragmatism
in mind. This framework is composed of seven phases, summarized in the Figure 2. Each
box is numbered and represents a distinct phase.

As the authors claim, their frameworks could be used as “a quick reference for
digital forensic investigators” (p. 1). The authors tested their framework in three different
case studies. However, their simulations are not representative of real-life scenarios (LUTTA
et al., 2021). Still, the framework proposed by Goudbeek, Choo and Le-Khac (2018) can
serve as a useful reference for investigators.

Figure 2 – Seven-Phases Smart Home Investigation Framework
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3.2 IoT Forensic Procedures

Besides the myriad of IoT forensic investigation frameworks, the literature also con-
tains IoT forensic procedures. In contrast with frameworks that are structured approaches
or methodologies, procedures outline specific steps and techniques to perform forensics.

In order to provide a detailed process for exploring data in IoT devices, procedures
need to be more specific. This involves utilizing tools but they cannot be generalized to all
devices. Consequently, the existing procedures are usually tied to a device or, at most, a
brand or range of devices.

The specific procedures used in an IoT forensic investigation can vary depending on
the device and the type of data being collected. For example, procedures for collecting and
analyzing data from a smart home device, such as a smart thermostat or a smart lock, will
differ from procedures for collecting and analyzing data from a wearable device, such as a
fitness tracker. Due to the lack of standardization in IoT devices, the tools and methods
employed can vary significantly from one device to another. This variability extends even
to devices of the same type but different brands, as each brand may incorporate proprietary
files in their software, necessitating the use of distinct analysis methods.

Several research studies have conducted forensic examinations on various IoT
devices, providing detailed methods for conducting the investigative process on both the
examined devices and others within the same product range. These research papers can
be regarded as case studies since they serve as practical demonstrations of the procedures
applied to these specific devices. The following subsequent sections explore some of the
existing practical forensic works.

Smart TV Forensics: Digital Traces on Televisions

Boztas, Riethoven and Roeloffs (2015) explored Smart TVs to acquire forensic
information for an investigation. They chose a television from Samsung, which is a brand
that is highly present in this market. They created different scenarios to simulate real
usage and generate realistic data. To acquire the data from the Smart TV, they utilized
three methods. The first one studies the signals going to the eMMC memory chip. The
second one used a forensic tool named NFI Memory Toolkit to read memory data. The last
one used the application. They were successful using the two last methods. After acquiring
the information, they were able to analyze it and find forensically interesting information,
such as system information, app activity, and web browsing activity. However, the used
methods are not ideal. The NFI Toolkit method requires desoldering the memory chip
from the Smart TV, which has a chance of damaging the chip and/or TV. The application
method can be patched by the brands simply through security updates (which happened
during their research). Furthermore, the tools that are used here are not a guarantee for
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other types of devices, because the NFI Toolkit might not be able to extract the memory
information from other types of memories, especially from the small IoT devices, that can
have more limited types of components, and the used application is specific for that model
or brand of device.

Smart Home Forensics—Data Analysis of IoT Devices

Kim et al. (2020) analyzed different types of smart home devices. They explored
a realistic scenario with multiple devices. They use the Google Nest Hub home assistant,
the Kasa smart camera from TP-Link, and IoT sensors from Samsung SmartThings. The
researchers explored different types of methods to acquire the data: through the companion
apps, through the Google “My Activity" interface, and through a Google Home API.
They were able to acquire and analyze different types of data, such as movement, voice
information, and calls. This study details methods that can be used to acquire data from
those devices. The Google “My Activity" method can also be extended for a wider range
of other devices.

Welcome Pwn: Almond Smart Home Hub Forensics

Awasthi et al. (2018) analyzed the Almond+ router from the company Securifi.
This router integrates a smart hub that is used as a central unit for the associated smart
devices such as lamps, dimmers, and sensors. In order to obtain information about smart
devices connected to the hub, they explored the router and the companion apps. They
were successful in obtaining logs from the device, from the cloud, and from the companion
apps. The Almond ecosystem holds significant potential for forensic investigations as
it captures interactions within a specific location, along with the associated time and
date. Consequently, the data derived from this device can offer crucial information for
an investigation. However, despite the researchers’ successful findings in terms of forensic
value, they also expressed concerns. They discovered multiple vulnerabilities in the router,
raising apprehensions about compromising both user privacy and security. Additionally,
the researchers highlighted the potential impact on an ongoing investigation, as a digitally
savvy criminal could exploit the device, leading to data erasure and the disappearance of
their tracks.

Internet of Things Forensics – Challenges and a Case Study

Alabdulsalam et al. (2018) proceeded to investigate the device-level forensics for an
Apple Watch Series 2. The researchers explored two different methods to extract the data.

The first approach involved manual acquisition, where the researchers utilized the
device itself to extract data from its screen. Through this method, they were able to retrieve
various types of information such as messages, pictures, emails, calendar events, contacts,
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previous phone calls, and the list of installed apps on the watch. It is important to note
that this data extraction process did not require the presence of a phone; however, prior
synchronization between the watch and the phone was necessary for successful extraction.

The second method employed in the study was a logical acquisition using digital
forensic tools. Specifically, the researchers utilized the Cellebrite UFED, a widely-used tool
for extracting data from mobile phones on the iPhone to extract smartwatch data that
was synced with the iPhone. Through this method, they were able to recover even more
extensive data, including measured health data and GPS data recorded from previous
activities performed with the watch.

This study revealed a notable dependence on smartphones when extracting data
from IoT devices such as the Apple Watch. It demonstrated that without a synced phone
or if the synchronization has not occurred recently, the amount of data that can be directly
extracted from the Apple Watch itself is limited.

EMvidence: A Framework for Digital Evidence Acquisition from IoT Devices through Electro-
magnetic Side-Channel Analysis

Sayakkara, Le-Khac and Scanlon (2020) has developed an application to obtain
forensically important data from observing electromagnetic (EM) emissions, by using EM
side-channel analysis (EM-SCA) around a studied device. In this work, they introduce
an extendable framework named EMvidence. They paired EMvidence with a machine
learning classifier to test the efficiency of their work, and they obtained very good results.
When it is difficult or impossible to acquire forensic evidence from an IoT device without
having recourse to intruding methods, the proposed solution is a promising approach.

IoT forensics: Exploiting log records from the DAHUA technology CCTV systems

Dragonas, Lambrinoudakis and Kotsis (2023a) have analyzed how log records from
CCTV systems, more specifically from the brand DAHUA Technology, can help in police
investigations when present in a crime scene. Their choice was to analyze the logs, because
they could contain pieces of information that can be very helpful in this context, and most
of the existing, but limited research focused on recovering and analyzing the video footage
from the camera. The authors conclude this case study by obtaining access to these logs
and trying to counter anti-forensic measures. They show their findings and demonstrate
how this process can be replicated, which can be very useful for companies to incorporate
the method in their forensic software.

IoT forensics: Exploiting unexplored log records from the HIKVISION file system

Similarly, the same authors have examined cameras from the brand HIKVISION,
on the same pretext that previous research has been focusing on recovering the video
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data, and the logs were not explored at all. They successfully developed an application
to extract, parse, interpret, and evaluate available log records from the proprietary file
system from HIKVISION. As in the previous case, their findings can be very useful for
implementation in forensic tools, given that the obtained information can be very valuable
(DRAGONAS; LAMBRINOUDAKIS; KOTSIS, 2023b).

3.3 Conclusion
In conclusion, this chapter presented a comprehensive literature review of existing

frameworks and procedures for performing forensics in the IoT ecosystem.

The examination of IoT forensics frameworks highlighted the importance of stan-
dardization efforts. Next, the overview of existing IoT forensics frameworks showcased
various approaches and methodologies employed in the field. We highlighted the need
for future research to concentrate on the implementation and testing of frameworks pro-
posed in the literature. We also identified a common IoT investigation process among
all studied frameworks. This process can be divided into 4 phases: the readiness phase,
the pre-investigation phase, the investigation phase, and the post-investigation phase. In
addition, we investigated smart home forensic frameworks, realizing the lack of studies in
the field.

In the second part, we explored some IoT forensic procedures and the particular
methods and techniques used to acquire data from IoT devices. We discussed different
case studies and showed that methods change depending on each case and device.
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4 Existing Problems and System Specification

4.1 Legal Challenges
Compared to common judicial and digital forensic techniques, IoT forensics raised

new legal challenges which are posed by IoT devices and their unique characteristics.

Applicability and Integration in an Investigation

Currently, the literature only contains high-level methodologies named digital
forensic frameworks. The methodologies presented in the literature are high-level, broad,
and general. They lack specific instructions on how to implement the analysis in each
step of the suggested approaches. Also, to date, there is no widely accepted framework for
conducting digital forensic investigations in IoT environments. Still, there is an incoming
interest in developing such ones. This lack of frameworks exacerbates the difficulties faced
by digital forensics investigators in their efforts to gather and analyze evidence in an
IoT-based infrastructure (KEBANDE; RAY, 2016).

Furthermore, these frameworks are usually not intended for police officers inves-
tigating crime scenes that evolved IoT devices. Instead, they are primarily tailored for
companies that experience cyberattacks. Consequently, most IoT devices in corporate
environments are interconnected with other devices that collect relevant information,
facilitating forensic analysis. However, the situation is different in the context of smart
homes. In most cases, if not all, smart home devices are used independently without any
additional devices that can aid in an investigation.

Seizing IoT Devices and Maintaining the Chain of Custody

A significant legal concern that extends beyond just IoT devices is the seizure and
management of digital evidence. There are multiple aspects of this regarding the legality
of the search and the preservation of privacy, which are all mentioned in the guide by Kerr
(2001). It is already crucial to exercise caution when handling digital evidence, but when
it comes to IoT, there are even greater demands and requirements.

In IoT forensics, the problem is mostly related to the human part and its com-
promises, especially the time of seizing. At a crime scene, important information can be
obtained from these devices, such as the action of opening or closing a door. However,
investigators, unaware of the presence of IoT devices, can contaminate the crime scene
digitally by continuing their investigation without taking IoT devices into account. This
occurs primarily due to the limited storage capacity of IoT devices, leading to the po-



44 Chapter 4. Existing Problems and System Specification

tential deletion of previously collected data. As these devices typically have restricted
storage capabilities, they do not retain a significant amount of data. Consequently, if new
information is received, it may overwrite past and potentially crucial data. Additionally,
investigators may disable crucial components of the smart home ecosystem, which can
result in device malfunctions or even cause them to be reset. Alternatively, they may
directly remove the device, which could continue to operate using internal batteries and
generate data even when outside of the original environment. Consequently, there is a
risk of generating false information, and if investigators fail to exercise caution, it could
potentially lead to the dismissal of the entire evidence. The method of seizing each device
varies, emphasizing the need for specific guidelines. Bouchaud, Vantroys and Grimaud
(2021) explore this aspect of evidence gathering in one of their works and conclude that it
is necessary to have these different approaches for IoT devices.

Besides that, the chain of custody is the guarantee of the integrity and reliability of
the evidence collected. This requires careful handling of the devices, proper documentation,
and secure storage to prevent tampering or unauthorized access. IoT devices are typically
smaller, simpler, and more specialized than general-purpose computers, which increases
the risk of altering the data during forensic analysis.

Data Location

IoT system involves a local physical structure that extends through the cloud and
the Internet, with data that is no longer tied to a specific medium. Data is then spread in
multiple locations with different laws and jurisdictions which introduces legal complexities
that can make it difficult to determine which laws apply due to the use of the cloud for
storing IoT-generated data (BOUCHAUD, 2021).

Legal and Ethical Issues

IoT forensics may also raise legal and ethical issues related to privacy and consent,
as many IoT devices are used in private or sensitive settings. It is important to consider
these issues when collecting and analyzing IoT data for forensic purposes. As mentioned
before, in some guides for digital forensics, such as in the one by Kerr (2001), privacy is
already concerned and the legality of digital evidence is discussed.

4.2 Technical Challenges

Compared to common judicial and digital forensic techniques, IoT forensics raised
new technical challenges that are posed by IoT devices and their unique characteristics.
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Heterogeneity of IoT devices

One of these challenges is the heterogeneity of IoT devices in terms of their nature,
operation, communication protocols, and data management. These devices come in a
wide range of types, including smart fridges, smart locks, and smart lights, and they
have different hardware and software capabilities. Some devices can connect directly to
the Internet, while others require specific hubs, and they use different communication
protocols, including some non-standard protocols. This diversity of devices and protocols
makes it difficult to apply traditional forensic investigation models to the IoT (ATLAM et
al., 2020) (PERUMAL; NORWAWI; RAMAN, 2015).

Data Format

Additionally, the data generated by IoT devices may be stored in various formats
and locations, and it may be fragmented and dispersed across different networks depending
on the specific equipment present and their functions (BOUCHAUD, 2021).

Closed Software and Proprietary Hardware

Another challenge of IoT forensics is the issue of closed-source software and pro-
prietary hardware, which can make it difficult for investigators to access and analyze the
data stored on these devices. This can limit the effectiveness of forensic techniques and
make it harder to extract valuable evidence.

Identification and Localization

One other challenge that arises in the realm of IoT is the identification and local-
ization of devices. As mentioned earlier, the proliferation of IoT is becoming increasingly
prevalent in society, including the domain of smart homes. Consequently, the level of
technical knowledge required to distinguish ordinary devices from smart devices is also
escalating. The process of identifying and locating IoT devices can prove to be arduous
due to their diverse forms, sizes, and designs. They can range from inconspicuous door
sensors to everyday objects that have been augmented with smart capabilities. Unlike
traditional devices, IoT devices typically lack explicit labeling to indicate their smart
functionality. As a result, the search for these devices must be conducted with great care
to avoid overlooking or misplacing them.

4.3 Digital Forensics Tools
At present, there is limited availability of dedicated tools specifically designed for

IoT forensics. The majority of tools employed in this domain are those traditionally used in
digital forensics. While these tools may not be tailor-made for IoT investigations, they can
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still offer some degree of assistance. The typical usage scenarios for those tools primarily
involve cybercrimes that specifically targeted the seized devices. However, in cases where
the devices themselves hold significant relevance to the crime, these tools can also be
employed, albeit not to their full potential. In this section, we will delve into various steps
of the digital forensic process and explore the tools associated with each step. The purpose
of this is to provide an overview of the current tools and parameters, shedding light on
their applicability in the context of IoT forensics.

4.3.1 Device Localization

The process of locating devices is a crucial step in forensic investigations as it
enables the identification and seizure of relevant evidence. While some devices, such as
desktop computers, are easily identifiable in terms of their physical location, others can
be concealed or difficult to locate. In such cases, specialized tools are employed to aid in
their discovery. Presently, WiFi analyzers serve as the primary tools for this purpose, as
they can detect wireless signals in the surrounding environment, alerting the user to the
presence of WiFi-enabled devices nearby.

Wireshark

Wireshark1 is a powerful network analyzer that offers real-time traffic capture
capabilities. It serves as a valuable tool for examining network communications, enabling
investigators to gain a deeper understanding of the transmitted frames. In the context of
forensic investigations, Wireshark proves particularly useful in identifying devices that are
present at a crime scene and are actively engaged in wireless communication. By leveraging
Wireshark’s features, investigators can effectively monitor and analyze the network traffic,
revealing the presence of IoT devices.

Nmap

Nmap2 is an open-source network discovery utility. It is most commonly used for
penetration testing and security purposes, but it can be also used in forensics to find
devices. Apart from scanning the network and indicating live devices, Nmap can also
profile the devices, giving information about the operating system and software version
that runs on these devices, which can facilitate the work of investigators to discover them.

4.3.2 Data Extraction

During this phase of forensic analysis, it is vital to acquire all available data from
the device, including encrypted or deleted data. Equally important is the creation of a
1 <https://www.wireshark.org>
2 <https://nmap.org>

https://www.wireshark.org
https://nmap.org
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forensic image of the device, which serves as a preserved copy for subsequent analysis.
Performing analysis directly on the original device can potentially alter or compromise the
data. To accomplish these tasks, professionals commonly rely on specialized tools such
as Cellebrite UFED, Oxygen, and AccessData Forensic Toolkit (FTK). These tools offer
comprehensive capabilities for data acquisition and preservation, ensuring the integrity of
the forensic process and maximizing the information extracted from the device.

Cellebrite UFED

The Cellebrite UFED3 is a highly regarded mobile forensics tool widely utilized by
law enforcement agencies worldwide for the extraction of data from various devices such as
cellphones and tablets. It offers both physical and logical extraction methods, enabling the
retrieval of comprehensive data stored in the device’s memory. The tool supports a wide
range of devices, encompassing diverse architectures and operating systems. To ensure
compatibility with the latest device updates, Cellebrite regularly updates its toolchain.
Notably, the UFED tool can employ exploits to bypass protections or unlock devices,
providing valuable capabilities for investigative purposes.

Oxygen Forensic Detective

Oxygen Forensic Detective4, or simply Oxygen for short, is another powerful tool
when regarding data extraction. It has very similar functionalities as Cellebrite UFED,
for example. Even though Oxygen is an extraction tool, it can provide a preliminary data
analysis, which can be useful to decide which direction the investigators should go. It
also supports importing images from other forensic tools and is compatible with their
proprietary formats, which can be helpful to use some of the features present in Oxygen,
for example, the preliminary data analysis. Oxygen also has a user-friendly GUI, which can
be helpful for investigators that are not very used to digital forensics, and it is considerably
cheaper than the UFED.

AccessData FTK

AccessData FTK 5 is another versatile extraction tool that shares similarities with
the previously mentioned tools but with a focus on computers, hard drives, and cloud
storage, in addition to mobile devices. While the acquisition methods may differ slightly
from other tools, AccessData FTK provides various acquisition techniques, including live
acquisition and forensic disk imaging. The tool also offers several preliminary data analysis
features. Its comprehensive capabilities make it an intriguing tool for the forensic process,
facilitating data extraction in a broader context.
3 <https://cellebrite.com/en/ufed/>
4 <https://oxygenforensics.com/en/products/oxygen-forensic-detective/>
5 <https://www.exterro.com/forensic-toolkit>

https://cellebrite.com/en/ufed/
https://oxygenforensics.com/en/products/oxygen-forensic-detective/
https://www.exterro.com/forensic-toolkit
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4.3.3 Data Analysis

Data analysis is a crucial step in the investigation process as it enables the examina-
tion of collected data in a manner that can aid in the investigation. However, maintaining
the forensic integrity of the evidence is equally important to ensure its reliability and
admissibility in court. Several widely recognized and dependable tools are used worldwide
to analyze the data extracted from seized devices.

Volatility

Volatility6 is an open-source framework primarily designed for analyzing the volatile
memory of a computer. This memory, which can contain critical information about running
processes, network connections, loaded modules, and more, is of great significance in forensic
investigations. By working with samples collected from the RAM of seized devices, Volatility
enables investigators to uncover the presence of malware or evidence of misconduct. The
framework is highly regarded in these scenarios and offers compatibility with various
plugins, enhancing its functionality and versatility.

Autopsy

Autopsy7 places a greater emphasis on general analysis capabilities. It offers support
for various types of data sources, including disk images, mobile devices, and network
captures. Equipped with multiple features, Autopsy proves valuable to investigators by
assisting in tasks like file reassembly and generating comprehensive reports. It is also an
open-source tool, and benefits from community contributions, which enhance its versatility
and enable analysis of data that may not be natively supported by the software.

EnCase Forensic

EnCase Forensic8 is similar to Autopsy but it offers a more comprehensive and
powerful set of features. It includes capabilities such as data decryption, integration with
AI and Machine Learning algorithms for identifying illicit images, and optical character
recognition for analyzing PDF files and extracting data more efficiently. Encase also
integrates with other Encase products, creating a cohesive ecosystem that facilitates
investigations.

4.3.4 Evidence Preservation

Preserving evidence is another important aspect of the criminal process, ensuring
that the extracted data from seized devices remains uncorrupted and untampered. Main-
6 <https://www.volatilityfoundation.org>
7 <https://www.autopsy.com>
8 <https://www.opentext.com/products/encase-forensic>

https://www.volatilityfoundation.org
https://www.autopsy.com
https://www.opentext.com/products/encase-forensic
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taining the integrity and credibility of this data is paramount, requiring diligent measures
throughout the entire forensic investigation.

One effective method for evidence preservation is creating forensic images, a feature
already provided by the aforementioned extraction tools. Additionally, the use of write
blockers provides an additional layer of security, preventing any changes to the data during
the extraction process. Once obtained, the data must be securely stored using evidence
management systems and encryption tools, ensuring its safety and preventing any potential
challenges to its admissibility in court.

Tableau Forensic Bridges

Tableau Forensic Bridges9, developed by OpenText, encompass a series of hardware
devices designed to facilitate device imaging without compromising their integrity. These
bridges provide a secure connection between the seized device and the investigator’s
computer, ensuring that no alterations or modifications occur during the imaging process.
By maintaining the integrity of the collected evidence, these bridges allow for the creation
of an accurate image that can be utilized for further analysis and investigation.

AccessData FTK Lab

AccessData FTK Lab10 is a robust system designed for effective evidence manage-
ment. It plays a critical role in ensuring case organization and preventing any mix-up
or loss of evidence. With its advanced functionalities, AccessData FTK Lab allows for
the efficient handling of large datasets, enabling investigators to analyze and segregate
relevant information from irrelevant ones. Additionally, AccessData FTK Lab also offers
collaboration features, facilitating the collaboration of multiple investigators or forensic
teams in a case. But the primary focus of AccessData FTK Lab is to maintain the integrity
of evidence. The tool provides secure evidence storage, ensuring the confidentiality and
integrity of the data. Only authorized users have access to the stored evidence, guaranteeing
its protection and preserving its integrity throughout the investigation process.

VeraCrypt

VeraCrypt11 is a powerful open-source tool designed specifically for encrypting disk
images, offering enhanced access management capabilities. It allows automatic on-the-fly
encryption of data. With support for parallelization and pipelining, VeraCrypt ensures
efficient data reading, minimizing any performance impact caused by encryption. It also
allows for fast access to encrypted data, maintaining the usability of the system. Even
9 <https://www.opentext.com/products/tableau-forensic-bridges>
10 <https://www.exterro.com/ftk-lab>
11 <https://www.veracrypt.fr/en/Home.html>

https://www.opentext.com/products/tableau-forensic-bridges
https://www.exterro.com/ftk-lab
https://www.veracrypt.fr/en/Home.html
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if it is not intended to be used as a standalone tool for evidence preservation in the
forensic process, it adds an additional layer of protection to sensitive data. When used
in conjunction with the aforementioned tools, it significantly enhances data security and
confidentiality, providing investigators with an effective means of protecting encrypted
disk images during forensic analysis.

4.3.5 Tools in IoT Forensics

As discussed earlier, the existing digital forensic tools, particularly those used for
extraction and analysis, are not adequately adapted to address the specific challenges posed
by IoT devices. In section 3.2, several cases were examined, and some of these tools were
employed. However, it was observed that these tools do not fully meet the requirements
of IoT forensics. For instance, tools like Cellebrite UFED and Oxygen primarily focus
on data extraction from mobile phones, but they may not be capable of capturing all
the data from other IoT devices such as smartwatches, as demonstrated in the study by
Alabdulsalam et al. (2018).

This finding aligns with the observations made by Plachkinova, Vo and Alluhaidan
(2016), who highlighted that digital forensic investigators often lack the necessary tools
and expertise to effectively handle smart home investigations. Similarly, Atlam et al. (2020)
concluded in their review that current digital forensic tools face limitations when it comes
to effectively dealing with the complex and decentralized nature of IoT systems.

Related to device localization, tools like Wireshark and Nmap can be valuable for
detecting devices, particularly if they communicate over WiFi. However, when it comes
to other protocols commonly used in IoT, these software tools alone may not provide
sufficient information. Additional hardware components and expertise are often required
to capture and analyze data from these protocols.

Upon examining the other analyzed cases from section 3.2, it becomes apparent
that the techniques employed are not ideal. Some methods rely on exploits, which may not
be considered forensically sound, while others extract data from the cloud (e.g., Google’s
"MyActivity") or the device itself, which can be prone to modification or manipulation.
As a result, we can deduce that while existing digital forensics tools may provide some
assistance in IoT forensics, they are far from being the optimal solution. To effectively
investigate IoT devices, it is needed to develop specialized tools that focus specifically on
IoT devices and protocols.

4.4 Advancements Needed
Given the challenges present in IoT forensics and the demands that the current

tools are not able to sustain, there are some advancements needed regarding this aspect
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to effectively use IoT devices in criminal investigations for evidence recovery.

Standardized Procedures

The field of IoT device forensics is still relatively new, and there is a lack of
standardized procedures for evidence recovery. On the theoretical side, multiple frameworks
are present and they were explored, but none of them are officially accepted and there are
no regularized guides on how to deal in practice with these kinds of devices. Establishing
clear and consistent procedures for evidence recovery will help ensure that investigators
can recover evidence reliably and consistently, which can be useful for investigation and
also acceptable in court.

Specialized Tools

Given the wide range of hardware, software, and network configurations found in
IoT devices, it becomes necessary to develop specialized tools supporting each device type.
These tools also should have the capability to retrieve data from various sources, including
the device itself, the cloud, or separate networks. Currently, as observed in the section
3.2, the majority of data extracted from IoT devices is obtained from mobile phones or
the cloud. While this approach proves effective, it imposes limitations on the range of
devices from which data can be obtained. Furthermore, this method does not encompass
the entirety of the available data and may result in outdated information due to the need
for regular synchronizations. Additionally, standalone devices cannot be analyzed using
these methods.

Best Practices

As with any forensic investigation, best practices for handling evidence and pre-
serving its integrity will be critical for successful prosecutions. Investigators will need to
understand how to properly collect, analyze, and interpret digital evidence, as well as
how to present it in court. This is why there is a need for a well-defined policy guide for
collecting and dealing with this kind of evidence.

Training and Education

To effectively use IoT devices in criminal investigations, police officers and forensic
investigators will need specialized training and education. This will include understanding
the technical aspects of IoT devices, as well as the legal and ethical considerations
surrounding the use of digital evidence in criminal proceedings. This communicates entirely
with the legal process because if the officers are not trained to deal with these devices,
they can make them non-admissible as evidence.
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4.5 System Specification

Given all of these problems present in IoT Forensics, we have seen an opportunity
to tackle at least one of them. A persistent challenge in IoT forensics revolves around the
initial task of device localization. While extraction, data analysis, and preservation are all
critical aspects of an investigation, they rely heavily on the ability to swiftly locate IoT
devices at a crime scene. This is crucial for extracting vital data without inadvertently
overwriting any evidence. Therefore, the development of a new tool should prioritize the
accurate identification and location of these devices. Supporting this perspective, the
previously mentioned Smart Home forensic framework, illustrated in Figure 2, highlights
the significance of device identification.

So, the objective of the software created is to locate IoT devices that are at crime
scenes in the real world. Previously, we saw that there are many approaches to cybercrimes
that involve IoT devices, and in these scenarios, it is clearer what are the devices involved
in the crimes. Here, in the scenario of crimes not related to IoT devices, it can become
less clear what are the devices, and most importantly, where they are located.

The investigators and crime scene technicians are the ones who are going to explore
these environments, and most of them are not caught up with technology to their latest
advancements. Therefore, this new software should be able to locate IoT devices in an easy
and not too technical way, being very user-friendly and not demanding any sophisticated
programming knowledge from the users themselves.

Also, in investigations, it is more than necessary for the officers and technicians
not to tamper with evidence, after all, this is one of the reasons that this software is being
developed: so that they can find the devices quickly, and not overwrite or delete the data
present in these devices. But there is another aspect related to evidence tampering that is
important in the development of the software: how will it find the devices? The chosen
approach here is to use passive sniffers: they can capture the data that is being sent while
not interfering with the devices, or even being detected. This approach is better because,
if an active approach was used and the sniffers sent signals to the devices, those devices
could start a different behavior and therefore it is possible that they can be not useful for
the investigation. While, with the passive approach, just the normal communication from
the devices can be detected, there’s a downside to it: if the devices stop sending data, they
can be not detected. However, IoT devices usually have frequent communication, enough
for the purpose of the sniffer.

From this, it is necessary to select a few protocols that are more present in IoT. We
have already discussed some back in chapter 2, and the chosen protocols will be further
elaborated in chapter 5. From those chosen protocols, a few devices that are able to sniff
those protocols, and that are accessible in pricing and availability, were chosen, which will
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also be further explored in chapter 5.

In the end, we need a system that is user-friendly, can comprehend a few protocols,
ideally the most used ones in the industry, and can locate IoT devices in some way that is
passive, not introducing potentially dangerous data in the sense of crime scene tampering.
Also, it should be low in cost and accessible, in order for the police forces to be able to
adopt it.

The figure 3 is a diagram that represents the system and how it is supposed to
work.

Figure 3 – Diagram of the System

4.6 Conclusion

In conclusion, this chapter has examined the underlying problems of IoT forensics,
focusing on the legal and technical challenges that hinder investigations in the IoT
ecosystem. The legal challenges encompass issues related to the seizure and chain of
custody of IoT devices, the applicability and integration of IoT forensics in investigations,
and the complex legal and ethical issues surrounding IoT data. On the technical side,
challenges arise from the heterogeneity of IoT devices, data format, and localization, closed
software and proprietary hardware, and the identification and localization of IoT devices.

Digital forensics tools play a crucial role in addressing these challenges. However,
advancements are still needed to enhance IoT forensics practices. This includes the
development of standardized procedures, specialized tools tailored for IoT investigations,
the establishment of best practices, and a focus on training and education for forensic
professionals to navigate the complexities of IoT ecosystems.

To address this challenge, we proposed in the second part of this work an application
capable of intercepting and discovering IoT devices. This solution consolidates different
protocols and facilitates the identification of IoT devices. By addressing the critical aspect



54 Chapter 4. Existing Problems and System Specification

of device localization, this tool would serve as the basis for subsequent phases of the
investigation.
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5 Work Development and Implementation

5.1 Introduction

Bringing into context the whole context mentioned, it is possible to see that crime
scenes are now even harder to navigate because of the proliferation of Internet of Things
devices. IoT devices might not be immediately apparent because they can take on a wide
range of forms and be integrated into everyday objects like speakers, light fixtures, and
appliances. Because of this, it may be difficult for police officers who are unfamiliar with
the Internet of Things to identify IoT devices as such and to recognize the potential value
of any data that might be stored on them.

In the previous chapter, we highlighted the lack of forensic-specialized information
retrieval techniques. We seek to address those previously mentioned challenges by proposing
software equipped with a Graphical User Interface (GUI) that displays the active IoT
devices in the vicinity.

5.2 Design Choices

5.2.1 Protocols

IoT devices use a variety of communication protocols depending on their specific
requirements and use cases. For example, some of the existing protocols for IoT device
communication throughout different layers include WiFi (IEEE 802.11), BLE, ZigBee,
Z-Wave, Thread, BLE, LoRaWAN, MQTT, and CoAP. The manufacturer’s choice of using
a specific communication protocol depends on factors such as device compatibility, power
consumption requirements, and range. The protocols that are going to be explored in this
work have already been detailed in subsection 2.1.4.

We selected BLE, WiFi, ZigBee and 6LoWPAN for our study. By focusing on these
specific communication protocols, the sniffing process targets the most commonly employed
technologies in the IoT landscape and increases the chances of successfully identifying IoT
devices.

IEEE 802.11 on 2.4 GHz

As explained before, WiFi is a commonly used standard for IoT device communi-
cations. WiFi can operate in 2 distinct frequency bands. Only the 2.4 GHz one will be
explored in this work. This choice was made for the following reasons.
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On one hand, sniffing the 5 GHz band requires specialized equipment capable of
capturing and analyzing packets in that frequency range. In our research, we have not
found a chip that is relatively cheap, that supports monitor/promiscuous mode on 5 GHz,
and that provides a tool to analyze the content of the frames captured. Existing chips
usually provide features for sniffing both 2.4 and 5.0 GHz bands simultaneously. This
increases the processing power needed and causes the price of chips to increase with them.

On the other hand, while some rare IoT devices utilize the 5 GHz band for
communication, the majority of consumer-grade IoT devices still predominantly operate
on the 2.4 GHz band. The 5 GHz band has a shorter range compared to the 2.4 GHz band.
It is more susceptible to signal degradation caused by obstacles like walls and furniture,
making it less practical for scenarios where the devices are dispersed over a larger area
such as a house.

The focus of our research is to help investigators in domestic or typical smart home
environments. In this scenario, it is likely that a significant portion of IoT devices will be
using the 2.4 GHz band. Thus, prioritizing the sniffing of the 2.4 GHz band may yield
more relevant results. On the opposite, allocating resources to sniff the 5 GHz band would
probably not provide significant additional benefits in terms of the number of IoT devices
identified.

Bluetooth Low Energy

As previously discussed in section 2.1.4, Bluetooth Low Energy (BLE) is a widely
adopted protocol in domestic IoT environments. Due to the prevalence of devices utilizing
this protocol, it is an integral part of the sniffer being employed. Its utilization extends
to the tracking of crucial evidence within a crime scene, including wearable devices like
fitness trackers and smartwatches. Given its ongoing development, BLE is expected to
become increasingly prevalent in daily usage.

ZigBee

Another selected protocol to be sniffed in this project is ZigBee, which is based on
the IEEE 802.15.4 standard. While other protocols utilize this standard, such as Thread,
and competing protocols like Z-Wave and Matter, ZigBee has been initially chosen due
to its widespread adoption in the market, with devices like the Samsung SmartThings
ecosystem being commonly available for validation purposes.

6LoWPAN

One other discussed protocol is 6LoWPAN. As mentioned before, it is also based
on IEEE 802.15.4, and it’s used widely with other IoT protocols based on it. One example
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previously mentioned is Thread: it uses 6LoWPAN as a foundation in order to transmit
via IPv6 packets on the internet.

5.2.2 Hardware

To successfully sniff WiFi, BLE, or IEEE 802.15.4 traffic, several requirements must
be met. Firstly, a device capable of frame sniffing is necessary, such as a dedicated chip or
network adapter that supports promiscuous mode. This allows the device to capture all
network frames within its range, including those not intended for itself. The device must
also be able to operate on the 2.4 GHz band.

WiFi Sniffing

The use of a dedicated chip for sniffing WiFi traffic offers several advantages over
utilizing the WiFi interface of a laptop. Firstly, not all computers have the capability to
turn their WiFi interface into promiscuous mode. By using a dedicated chip, specifically
designed for sniffing, you can ensure compatibility and avoid limitations associated with
certain computer configurations. Additionally, when a laptop’s WiFi interface is switched
to promiscuous mode, it loses its ability to access the internet. This can be a significant
drawback, especially when conducting investigations or monitoring network activity in real
time. Using a dedicated chip for sniffing WiFi traffic allows you to separate the monitoring
process from the laptop’s internet connectivity, ensuring uninterrupted access to online
resources while capturing and analyzing network packets.

To perform WiFi 2.4 GHz sniffing, we choose the Heltec WiFi LoRa V2 1 chip by
Heltec Automation. The choice of this chip is justified by the following reasons. First, this
chip was in our possession and is equipped with an ESP32 microcontroller with a network
interface that supports promiscuous mode in the 2.4 GHz band. Furthermore, this chip is
easily programmable with Arduino IDE2. The Figure 4 illustrates the Heltec WiFi LoRa
v2 used for WiFi sniffing.

Figure 4 – Heltec WiFi LoRa V2 - Heltec Automation

1 <https://heltec.org/project/wifi-lora-32/>
2 <https://www.arduino.cc/en/software>

https://heltec.org/project/wifi-lora-32/
https://www.arduino.cc/en/software
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BLE and IEEE 802.15.4 Sniffing

To perform BLE and IEEE 802.15.4 sniffing, the nRF52840 Dongle3 chip by
Nordic Semiconductors is used. It is a powerful System-on-Chip supporting different
communication protocols, which include BLE, IEEE 802.15.4, and protocols derived from
it. The Figure 5 illustrates the Nordic Semiconductors nRF52840 Dongle used for BLE
and IEEE 802.15.4 sniffing.

Furthermore, Nordic Semiconductors freely provides distinct firmware for sniffing
BLE4 and IEEE 802.15.45 traffic. The firmwares are easily programmable on the chip
with nRF Connect for Desktop and nRF Connect Programmer. The Appendices D and
E respectively contain details on how to program the BLE and IEEE 802.15.4 sniffer
firmware on the chip.

Additionally, the nRF52840 Dongle is a USB dongle that can directly be plugged
into the USB port and start sending data over a serial port.

Because the dongle cannot sniff traffic from both BLE and IEEE 802.15.4, two
distinct units are required.

Figure 5 – nRF52840 Dongle - Nordic Semiconductors

Another Device for BLE Sniffing

Another possibility to use as a device for BLE Sniffing is the Makerdiary nRF52840
MDK USB Dongle. It uses the same chip as the nRF52840 from Nordic Semiconductors,
but it has a proprietary implementation of the PCB, with a different disposition of the
chips on it. It is represented in Figure 6.

As mentioned, it is capable of capturing BLE packets, but it is also capable of
being programmed with different firmware, including one for sniffing IEEE 802.15.4 frames,
3 <https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle>
4 <https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le>
5 <https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-802154>

https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://www.nordicsemi.com/Products/Development-tools/nrf-sniffer-for-bluetooth-le
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-802154
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but its compatibility is, initially, only with Wireshark. For BLE, it is possible to use it as
a serial device, being able to handle communication inside the developed software.

This other device has been programmed with proprietary software from Makerdiary6,
and the Appendix F contains information on how it was programmed to integrate it into
the software.

It is important to mention that it doesn’t matter, for the software, which dongle is
being used. If the correct firmware is uploaded to the device, then it is only necessary to
verify which serial port it is using on the laptop and update it on the software. No further
adjustment is needed.

Figure 6 – nRF52840 Dongle - Makerdiary

5.2.3 Programming Language

The proposed software is implemented in Python. Python is a popular and versa-
tile programming language that is well-suited for software, and more specifically, GUI
development. The choice of Python as the used programming language is justified by the
following reasons:

First of all, Python is easy to learn and use. Python has a simple and easy-to-learn
syntax that makes it accessible to new programmers. This means that police officers who
may not have a strong background in programming can quickly learn how to use Python
to contribute further to the proposed software or to modify some parameters. Secondly,
Python has a large community and ecosystem: Python has a large and active community
of developers who have created a wide range of libraries and frameworks that make it easy
to develop GUIs and get support. Lastly, Python is a cross-platform language. It can run
on a wide range of operating systems, including Windows, macOS, and Linux. This is
useful for police officers who work on different types of devices.

6 <https://wiki.makerdiary.com/nrf52840-mdk-usb-dongle/guides/ble-sniffer/>

https://wiki.makerdiary.com/nrf52840-mdk-usb-dongle/guides/ble-sniffer/
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5.2.4 GUI Library

Python has several powerful GUI libraries, including Tkinter, PyQt, and wxPython
that make it easy to create complex and interactive GUIs. Tkinter library as the others,
provides a wide range of widgets and tools that meets the needs for a GUI sniffing IoT
devices. The choice of the use of Tkinter library in this project is also justified by the
following reasons: Firstly, Tkinter comes pre-installed. It is included with the standard
Python distribution, which means that there is no need to install any additional software
to use it. This makes it easy to get started with Tkinter and eliminates the need to deal
with compatibility issues or dependencies. Secondly, Tkinter is platform-independent. It
works on a wide range of operating systems, including Windows, macOS, and Linux,
which makes it a great choice if you want to create a GUI that can be used on different
platforms. Thirdly, Tkinter is simple and easy to use. It has a simple and easy-to-learn
API that makes it easy to create GUIs quickly. Lastly, Tkinter supports a wide range of
built-in widgets, including buttons, labels, entry fields, and more, that can be used to
create complex and interactive GUIs.

5.3 GUI Description
The Graphical User Interface (GUI) developed is designed to facilitate the identifi-

cation of IoT devices based on their communication protocols at a crime scene. The GUI
is organized into several frames, each serving a specific purpose.

The Figure 7 illustrates the GUI when running.

Figure 7 – GUI Organization
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• Control Panel: This frame is located in the top left corner and is the control panel
of the GUI. It contains 2 buttons to Start and Stop the sniffing.

• Seized Devices Frame: This frame is located in the bottom left corner and keeps
track of the seized devices. It gives relevant information such as the MAC address,
the type of technology used by this device, and the channel on which it operated.

• WiFi Frame: This frame is divided into 2 subframes aranged vertically. The top
subframe named WiFi Networks shows the WiFi networks detected by the WiFi
scan. Information related to the network is provided such as the Received Signal
Strength Indication (RSSI), the channel on which the network operates, the Service
Set Identifier (SSID), the Basic Service Set Identifier (BSSID), and the last update
received time. The bottom subframe named WiFi Devices shows the WiFi devices
identified matching the channel of the WiFi network selected if any. There is also
information provided such as the RSSI, channel, MAC Address, and last sniffing
frame received. The last column contains a button to seize the selected device.

• BLE Frame: This frame lists the detected BLE devices. It gives relevant information
such as the RSSI, MAC Address, name (if any), and the last received frame time.
The last column contains a button to seize the selected device.

• ZigBee Frame: This frame is organized in the same way as the WiFi frame. It is
divided into 2 subframes where the top one provides information on ZigBee networks
whereas the bottom one provides information on the identified device matching the
channel of the ZigBee network selected if any.

• 6LoWPAN Frame: This frame is the one that keeps the 6LoWPAN devices. The
information that it gives is similar to the ones from ZigBee, but here there is no
track of the networks. Therefore, it shows all the available channels that are being
sniffed initially.

5.3.1 GUI Usage Instructions

0. Configure the serial port number of the BLE, WiFi, and IEEE 802.15.4 sniffers
correctly. Appendix A contains the recommended procedure to configure the sniffers
correctly.

1. Execute the file main.py using Python3. A window identical to the Figure 7 opens.

2. Click on the Start button in the Control Panel Frame. The sniffing of the different
technologies starts and the different frames will quickly fill up with the active IoT
devices in the vicinity.
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• To sniff the traffic associated with a specific network, click on the box at the
left of the desired network entry. As a result, the chip will only sniff the channel
matching the network entry selected.

• To sniff all channels, just unclick the current network entry selected if any.

• For seizing a device, click on the Seize button next to the desired device entry.

3. Click on the Stop button to stop the sniffing. Once the button is pressed, the sniffing
is stopped. Because the sniffing is implemented using threads and that thread can
only be launched once, the sniffing cannot be started again by pressing again on the
Start button. To restart the sniffing, close the window and restart from step 1.

By following these instructions, users can effectively utilize the GUI to analyze IoT
communications protocols and identify IoT devices at a crime scene investigation.

The Figure 8 illustrates the GUI once the sniffing started. In this figure, one
WiFi, one BLE, one ZigBee, and one 6LoWPAN devices are selected and highlighted in red.
In addition, two networks are selected: the WiFi network with SSID Proximus-Home-2B30
and the ZigBee network with PAN ID DF3D.

Figure 8 – GUI Displaying Detected Active Devices

Appendix H contains several other figures that illustrate how our IoT identification
software works.
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5.3.2 Project Organization

The project mainly uses Object-Oriented Programming to structure the code,
which is divided into different classes that represent different components. For instance,
the BLE_Sniffer class is used to abstract the BLE sniffer whereas ScrollableFrame
represents a distinct component of the GUI.

The project follows a modular and organized structure. It is separated into modules
based on their functionality and organized into different directories. The files and directory
tree are illustrated in Figure 9.

The devices directory contains the device.py and network.py modules. The
device.py module defines the Device class which is responsible for handling the char-
acteristics and behavior of a device. The network.py module defines the Network class
which is responsible for handling network-related operations.

The firmwares directory contains the different firmwares to program on the chip.
The filename explicitly tells on which devices it should be programmed and what is the
technology targeted.

Figure 9 – Overview of File and Folder Structure in the Project

The gui directory contains several modules responsible for building the GUI. The
gui.py module is responsible for the creation and management of the GUI elements, such
as defining the layout, creating buttons and labels, and handling user input. The file
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device_gui.py and network_gui.py modules are responsible for handling the display of
device and network information respectively. The scrollable_frame.py module provides
a custom widget for displaying a scrollable frame in the GUI.

The logs directory contains the logger.py module which defines the formatting
and handling of the logger used for logging application events. The logs.log file stores
those logged events.

The sniffers directory contains modules for different types of sniffers: BLE_Sniffer.py,
WiFi_Sniffer.py, and ZigBee_Sniffer.py. The Sniffer.py module defines the abstract
Sniffer class that is inherited by each sniffer type. Each sniffer module contains the code
specific to the sniffer type and runs as a separate thread. It establishes a serial connection,
reads data from the sniffer device, and updates the GUI with the detected devices and
networks.

The utils directory contains several utility modules. All files in this directory come
from the nRF Sniffer for BLE7 software and are under license. Those files are required
to acquire BLE data from the nRF52840 Dongle from Nordic Semiconductor or from
Makerdiary.

Finally, the file main.py is the main application file. It serves as the entry point
for the GUI application. This file contains the Tk() instance and handles the initialization
of the GUI and the sniffers.

The project is made publicly available on GitHub8. It is carefully structured and
organized to prioritize maintainability, readability, reusability, extensibility, and collab-
oration. It follows modular design principles, adheres to consistent naming conventions,
utilizes object-oriented programming concepts, and incorporates documentation through
relevant comments to explain the purpose and functionality of the code. Design patterns
and best practices are employed to ensure easy modification and loose coupling. Logging
is implemented for error tracking, and overall, the codebase is aimed at being robust and
facilitating efficient development and maintenance.

5.4 WiFi Device Identification

In the context of WiFi device identification, the WiFi sniffer performs two key
functions: scanning WiFi networks and capturing WiFi frames.

Firstly, the WiFi sniffer conducts a network scan to identify the available WiFi
networks in its vicinity. This scanning process allows it to detect the Service Set Identifiers
(SSIDs) of nearby networks. By obtaining the SSID information, the sniffer can then

7 <https://infocenter.nordicsemi.com/topic/ug_sniffer_ble/UG/sniffer_ble/intro.html>
8 <https://github.com/igorferro1/IoT-Hound>

https://infocenter.nordicsemi.com/topic/ug_sniffer_ble/UG/sniffer_ble/intro.html
https://github.com/igorferro1/IoT-Hound
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determine which specific channel to monitor for capturing WiFi frames. This targeted
approach helps narrow down the focus to the networks of interest and to the relevant IoT
devices.

Secondly, the WiFi sniffer captures WiFi frames transmitted over the air. To
intercept the WiFi frames being transmitted within its range, it either continuously
monitors the selected channel or periodically changes the channel to monitor.

5.4.1 WiFi Networks Discovery

The WiFi network discovery relies on beacon frames. Beacon frames are a special
type of WiFi management frames that are periodically broadcast by Access Points (APs)
in order to provide information about the network. The goal of beacon frames is to allow
devices in the surroundings to discover and identify WiFi networks.

Beacon frames consist of various fields that transmit specific information to devices.
The most interesting for network discovery are listed below.

• RSSI: The Received Signal Strength Indicator (RSSI) is as the name implies an
indication of the strength of the received signal in the antenna. Further in this work,
we will use this field as an indication of the distance to the emitter.

• SSID: The Service Set Identifier (SSID) is a case-sensitive alphanumeric identifier
assigned to a WiFi network. It enables to identify and differentiate between different
WiFi networks in the surrounding.

• BSSID: The Basic Service Set Identifier (BSSID) is a unique identifier assigned to a
wireless access point in a WiFi network. It is a 48-bit value, typically represented as a
series of six pairs of hexadecimal digits. In a wireless network, multiple access points
may be present, especially in larger environments to provide adequate coverage. The
BSSID enables the differentiation of APs with the same SSID.

• Beacon Interval: The time between successive beacon frame broadcasts.

The exact timing of beacon transmissions can be configured in the access point’s
settings, typically ranging from 200 milliseconds to 300 milliseconds. In the writing of
the firmware, we decided to listen for at most 500 ms every channel for a beacon frame.
Because there are 13 channels, the time required to perform a network scanning is 6.5 s.
Some APs are configured such that they change of transmitting channel if interference on
this channel is detected. For this reason, the code is designed to periodically trigger the
network scan, between 30 and 35 seconds. This scanning frequency is reasonable to have
an updated view of the channel used by the existing WiFi networks but also to let the
chip perform frame sniffing.
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To collect WiFi network information, the passive scanning approach was used. This
approach consists of listening for beacon frames that are already being broadcast by nearby
networks. Another approach could be active scanning: it involves actively sending out probe
requests to WiFi networks and then waiting for responses from nearby WiFi networks
to gather information. Even if passive scanning may not collect as much information as
active scanning, this approach was preferred. This choice is justified because this method
does not actively send out requests or interact with networks, which makes it less likely to
disrupt the networks being scanned. Additionally, using passive network scanning avoids
altering the network environment and creating additional traffic. This helps to ensure
the integrity of the evidence obtained, increasing its admissibility in legal proceedings, as
previously explained.

Because the WiFi network scan can take several seconds to complete, depending
on the number of networks in the area and the scanning parameters used, it is running
asynchronously. This means that it will not block the execution of any code that comes
after it until the scan. This frees up time to perform WiFi frame sniffing or to read the
data available on the serial port.

5.4.2 WiFi Frames Sniffing

Besides WiFi network discovery, the provided code is also able to sniff WiFi frames
transmitted on the 2.4 GHz band. The WiFi sniffing functionality can operate in two
distinct modes: specific channel sniffing or channel hopping.

By default, the channel hopping mode is the one in which the firmware is running.
In this mode, one channel is monitored at a time for a random time between 500 and 700
ms. The randomization added helps to capture a broader range of network activity and
reduces the likelihood of missing important information that is transmitted periodically.
After the period expires, the chip automatically switches to the next channel. It follows a
cyclical pattern, where each channel is monitored sequentially. Once the last channel is
reached, the monitoring cycle starts again from the first channel, creating a continuous loop
of channels sniffed from 1 to 13. By frequently switching between the different channels,
the overview of the overall WiFi landscape as well as variations in network activity across
different channels can be observed. However, if a frame is transmitted on channel x while
the chip is monitoring channel y, then the frame would not be sniffed.

The specific channel sniffing mode focuses on capturing WiFi frames from a single
predefined channel. This mode is particularly useful when the investigator already has an
idea of which channel IoT devices should communicate. For example, if the domestic WiFi
network operates on channel 3, then focusing the WiFi frames capture on this specific
channel is recommended (under the assumption that IoT devices cannot communicate to
the internet without relying on an AP). The advantage of this mode is that it continuously
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monitors and captures WiFi frames transmitted on a specific channel.

5.4.3 IEEE 802.11 Frames

Understanding the structure of IEEE 802.11 frames is essential for analyzing
captured frames and extracting relevant data for further investigation. By examining the
specific fields within the frame, such as the sender and destination addresses, investigators
can identify the source and destination of network communications, contributing to the
overall forensic analysis process. Three distinct types of frames can be captured based on
the IEEE 802.11 frame exchange protocol.

• Management Frames: Management frames are employed to establish the initial
communication between a device and the access point (in infrastructure mode)
or between stations (in ad hoc mode), and subsequently maintain the connection.
Accomplishing these tasks necessitates multiple exchanges of frames. Several types
of management frames serve specific purposes in a wireless network. These include:

– Authentication Frames: which determine access point acceptance or rejection;

– Association Request Frames: used for resource allocation;

– Association Response Frames: indicating acceptance or rejection by an access
point;

– Beacon Frames: regularly transmitted by access points to announce their pres-
ence and provide wireless information;

– Deauthentication Frames: terminating communications;

– Disassociation Frames: ending connections;

– Probe Request Frames: seeking information;

– Probe Response Frames: providing details in response to probe requests;

– Reassociation Request Frames: facilitating device movement between cells;

– Reassociation Response Frames: conveying acceptance or rejection notices from
access points to requesting devices;

The Figure 10 illustrates the format of a management frame. Information like the
current version number of the standard and whether encryption is being used can
be found in the “Frame control” field. The duration of the transmission is specified
in the “Duration” field; the value will change depending on the type of wireless
transmission being used. The addresses of the receiving and sending devices are
listed in the “Address 1 (Destination address)” and “Address 2 (Source address)”
fields, respectively. The sequence number for the packet and packet fragment number
are contained in the “sequence control” field (CIAMPA, 2012).
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Figure 10 – IEEE 802.11 Management Frame Format (CIAMPA, 2012)

• Control Frames: The second type of MAC frames are the control frames. They are
responsible for requesting and controlling access to the wireless medium. They help
in delivering frames that contain the data after the connection between the stations
and AP is established. There are more than thirteen other types of control frames,
each with its format. Among them are:

– Request-to-Send (RTS) Frames: used by a sender to reserve the wireless medium
before transmitting data frames. Its format is illustrated in Figure 11.

– Clear-to-Send (CTS) Frames: sent by the receiver in response to an RTS frame;

– Acknowledgement (ACK) Frames: sent by the receiver to acknowledge successful
receipt of a data frame;

Figure 11 – IEEE 802.11 RTS Control Frame Format (CIAMPA, 2012)

• Data Frames: The last type of MAC frames are the data frames. They serve the
purpose of encapsulating packets from upper-layer protocols, such as IP. The data
frame format is illustrated in Figure 12. The address fields (Address 1, Address
2, Address 3, and Address 4) contain the address of the BSSID, the destination
address, the source address, the transmitter address, or the receiver address. Their
contents vary, depending upon the mode of transmission. The Table 2 summarizes
the meaning of the address fields for the different values of the field “to SD” and “to
DS”. In this table, the sense of the abbreviations is as follows:

– DA: the ultimate Destination Address (DA)

– RA: the Receiver Address (RA)

– SA: the initial Source Address (SA)

– TA: the Transmitter Address (TA)
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Figure 12 – IEEE 802.11 Data Frame Format (CIAMPA, 2012)

To
DS

From
DS

Meaning Address 1 Address
2

Address
3

Address
4

0 0 Station (STA) to Station commu-
nications in IBSS mode

RA=DA SA BSSID /

0 1 Downstream traffic from AP to
STA

RA=DA BSSID SA /

1 0 Upstream traffic from STA to AP RA=BSSID SA DA /

1 1 AP to AP communications, when
Wireless Distribution System
(WDS) in use

RA TA DA SA

Table 2 – IEEE 802.11 address fields meaning function of the subfields “To DS” and “From
DS” (FRANKEL et al., 2007) (IEEE, 2021)

– BSSID: Basic Service Set Identifier (BSSID)

– IBSS: Independent Basic Service Set (IBSS)

5.4.4 Information of Interest to Collect

When sniffing frames to locate IoT devices, the MAC address of the device that
generated and sent the frame is valuable information to identify the presence of IoT devices
communicating. If this information can be combined with an indication of the distance
from the receiver, then police officers would be able to locate the IoT device.

If the sniffed frame is a control frame, the transmitter address might be present
inside the “Transmitter Address” (TA) field. However, this field is not contained in every
type of control frame. The Figure 13 below illustrates the format of a CTS control frame.
There is no “Transmitter Address” contained in this control frame type.

If the sniffed frame is a management frame, the transmitter address is found in the
“Source Address” (SA) field.

If the sniffed frame is a data frame, the MAC address of the device that is
transmitting the data frame is found in the “Address 2” field. The “Address 2” field
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Figure 13 – IEEE 802.11 CTS Control Frame Format

meaning is as described in Table 2. In the four scenarios, the “Address 2” field contains
information related to the device that generated and sent the control frame.

• In the situation of STA to STA communications, the “Address 2” field contains the
Source Address (SA) of the STA transmitting the frame.

• If the frame is a downstream frame from AP to STA, the “Address 2” corresponds to
the BSSID of the AP sending the frame. The BSSID is typically the MAC address
of the AP emitting the frame.

• If the frame is an upstream frame from STA to AP, the “Address 2” field contains
the Source Address (SA) which corresponds to the STA address transmitting the
data frame.

• In the AP to AP communications situation, the “Address 2” field contains the
address of the AP transmitting the frame.

Besides the IEEE 802.11 Medium Access Control layer, the IEEE 802.11 physical
(PHY) layer also contains information relevant to the identification of IoT devices. Espe-
cially, the primary channel on which the data is transmitted. This information tells on
which channel the frame sniffed was transmitted. It could help to differentiate the frame
sent by the smart ecosystem of the neighbor from others sent by the smart ecosystem of
interest.

Additionally, the Received Signal Strength Indication (RSSI) is valuable. As the
name implies, it indicates the signal strength received. This information can be used to
help police investigators determine the location of an IoT device. The stronger the signal,
the closer the investigators get to the emitter.

5.4.5 Firmware

Programming the Heltec ESP32 chip was achieved using the Arduino IDE9 and
the Heltec ESP32 Arduino Development Environment10 provided by the manufacturer.
9 <https://www.arduino.cc/en/software>
10 <http://www.heltec.cn/wifi_kit_install/>

https://www.arduino.cc/en/software
http://www.heltec.cn/wifi_kit_install/
https://www.arduino.cc/en/software
http://www.heltec.cn/wifi_kit_install/
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The installation instructions are available online and the links are given in footnotes.
The sniffer was implemented by modifying the example codes provided in the libraries to
both discover WiFi networks11 and to sniff WiFi frames12 transmitted over the 2.4 GHz
frequency band. The whole code is provided in Appendix B.

The Figure 14 illustrates the different data structures used in the implementation
of the firmware. The first line of each box corresponds to the meaning of the structure
whereas the second line is the exact name of the structure used in the code. By programming
the chip using these structures, the relevant fields are easily accessed, allowing the chip to
capture relevant information.

Figure 14 – WiFi Sniffing Firmware Data Structures

5.4.6 Integration in the GUI

To integrate the communication with the ESP32 chip into the GUI, a USB serial
connection is utilized to receive the data from the chip, which is then parsed.

The data format chosen for communication consists of two different formats de-
pending on the type of detection: host detection and network detection.

For host detection, the data format follows the pattern: “H, channel, RSSI,
address”. Here, “H” represents the host detection identifier, followed by the channel
11 <https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFi/examples/WiFiScan>
12 <https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/>

https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFi/examples/WiFiScan
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
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number on which the host was detected. The received signal strength indicator (RSSI)
value indicates the signal strength of the detected host, and the address corresponds to
the MAC address of the host device.

For network detection, the data format follows the pattern “N, channel, RSSI,
SSID, BSSID”. The “N” identifier denotes a network detection, followed by the channel
number of the detected network. The RSSI value indicates the signal strength of the
network, and the SSID represents the name of the network. Additionally, the BSSID refers
to the MAC address of the access point broadcasting network information.

By parsing the received data based on these predefined formats, the software can
effectively extract the necessary information about the active WiFi devices and networks
in the vicinity. This allows it to display relevant details such as channel, signal strength,
MAC address, SSID, and BSSID, providing investigators with valuable insights into the
WiFi environment and the devices present within it.

5.5 Bluetooth Low Energy Devices Identification

5.5.1 BLE Devices Discovery

The Bluetooth Low Energy (BLE) device identification relies on beacon frames.
BLE beacon frames are a specific type of advertising frame used in BLE technology. They
serve as a means of broadcasting information about a device or a particular location to
nearby BLE devices.

When a device sends advertising frames, other BLE devices that are scanning can
detect these beacon frames and identify the presence and proximity of the advertising
device. This allows for efficient device discovery of BLE devices.

In practice, advertising messages are sent on three advertising channels: channel 37,
channel 38, and channel 39. These channels are in the 2.4 GHz ISM (Industrial, Scientific,
and Medical) band and are spaced 2 MHz apart. The advertising packets are transmitted
to at least one of the three advertising channels, with a repetition period called the
advertising interval. To reduce the chance of multiple consecutive collisions, a random
delay of up to 10 milliseconds is added to each advertising interval. The use of multiple
advertising channels reduces the likelihood of message collision and lost data.

It also enables the receiver to detect advertising packets from a BLE device even if
one or more channels are affected by interference or signal attenuation. To detect BLE
devices, a scanner passively listens to advertising packets on all three channels for a
duration called the scan window, which is periodically repeated every scan interval.
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5.5.2 Information of Interest to Collect

BLE advertisement frames contain interesting information about the device such
as the MAC address of the device that generated and sent the frame. This is valuable
information that can be combined with the received signal strength, also contained in the
beacon frame, to help police investigators locate the IoT device advertising. The name
might also be present in the beacon frame. Typically, the name is the model and or the
brand of the device emitting the beacon frame. This information can guide police officers
in their research of the device that is advertising.

5.5.3 Firmware

Nordic Semiconductors provides firmware for sniffing BLE frames. This firmware
is included in the project under the firmwares directory and it has to be programmed
onto the dongle. The instructions on how to do so are given in Appendix D and are
available online13. Programming the nRF52840 Dongle requires special actions to be
performed that are described in the Appendices C or online14. The nRF Connect for
Desktop15 and the nRF Connect Programmer16 are also required. Makerdiary also provides
the necessary firmware to use with the other BLE sniffing device, also available in the
firmwares directory, with the instructions in Appendix F.

5.5.4 Integration in the GUI

The provided firmware is designed to be used in combination with a capture plugin
for Wireshark that will record and analyze the detected data. To interact with their
firmware, Nordic Semiconductor developed a Sniffer API and added it to the Wireshark
capture plugin. To communicate with the chip from our software, we analyzed the behavior
of this Sniffer API. Based on this analysis, we retrieved the information to send on the
serial to the chip to start the sniffing and we also deduced how to interpret the data
responded to by the sniffer.

The class BLE_Sniffer contains the implementation of the BLE Sniffer. The
function setup_scan sends the appropriate signal to set the chip into a scanning state
whereas the function run continuously listens to the serial port for data from the chip.
The files needed for the interaction with the chip are put inside the utils folder and come
from the provided Sniffer API.
13 <https://infocenter.nordicsemi.com/topic/ug_sniffer_ble/UG/sniffer_ble/programming_firmware.

html>
14 <https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/

ncp_programming_dongle.html>
15 <https://infocenter.nordicsemi.com/topic/struct_nrftools/struct/nrftools_nrfconnect.html>
16 <https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/

ncp_introduction.html>

https://infocenter.nordicsemi.com/topic/ug_sniffer_ble/UG/sniffer_ble/programming_firmware.html
https://infocenter.nordicsemi.com/topic/ug_sniffer_ble/UG/sniffer_ble/programming_firmware.html
https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/ncp_programming_dongle.html
https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/ncp_programming_dongle.html
https://infocenter.nordicsemi.com/topic/struct_nrftools/struct/nrftools_nrfconnect.html
https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/ncp_introduction.html
https://infocenter.nordicsemi.com/topic/ug_nc_programmer/UG/nrf_connect_programmer/ncp_introduction.html
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5.6 ZigBee and 6LoWPAN Device Identification
In the context of ZigBee and 6LoWPAN device identification, the sniffer performs

two key functions: scanning existing networks and capturing frames.

Firstly, the sniffer conducts a network scan to identify the available networks in its
vicinity. This scanning process allows it to detect the devices of nearby networks. This way,
the sniffer can determine which specific channel to monitor for capturing the frames, only
on the ones in which devices are communicating. This targeted approach helps narrow
down the focus to the networks of interest and the relevant IoT devices.

Secondly, the sniffer captures IEEE 802.15.4 frames transmitted over the air on the
respective channels that have been detected in the previous step. To intercept the frames
being transmitted within its range, it either continuously monitors the selected channel,
or if no channel is selected, it periodically changes between the aforementioned channels.

The sniffer was, initially, specifically designed and validated for ZigBee devices,
however, in theory, it should also be compatible with other protocols that are built on top
of the IEEE 802.15.4 standard. In the extension of the previous work, it is now compatible
with a range of protocols based on 6LoWPAN, such as Thread. It has not been validated
for other protocols, but it should theoretically work.

5.6.1 IEEE 802.15.4 Network Discovery

First, as mentioned in the section 2.1.4, IEEE 802.15.4 operates on 16 different
channels. This poses a small problem for the sniffer because the nRF device cannot be
on all the channels at the same time. The solution for this can be simple: the sniffer can
keep hopping between the channels, stay in each channel for a while detecting for devices,
and then go to the next channel. This is the simplest way to resolve this but it is highly
inefficient because, for each hub present, ZigBee operates in a single frequency in the MAC
layer (CHENG; HO, 2016), therefore it is very rare that there are multiple devices inside
a crime scene, each one communicating in different channels, and that all of the channels
are used at the same time. Consequently, it would be better to have a way to detect which
channels are being used and only sniff those channels. 6LoWPAN has a similar behavior,
only communicating through one channel per network (IEEE, 2006).

But there is a challenge in doing this: what is the most efficient way to check if
a channel is being used? In WiFi, we have beacon frames, but looking for those is not a
very efficient approach in IEEE 802.15.4 technologies because they are not always sent,
to save bandwidth and power. So in this scenario, it is not an optimal way to look for
announcement messages. To understand how this could be done, we analyzed the channels
with the nRF, going manually through them one by one, and from this, we noticed that
there is a constant data flow in the channels that have devices on them. It is not uncommon
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to have data requests, data messages, or acknowledgments present in these cases. Therefore,
it would be possible to check if a channel has data just by listening to it and seeing if
there is a data flow, no matter what the type of message, and with this, there is no need
to check for announcement messages from the hub. But this also poses another question:
how should the scanning be done? Which channel should be checked at which moment?

Inherently, channel hopping is necessary because there is no way to check multiple
channels in parallel, but for how long the device should stay in each channel is an interesting
question, but with an expected answer: this depends on the intensity of the data flow,
so that the device doesn’t change channels too soon, before obtaining the data traffic,
but it shouldn’t stay for so long, wasting more time in empty channels. From empirical
measurements with devices, we noticed that there is a considerable data flow in 10 seconds,
so it would be hard to miss a channel while staying 10 seconds in it. This is a variable
that can be easily changeable by the user of the program in case they think it is necessary.
This combination proved itself good for detecting the channels that have data flow, as will
be shown in the tests.

It has been explained how the scanning is done, but what happens during and after
the scanning and the information obtained from it is equally important. For each channel,
during the stay on it and listening to the messages, two possible paths can be taken by
the software:

1. There is data on that channel: In this case, the device will capture data, the
software will check if it’s an IEEE 802.15.4 frame, and then add that channel to a
list of channels to sniff and hop to the next channel.

2. There is no data on that channel: Within this scenario, the device will keep
waiting some time in one channel, 10 seconds, before just going to the next channel,
concluding that no data is flowing on this one.

This procedure takes around 3 minutes to scan all channels, which is considered an
acceptable amount of time before starting the sniffing. It can be repeated if considered to
be necessary, and this can be set on the program as well. If there is no ZigBee or 6LoWPAN
traffic detected, the program will stay in this phase, hopping through the channels and
looking for data.

After the execution of this part of the process, the output will be a list of channels
that have traffic on them. This list will be passed to the second part, the sniffing of the
frames, so that only those channels are checked for the presence of data, making the sniffer
more efficient.
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5.6.2 IEEE 802.15.4 Frames Sniffing

As mentioned, the output of the previous step is a list of channels that contain data
flow through them. This data is useful in this phase because those channels are the ones
that will be listened to. Having that list in hand, then the software will start sniffing. The
sniffing process is relatively simple: the software sends a serial command to start receiving
the data on the first channel on the list. Since the sniffer is already configured with the
firmware, it will just start sniffing on that channel and sending the data serially to the
program. After a while, it changes the channel by clearing the buffer to avoid delayed data
being attributed to the next channel, and it starts listening to the next channel in the list.

The most important part is what comes after the sniffing: the processing of the
data. The entire serial message is composed of 4 parts, as shown in Figure 15:

Figure 15 – Terminal with Serial Connection with the Device and Data Acquisition

• The Received Message: This is a hexadecimal representation of the entire raw
ZigBee frame.

• The Power: The RSSI value, which indicates the strength of the signal with the
sniffer in that position. It is measured in dBm.

• The LQI: This is the Link Quality Indicator. In ZigBee, it indicates the quality of
the link in which this frame was sent.

• The Time: This is the representation in microseconds of the moment in which that
frame was captured, beginning from when the nRF device was connected.

The most important data for the sniffer in this are the received message and
the RSSI. The message is important because it means that there is at least one device
exchanging messages in that location, and we might be able to extract the source address(es)
from that message. The RSSI is important because it can help determine the distance
from the device to the sniffer, and it is a piece of information that will be displayed to the
user.
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After receiving the data from the serial port, the software proceeds to save locally
only the frame and the RSSI. It will then convert the message to binary to find control
bits which will indicate the presence of one or more address(es) in the message. If the
message doesn’t contain any of the addresses, it will be discarded.

It is worth noting that the sniffer does this capture for every channel in the list
of detected channels, and it is not simultaneous because, as mentioned multiple times,
the sniffer can only be configured for one channel at a time. This means that it also does
channel hopping, but instead of being only 10 seconds in each channel as in the channel
discovery phase, it stays between 20 and 30 seconds, with this value being random for
each time it runs. This chosen period is because the duration of each channel stay should
be different, in a way that recurrent messages should be captured. If it stays, for example,
30 seconds in each channel every time, a message that is sent recurrently on one channel
might be lost because it’s always sent when the sniffer is listening to the other channel.
With this randomness, it won’t be “looped” to go to a certain channel at a certain time
only, breaking the regularity and being able to capture those “out-of-time” frames.

With this sniffing and data processing composition, the data is collected, analyzed,
and passed to the GUI to show it in a simple way to the investigators, being updated
regularly.

5.6.3 IEEE 802.15.4 Frames

For this work, we’ll try to obtain the source address from the device that is sending
the frame. This will be further demonstrated in section 5.6.5. One of the most important
aspects is that IEEE 802.15.4 is defined to be a lightweight protocol, and one of its
properties is that it tries to optimize communication with a low overhead, this means
that it contains a considerably small header. The Figure 16 shows the frame for IEEE
802.15.4, on the MAC layer. It omits a footer at the end with the checksum of the frame.

Figure 16 – IEEE 802.15.4 MAC Header Frame Format (KANG; KIM; BAHK, 2017)

The most important fields to analyze in this header are “Frame Control”, “Source
address” and “Frame Payload”. The frame control field contains flags of the frame, which
functionality includes defining the type of the frame and also which fields it has.



78 Chapter 5. Work Development and Implementation

Inside the “Frame Control” field, the important subfields will be “Frame Type”,
“Security Enabled”, “Source addressing mode”, “PAN ID”, and “Destination addressing
mode”. The “Frame Type” can indicate if it’s a beacon, an acknowledgment (ACK), a
data frame, or a command frame. The “Security Enabled” bit will indicate if the frame
is cryptographically protected by the MAC layer. This bit must be set to 0 to be able
to explore the data fields in a further way, without encryption (IEEE, 2011)., and the
“Source addressing mode” indicates if it will use the short address for the source (if this
field is 10), the extended address (if this field is 11), or no address at all (if this field is 00,
and for example, it’s not necessary to include an address for an ACK frame). The other
mentioned fields won’t have the data used, but it is necessary to check them because they
influence the positioning of the “Source address” field in the number of bytes. In our case,
“PAN ID” must be set to 1 and “Destination addressing mode” set to 10.

The “Source address” field is important to acquire the address of the sending device.
If present, this address can be in one of two forms: an intra-network unique 16-bit address
generated by the coordinator when the node joined the network (called the short address),
or a 64-bit address entirely unique to that device, which was defined in the manufacturing
of the device (called the extended or IEEE address). The source address is the one that
will be obtained by the sniffer to show the presence of a device, which will be explained
later, but at this moment, it is only interesting to obtain the short address.

The “Frame Payload” is where the upper layers and the data will be. This is
important because the further layers of ZigBee and their headers will be in this field.

Now knowing about the structure of an IEEE 802.15.4 frame and its important
fields of the headers, it is necessary to understand the ZigBee and 6LoWPAN frame and
headers.

5.6.4 ZigBee Frames

As mentioned before, ZigBee is built on top of IEEE 802.15.4, and the header for
the MAC layer is the same as described in the previous section. But ZigBee also has layers
on top of the MAC one, and that will include headers with information. The Figure 17
shows the stack of a ZigBee frame.

This shows that apart from the MAC header, which contains retrievable information,
we still have a network and auxiliary headers (NWK layer), and an application header
(APS layer). The network layer will be the most important to analyze in this step. The
fields of the network frame are shown in the following figure:

It is important to note that this enhanced analysis is only done if the short source
address was already present before, but if it’s possible to obtain the IEEE address as well
it’s better because those addresses are unique to each device, so this is why it’s notable to
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Figure 17 – ZigBee Frames Stack (LUCIDARME, 2021)

Figure 18 – ZigBee Network Frame Format (ZIGBEE ALLIANCE, 2015)

continue going deeper into the layers to analyze them. The necessary fields here are the
“Frame Control” and the “Source IEEE Address”. The “Frame Control” is similar to the
homonymous field on the previous layer, and it contains control bits. It is represented in
Figure 19.

Figure 19 – Frame Control Format (ZIGBEE ALLIANCE, 2015)

The bits of interest here are “Source IEEE address” and “Security”. The “Source
IEEE address” indicates if the 64-bit extended address will be present in the header (if
its value is 1), and “Security” indicates that the auxiliary frame header will be present
and if the upper layer is encrypted (also if its value is 1). If the auxiliary frame header is
present, then the extended address may be obtained from it, if not, it may be obtained
from the upper layer. If the extended address is present at this level, it can be obtained
by the sniffer in this step by checking the bits of the “Source IEEE address” field on the
network header.

In case the 64-bit address is not present, the sniffer can take two paths. The first
is if the “Security” bit is present: it will then analyze the auxiliary frame header. The
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Figure 20 represents the auxiliary frame header format.

Figure 20 – Auxiliary Frame Header Format (ZIGBEE ALLIANCE, 2015)

If this path is taken, this is the last header analyzed by the program. Inside it, the
“Security control” field will be analyzed, which is represented in Figure 21. The “Source
address” field can contain the 64-bit desired IEEE address.

Figure 21 – Security Control format (ZIGBEE ALLIANCE, 2015)

Inside this field, the only bit that is checked is the “Extended nonce” sub-field. If
this bit is 1, then the “Source address” field of the header will be the extended address,
making it possible for the program to obtain it in this step.

If the “Security” bit is 0 in the Network header, then another way to explore these
data fields is by looking through implementations of ZigBee Device Profiles (ZDP). Here,
we noticed that sometimes the application layer can send some data under the ZDP on
the application layer, unencrypted, which contains the desired address data. But before
the ZDP data, we have the “Application Support Layer” (APS) (as previously shown in
Figure 17, and it’s necessary to check it to see if the data that is sent is a ZDP. The
APS frame is represented in figure 22.

Figure 22 – APS Frame Format (ZIGBEE ALLIANCE, 2015)

Inside, it is important to look at the “Profile Identifier” bytes, which can indicate
if it is a ZDP frame ahead. Also, it’s interesting to look at the “Cluster identifier”, to
see if it’s a device announcement, frame which is dissected here to obtain the extended



5.6. ZigBee and 6LoWPAN Device Identification 81

address. The Cluster ID should be 0x0013, and the Profile Identifier 0x0000, then the
upper frame is the expected. The ZDP Frame contains a simple structure, represented
below in figure 23.

Figure 23 – ZigBee Device Profile Frame (ZIGBEE ALLIANCE, 2015)

Inside it, the important field is the “Transaction data” field, which, in our scenario
(with the Cluster ID of 0x0013), will be the Device Announcement command, whose
structure is represented in figure 24. From this structure, we can extract the extended
address from its respective field, IEEEAddr.

Figure 24 – ZDP Device Announcement Structure (ZIGBEE ALLIANCE, 2015)

An example showing and highlighting the analyzed bits is present in the following
step, in which the obtained data is now parsed and passed to the program to show it to
the user.

5.6.5 Information of Interest to Collect and Examples

The general idea for this sniffer is to obtain the source address(es) of the sniffed
frames, which is shown together with the received signal strength, alongside the channel in
which the sniffing is happening and the time of the last sniffed frame. This demonstrates
that there is a unique present device in the scene. Obtaining these values posed a challenge
because it is necessary to extract the data from the raw frames, but it was possible by
parsing the frames based on their structure, seen previously, and will be demonstrated in
the following part.
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ZigBee Frame Parsing and Examples

With the knowledge of the structure of ZigBee frames explored in the previous
subsection, now it is possible to obtain the data from the frames by looking at the
aforementioned fields in the structure. In this part, we will demonstrate a few examples
of ZigBee frames that are parsed to obtain important data. This will be shown through
a manual analysis on Wireshark, but the sniffer does this automatically. For the sake of
simplicity, only 3 types of frames will be shown in this step, all of them containing at least
one type of source address, that is collected by the software.

The first type of frame that is analyzed is the simpler one, with only the short
address. It is represented in Figure 25. This first highlighted line shows the “Source
addressing mode” bits, which are set to the “Short” option, and the second highlighted
line demonstrates the bits of this address.

Figure 25 – Parsing of the First ZigBee Frame Type

On this second frame, represented in the Figure 26, we have a frame with the
extended address present in the Network Layer. These bits that indicate the presence
of the longer address are highlighted in the figure, along with the short and extended
addresses themselves.

The third frame, in the Figure 27 represents the last type of analyzed frame,
with the extended address present in the Security Header. Again, the highlighted values
indicate the addresses and the bits that indicate the presence of the extended one. It is
worth noting that while Wireshark shows the “Extended Source” field under the Network
Layer header, it is not there, and it shows the value from the Security Header.

From this analysis, we can see that it is possible to obtain the addresses from the
sniffed frames, even for different frame formats. Therefore, it was necessary to build a
program to sniff those frames and parse them.
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Figure 26 – Parsing of the Second ZigBee Frame Type

Figure 27 – Parsing of the Third ZigBee Frame Type

5.6.6 6LoWPAN Sniffing

To sniff 6LoWPAN frames, the same device and firmware that is used to capture
the ZigBee frames are used, since both are based on IEEE 802.15.4, without the need to
add another device to the computer.

5.6.7 6LoWPAN Frames

Given that 6LoWPAN is based on IEEE 802.15.4, the analysis for sniffed 6LoWPAN
frames is similar to the ZigBee frames, and in this scenario, it is simpler, as will be further



84 Chapter 5. Work Development and Implementation

explained. Here, we try to capture the IEEE Addresses (Extended Addresses) as well.

According to the 6LoWPAN specification, it is recommended to use the 64-bit
addresses on the IEEE 802.15.4 MAC-layer instead of the 16-bit short addresses, imposing
more constraints on the latter (MONTENEGRO et al., 2007).

Using this information, it’s possible to see that these addresses can be captured on
lots of applications using protocols based on 6LoWPAN, such as Thread. Therefore, the
sniffer has been programmed to capture the addresses directly from the IEEE 802.15.4
MAC layer, specifically when the addresses are present in the MAC layer. Since it can
change on the upper layers for each protocol and it can depend a lot on other factors,
such as fragmentation of packets, which is compatible with 6LoWPAN, this decision has
been made to be able to capture frames from a greater number of protocols that are based
on 6LoWPAN and to not depend on a few specific types of frames/packets to be able to
capture the extended address.

To do this analysis of the MAC layer, it goes back to figure 16, and in this
scenario, inside the frame control field the bits “Src addr mode” should be then “11”. This
will then redirect the traffic to the 6LoWPAN sniffer since all ZigBee transmissions use
the short address in the MAC layer, with the bits being defined as “10”.

From there, the address is collected from the “Source address” field inside the same
header, being displayed in the GUI.

5.6.8 Firmware

Just like described in the BLE section, the device can be programmed to be used
as an IEEE 802.15.4 sniffer with a code provided by Nordic Semiconductors, and this
application allows communication with the device through the serial port, and with these
tools in hand, it is possible to obtain the data for this standard.

5.6.9 Integration in the GUI

The main issue is that the provided firmware is projected only for two scenarios:
obtaining the data in real-time with Wireshark or through an API that is provided in
a Python file by Nordic, but this is mostly useful to create .pcap files and not to do
live observation. Therefore, for obtaining the data in real-time outside Wireshark, it was
necessary to adapt the utilization of the device.

Since the data is not directly sent by the sniffer without the use of Wireshark or
following Nordic usage for Python, it was necessary to understand how to obtain that
data using other tools. Since it establishes a serial connection, the first step was to open
a serial terminal to explore this connection with the nRF. Initially, it was clear and had
nothing inside, but we found it possible to send a few control messages to configure the
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sniffer for the desired usage. The first important message is channel X, where X is a
number between 11 and 26, included, and this controls the channel to which the nRF is
going to listen. After this, the message receive can be inputted, because it will then start
the collection of data. It is worth noting that it is possible to change the channel after
starting the collection of data just with the channel command again. This configuration
and reception of data were shown previously in the Figure 15.

With this being clear, the software then was set to be able to receive those frames
serially and process them. When a frame is received by the software, two scenarios can
happen: it either has the short address or the extended address at the MAC layer. If it
has the short address, then it’s treated like a ZigBee device, otherwise, it is a 6LoWPAN
device, logic that has been explained before. This approach can be seen as simplistic, but
it is based on the documentation from both protocols. Back at the captured frame, if at
least the short address is present, then it will save this value and instantiate an object
called “Device”, which will be created with the short source address, the RSSI, the type,
the timestamp, the channel which the device is in, the name, and the extended address, if
also present. All of these fields have already been explained, except for the name, type, and
timestamp. The name of the device is just a representation if the device is a coordinator:
in ZigBee, the short address 0x0000 is reserved for the coordinator, so if the message
contains a source address with this value, the name of the device will be set as “Hub”,
otherwise, no value will be put there, the type is the protocol that this device is using,
and the timestamp keeps track of when this device was last updated.

After instantiating this device, the program will call a function that will either
append or update that device to the GUI in their respective window. To keep track of
what devices have been already sniffed, the program keeps a local list of devices. The new
device will then be compared to each device on this list. If the device is not in this list,
it means that it is not yet shown in the GUI, and it will be simply added to it and the
list. If the device already exists on this local list, then it’s only necessary to update its
information in it and also in the GUI. The fields that have to be updated are the RSSI,
the timestamp, and the extended address if the latter has been obtained in the sniffed
message.

As mentioned before, it was necessary to create a program to adapt to the sniffer,
and it was done through Python, with the device communication being done with pySerial,
a library to control and send/receive data through serial ports in Python. It became
especially useful in this scenario because, with it, we can retrieve the data and give the
right commands to configure the channels and the sniffing.

The developed program, therefore, sends the control signals to the serial port and
receives the data. It formats the received message and then processes it to show the
address(es) in the GUI, along with the RSSI, channel, and the time of the last received



86 Chapter 5. Work Development and Implementation

frame that it was currently sniffing.

5.7 Conclusion
In this chapter, we delved into the design and implementation aspects of our IoT

device identification software, focusing on WiFi, Bluetooth Low Energy, ZigBee, and
6LoWPAN devices. The goal was to develop a solution to help police investigators identify
IoT devices at a crime scene. The proposed solution listens to information transmitted by
these communications protocols to detect and display the active IoT devices onto the GUI.

We began by discussing the design choices made during the development process,
including the selection of protocols, hardware, programming language, and GUI library.
We then provided an overview of the graphical user interface. Instructions on how to use
the GUI were presented, enabling police investigators to interact with the interface.

The subsequent sections focused on the identification of WiFi, BLE, ZigBee, and
6LoWPAN devices. For each protocol, we outlined the necessary steps involved in device
discovery. We explored the specific frame structures highlighting the key information of
interest that could be gathered from these frames.

To support the identification of WiFi devices, a firmware was developed. This
firmware enabled the extraction and processing of relevant data for display in the GUI.
To support the identification of BLE and ZigBee/6LoWPAN devices, firmware from the
manufacturers was used with adaptations.

In conclusion, the developed IoT device identification software provides a user-
friendly solution for identifying WiFi, BLE, ZigBee, and 6LoWPAN devices. By leveraging
the capabilities of each protocol and integrating them into a cohesive GUI, users can
effectively monitor and analyze the IoT landscape in their vicinity. This system has the
potential to assist in forensic investigations and enhance the process of evidence collection.
In the next chapter, we will present the experiments conducted to evaluate the performance
and effectiveness of the system.
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6 Experiments and Results

6.1 Introduction
This chapter focuses on the evaluation and results of the IoT device identification

software. It aims to provide a comprehensive overview of the testing process, the obtained
results, as well as any limitations encountered during the evaluation. Two different types
of tests were held, a primary test that enabled evaluation on the Wi-Fi, BLE, and ZigBee
sniffers, and a secondary test focusing more on the 6LoWPAN sniffer. Both test sets will
be described in the following sections, explaining the reasons why they are separated and
how each testing set was conducted.

6.2 Testing Scenario 1

6.2.1 Testing Scenario Setup

In this section, we will describe the testing scenario that was set up to evaluate
the effectiveness and performance of the developed IoT device identification software. The
objective is to simulate a real-world environment where multiple IoT devices are present
and run as in a typical smart home.

6.2.2 Selection of Devices

To create a diverse and representative testing scenario, a range of IoT devices was
selected. These devices were chosen because we were in possession of them and because
they are prevalent in domestic settings. They also use WiFi, BLE, or ZigBee protocols
to communicate. The selected devices include a smart socket, a security IP camera, a
motion sensor, and a presence sensor. The devices are going to be used simultaneously to
simulate real-world scenarios and to evaluate the capabilities of the sniffer to detect and
differentiate between the devices within these protocols.

WiFi Devices

• Smart Socket: The TP-Link smart socket is a WiFi-enabled socket that allows remote
connections to turn it on and off and offers energy consumption monitoring.

• IP Camera: The Xiaomi security camera is a WiFi-based camera that offers high-
quality photos and videos to be stored locally or through remote streaming and
access.
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BLE Devices

• Headphones: The Bose QuietComfort 35 is a pair of BLE-enabled headphones
offering wireless audio playback. This device cannot be considered an IoT device,
but it was used because it utilizes Bluetooth Low Energy, and no other BLE devices
were available for the testing.

ZigBee Devices

• Motion Sensor: The Samsung SmartThings motion sensor is, as the name implies, a
sensor for detecting motion.

• Presence Sensor: The Samsung SmartThings is a sensor detecting the arrival and
presence of individuals.

• Multipurpose Sensor: The Samsung SmartThings multipurpose sensor is a sensor
that can monitor doors, windows, cabinets, or drawers depending on usage. In our
case, the sensor will be used to monitor a door.

Other Devices

In addition to the IoT devices, other devices are evolved in the setup.

• WiFi Router: The Proximus BBox 3V+ router provides internet access to the
environment via aDSL.

• ZigBee Hub: The Samsung SmartThings hub is the central control unit for the other
Samsung SmartThings devices. It brings the ZigBee communication in contact with
the internet through Ethernet.

• Laptop: The laptop runs the developed IoT devices identification software. It will
not be detected by the software itself.

The Table 3 details the different devices involved in the test setup. For each of
them, the device type, the model, the MAC or IEEE extended address, the communication
protocol, and an identifier are provided. The identifier will be used in the next section.

6.2.3 Placement

The tests were conducted in a 4-story house, serving as the testing environment
for evaluating the performance of the developed sniffer. The location of the devices is
represented in Figure 28. The red numbers in the figure are the identifiers associated
with the IoT devices in Table 3.



6.2. Testing Scenario 1 89

Device Model MAC/Extended Address Technology ID

Router Proximus BBox
3V+

44:D4:54:F5:2B:36 &
44:D4:54:F5:2B:37

WiFi (1)

Hub Samsung
STH-ETH-200

D0:52:A8:7:AA:27 &
D0:52:A8:72:AF:A7:00:01

ZigBee (2)

Motion Sensor Samsung
F-IRM-UK-V2

00:0D:6F:00:0B:BC:41:15 ZigBee (2)

IP Camera Xiaomi
MJSXJ02CM

78:8B:2A:B2:20:EA WiFi (3)

Laptop ASUS
Vivobook

Variable BLE, WiFi &
ZigBee

(4)

Wireless
Headphones

Bose QC35 5B:6B:DB:97:2:FE BLE (5)

Multipurpose
Sensor

Samsung
F-MLT-UK-2

00:0D:6F:00:0B:BB:05:92 ZigBee (6)

Smart Socket TP-Link
HS110

50:C7:BF:ED:0A:54 WiFi (7)

Presence
Sensor

Samsung STSS-
PRES-001

D0:52:A8:01:06:AE:00:05 ZigBee (8)

Table 3 – Devices Involved in the Setup

• First Floor The Figure 28a illustrates the first floor of the testing house.

(1) The WiFi router is attached to the wall for the aDSL connection.

(2) The SmartThings Hub and the motion sensor are placed in the same location
on the first floor of the house. The motion sensor is on top of the hub.

(3) The IP camera points through the window, towards the garden.

• Second Floor The Figure 28b illustrates the second floor of the testing house.

(4) The laptop runs the IoT devices identification software. Initially, it is located
on the counter of the second floor. To detect the IoT devices, the laptop will
be later moved to different places to study the evolution of the received signal
strength. This will be further discussed in section 6.2.5.

(5) The headphones are on the second floor and stay on a table.

• Fourth Floor The Figure 28c illustrates the bedroom on the fourth floor. This
room contains the remaining IoT devices.

(6) The multipurpose sensor is placed on the door of the bedroom to detect opening
and closing.
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(7) The smart socket is plugged into an outlet in the bedroom.

(8) The presence sensor is placed on the bedroom table.

(a) First Floor (b) Second Floor

(c) Bedroom on Fourth Floor

Figure 28 – Floor Plan of Testing Environment with Position of Devices

The testing scenario was designed to resemble a typical residential environment,
mirroring real-life situations. This approach ensures that the sniffer’s performance and
results can be effectively replicated in actual crime scenes without significant deviations.

The positioning variation inside the house also introduces a realistic test scenario
because the devices are in different areas, which adds obstacles such as walls between
the IoT devices, the ZigBee hub, the router, and the laptop. Another aspect that can be
noted in this testing scenario is the influence of the antennas. The Hub and the Motion
Sensor are placed in proximity, and that allows us to observe the differences between the
RSSI values of both devices. This can be an interesting analysis because the investigators
can understand how much they should take into account if a device is a smaller, battery-
powered one, or a bigger one that is connected to the wall, and its influence on the signal
strength. This enables the assessment of the software’s ability to detect and keep track of
IoT devices under challenging signal propagation conditions.
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6.2.4 Configuration of the Devices

The devices’ configuration would not matter in a real scenario, because the inves-
tigators would not know this information in most of the situations. But for the sake of
transparency, the configuration of these devices will be explained in this section.

The WiFi devices are connected to the home router through the network with SSID
“Proximus-Home-2B30" and operating on channel 1. Both WiFi devices were connected
through their respective companion app, “Kasa Smart" for the smart socket and “Mi
Home" for the smart camera.

The Bluetooth Headphones are not connected to any device and are simply switched
on.

The ZigBee devices and the smart socket are configured and connected to the hub
through the “Samsung SmartThings" app. The hub operates on channel 5 and is connected
to the internet through an Ethernet connection to the router.

6.2.5 Testing

Before initiating the detection process, all personal equipment utilizing WiFi,
Bluetooth, or ZigBee technologies was turned off to avoid corrupting the crime scene
and eliminate interference. The software was launched from the laptop, and the scanning
process was initiated to capture wireless communication signals emitted by IoT devices.
Initially, the laptop running the software was positioned on the second floor of the house.

The procedures to identify WiFi, BLE or ZigBee devices have similarities and are
described in the following subsections. Even if the WiFi, BLE, and ZigBee devices are
concurrently monitored, we recommend first identifying all WiFi devices, then all BLE
devices, and finally all the ZigBee devices. This facilitates the process for the investigator.
We also recommend ending with identifying ZigBee devices because the ZigBee network
discovery can take up to 3 minutes whereas the WiFi network discovery only takes around
30 seconds.

During the testing procedure, the laptop was initially positioned on the second
floor and then moved around the house. This approach of starting from a central location
and gradually exploring the surroundings allows for the identification of all devices in
the house. By moving closer to each device, the received signal strength indicator (RSSI)
increases, indicating the presence of nearby active devices.

WiFi Devices Identification

1. While walking around the house, the WiFi Access Point (AP) was identified by
checking the values of the RSSI increasing, and as a result, it was possible to visually
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locate it. When near the router, the RSSI value can get close to -30, suggesting that
it was the desired WiFi network and then it was selected. The selection causes the
WiFi sniffer chip to only sniff the channel associated with the selected WiFi network.

2. For each displayed device on the WiFi Devices frame:

a) If the RSSI was around -50, the leftmost case of the device entry was clicked to
highlight the device, turning the device entry red for easy identification. If the
RSSI value never approached -50 in any location within the house, it indicated
that the device did not belong to the testing environment and therefore was
not selected.

b) We proceeded to move around the house while observing the RSSI value on the
GUI. If the RSSI value increased, it indicated an increase in received signal
strength, suggesting proximity to the transmitting device.

c) If the RSSI value reaches approximately -30, it indicates that the IoT device
was in close proximity to the current position of the laptop running the software.
We focused our search in the immediate vicinity to locate the IoT device.

d) Once the device was found, the investigators performed the necessary actions,
such as documenting relevant information or gathering evidence, before pro-
ceeding to seize the device.

e) Upon completion of the necessary actions, the Seize button corresponding to
the identified device entry (highlighted in red) was clicked, moving the seized
device into the Seized Devices frame.

3. As there is only one WiFi AP in the house, the procedure has not to be followed
again from step 2.

As far as we know, we are not aware of IoT devices using WiFi in a peer-to-peer
fashion, or without relying on AP. In such a scenario, the selection of the channel used by
the WiFi router could hide the peer-to-peer communications if the peer-to-peer network
uses a distinct channel from the channel of the WiFi router. To overcome this problem,
we recommend unchecking the WiFi network after the relevant WiFi devices are seized.

BLE Devices Identification

The procedure to identify the BLE devices shares a common step with the WiFi
devices identification one.

1. For each displayed device on the BLE Devices frame:
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a) If the RSSI was around -50, the leftmost case of the device entry was clicked to
highlight the device, turning the device entry red for easy identification. If the
RSSI value never approached -50 in any location within the house, it indicated
that the device did not belong to the testing environment and therefore was
not selected.

b) We proceeded to move around the house while observing the RSSI value on the
GUI. If the RSSI value increased, it indicated an increase in received signal
strength, suggesting proximity to the transmitting device.

c) If the RSSI value reaches approximately -30, it indicates that the IoT device
was in close proximity to the current position of the laptop running the software.
We focused our search in the immediate vicinity to locate the IoT device.

d) Once the device was found, we performed the necessary actions, such as docu-
menting relevant information or gathering evidence, before proceeding to seize
the device.

e) Upon completion of the necessary actions, the Seize button corresponding to
the identified device entry (highlighted in red) was clicked, moving the seized
device into the Seized Devices frame.

ZigBee Devices Identification

1. While walking around the house, the ZigBee hub was identified by checking the
values of the RSSI increasing, and as a result, it was possible to visually locate it.
When close to it, an RSSI value close to -50 indicated the strongest signal, suggesting
that it was the desired ZigBee network. The selection causes the ZigBee sniffer chip
to only sniff the channel associated with the selected ZigBee network.

2. For each displayed device on the ZigBee Devices frame:

a) If the RSSI was around -50, the leftmost case of the device entry was clicked to
highlight the device, turning the device entry red for easy identification. If the
RSSI value never approached -50 in any location within the house, it indicated
that the device did not belong to the testing environment and therefore was
not selected.

b) We proceeded to move around the house while observing the RSSI value on the
GUI. If the RSSI value increased, it indicated an increase in received signal
strength, suggesting proximity to the transmitting device.

c) If the RSSI value reaches approximately -30, it indicates that the IoT device
was in close proximity to the current position of the laptop running the software.
We focused our search in the immediate vicinity to locate the IoT device.
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d) Once the device was found, we performed the necessary actions, such as docu-
menting relevant information or gathering evidence, before proceeding to seize
the device.

e) Upon completion of the necessary actions, the Seize button corresponding to
the identified device entry (highlighted in red) was clicked, moving the seized
device into the Seized Devices frame.

3. As there is only one ZigBee hub in the house, the procedure has not to be followed
again from step 2.

6.3 Testing Scenario 2

6.3.1 Testing Scenario Setup

In the second testing scenario, the focus was on evaluating 6LoWPAN sniffing
capabilities. Unlike the first scenario, we did not attempt to emulate a real-world scenario
due to the unavailability of devices for test cases involving 6LoWPAN as a protocol.
Instead, the goal was to validate the sniffer’s ability to capture frames from the 6LoWPAN
protocol and observe signal variations.

6.3.2 Selection of Devices

Since no devices capable of communicating using 6LoWPAN-based protocols were
available, an alternative approach was adopted to assess this aspect of the software. A
reliable option was to use devices capable of emulating others with that protocol. One of the
laboratories for which this work was conducted possessed devices capable of transmitting
6LoWPAN frames, such as the Crossbow TelosB 1. However, a suitable substitute for
testing was the Makerdiary MDK nRF52840, the same device used for BLE sniffing, chosen
to be used due to the author’s prior experience with it. The drawback is that, for this
test, the BLE Sniffer was deactivated since it utilized the MDK device for sniffing BLE
frames. The devices and laptop details are summarized in Table 4. The Thread emitter
also needs another laptop for it to be configured.

6.3.3 Placement

The placement in this scenario was straightforward, with only one device. The
emitter was positioned on a table in a room, with the door closed. The sniffer was placed
outside this room. The testing occurred in a single-floor house, initially with a distance
of around 8 meters and barriers between the laptop with the sniffer and the device.
1 <https://www.willow.co.uk/TelosB_Datasheet.pdf>

https://www.willow.co.uk/TelosB_Datasheet.pdf
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Device Model MAC/Extended Address Technology ID

Laptop
(Sniffer)

ASUS
Vivobook

Variable BLE, WiFi,
ZigBee &

6LoWPAN

(1)

Laptop
(Support for

nRF)

Lenovo
Ideapad

Variable D.N.A (2)

Thread Frames
Originator

MDK
nRF52840

96:05:3D:EC:E0:95:51:EA 6LoWPAN
(Thread)

(2)

Table 4 – Devices Involved in the Second Setup

The placement of devices is depicted in Figure 29, with red numbers corresponding to
identifiers in Table 4.

Figure 29 – Placement for Devices in the Second Testing Scenario

6.3.4 Configuration of the Devices

In this scenario, the only device that required configuration was the nRF used
to emit the Thread frames. The setup involved connecting the device and uploading the
firmware, as detailed in Appendix G.

6.3.5 Testing

Similar to the previous test, the absence of IEEE 802.15.4 devices was ensured.
Since both WiFi and BLE sniffers were disabled, there was no need to turn off devices
using these protocols. Given the validated process from the first test, this test primarily
focused on verifying the software’s capability to capture 6LoWPAN frames.

As with ZigBee, channel scanning took time, requiring patience for devices to
appear. The laptop in which the sniffer was running remained stationary until the first
measurement appeared on the GUI.

6LoWPAN Devices Identification

Identification involved waiting for the IEEE 802.15.4 sniffer to scan channels and
detect devices. Once the sniffer identified the channel (channel 12) where the device
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communicated, it continued searching for devices on this channel. The target device
appeared with a weak signal. The laptop with the sniffer was then moved to alter RSSI
values.

As the device was approached, the door to its room was opened, and the sniffer
successfully located it.

6.4 Results
By following the procedures described in the previous sections, we were able to

systematically detect and identify all IoT devices within the testing environments. The
Appendices H and I contain several figures that illustrate the testing processes and the
obtained results.

WiFi Devices Identification Results

After evaluating the software in the testing environment, the results revealed two
challenges in the identification of WiFi devices.

Firstly, the GUI displayed a higher number of devices than expected, even after
selecting the specific channel on which the WiFi router of the testing environment is
running. This discrepancy can be attributed to the presence of neighboring networks that
operate on the same channel as the testing environment. As a result, devices from these
neighboring networks were also detected, leading to a larger pool of displayed devices that
were not part of the intended testing environment. The Figure 30 illustrates the different
WiFi networks discovered. As shown, multiple APs use channel one to communicate.

Figure 30 – Detected WiFi Networks with the Testing One Selected and Highlighted

Secondly, the other challenge encountered during the identification of WiFi devices
is the difficulty in determining the specific network to which the devices are connected.
Because we set up the testing environment we knew it in advance but in a real scenario,
the investigators wouldn’t know the arrangement of devices. To avoid missing a single
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transmitted frame, it is necessary to identify the channel on which the target network
operates. This is achieved by scanning the surrounding networks and retrieving their RSSI,
SSID, BSSID, and channel values. However, when multiple access points (APs) are present
in the vicinity, it becomes challenging to accurately determine the network to which the
devices of interest are connected. The similar RSSI values and similar SSIDs from different
APs can cause confusion and make it harder to isolate the desired network for further
analysis. To address this issue, a recommended solution is to physically move closer to
the WiFi router within the testing environment if it is possible to see it. Moving closer to
the router helps reduce signal interference from neighboring networks and improves the
accuracy of identifying the target network. By doing so, the software will update the RSSI
values of the different networks identified, and the network with the highest RSSI is more
likely to be the one to which the devices of interest are connected. This approach assumes
that the WiFi router can be easily located within the environment.

If the WiFi router is hidden or not easily identifiable, it poses a challenge for the
police investigator to select the correct channel for sniffing.

Despite these challenges, the WiFi part of the sniffing process successfully detected
a variety of devices, including the Smart Socket and the IP Camera. Even with a lot of
devices around, it was possible to find the ones that were inside the house. Most of the
other devices usually had their RSSIs very weak, going around -90 dBm, while inside the
house, the minimum was -70 dBm, and getting closer to the devices was at most -30 dBm.

The results from the WiFi sniffing highlight the need for careful consideration of
the testing environment, device density, and access point selection when conducting WiFi
sniffing. These factors play a significant role in identifying and monitoring WiFi devices,
and they should be taken into account to ensure accurate and reliable results.

BLE Devices Identification Results

During the identification of BLE devices in the testing environment, we observed
that the RSSI value of BLE devices experiences a higher level of degradation with distance
and obstacles compared to WiFi technology. This could indicate that the signal strength
of BLE devices weakens more rapidly as the distance between the BLE device and the
sniffer increases, or when obstacles such as walls are present in the signal path, which is
expected because the range for BLE is normally lower than for WiFi, especially with walls
in-between the device and the sniffer (ERIDANI; ROCHIM; CESARA, 2021).

The BLE sniffer autonomously scanned the environment for BLE signals and
displayed the results in the GUI. The GUI successfully displayed the Bose QC 35 headphones
along with their relevant information, allowing for their easy identification and localization.

The identification of BLE devices in the testing environment underscores the need
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for careful consideration of signal propagation characteristics when working with BLE
devices. It also demonstrates the effectiveness of the software in identifying BLE devices.

ZigBee Devices Identification Results

During the identification of ZigBee devices, the software successfully detected all
the ZigBee devices within the testing environment.

At first, the ZigBee sniffer employed a comprehensive scan across all available
channels to detect those that contain communicating ZigBee devices. This process took
approximately three minutes. Afterward, the sniffer was able to identify the home network
and detected all ZigBee devices along with the extended address, including those located
in the distant bedroom with multiple obstacles in between. This highlights the sniffer’s
capability to identify ZigBee devices even in challenging conditions. ZigBee didn’t suffer
from the same problems as WiFi because there were no other ZigBee networks around,
which made device identification easier.

6LoWPAN Devices Identification Results

In the process of identifying 6LoWPAN devices within the testing environment,
several key observations were made.

Given the absence of readily available devices capable of emitting 6LoWPAN frames,
the testing scenario necessitated the use of alternative devices, such as the Makerdiary
MDK nRF52840, capable of emulating 6LoWPAN communication. The sniffer successfully
detected the 6LoWPAN signals from the MDK device. This has shown some difficulty
because the signal from the emitter also experiences a lot of degradation with distance,
as shown in the results in I. However, it was successful. This validated the aspect of the
sniffer capturing the frames for protocols that use 6LoWPAN as a base, being useful in
real-world scenarios.

Similar to ZigBee, 6LoWPAN showcased resilience to interference from other
networks, as the testing environment did not contain competing 6LoWPAN signals.
However, it’s important to note that the detection and identification process for 6LoWPAN
devices might require a longer initialization time, given its channel access mechanisms
that are the same as ZigBee.

6.5 Limitations
RSSI Value

No particular physical parameter has a standardized relationship to the RSSI
reading. For instance, the IEEE 802.11 standard does not define a direct correlation
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between RSSI value and the power level, whether in milliwatts or decibels referenced to
one milliwatt (dBm). Each vendor and chipset manufacturer establishes their accuracy,
granularity, and range for the actual power measurement and the corresponding range of
RSSI values (from 0 to the highest RSSI value) (LUI et al., 2011).

Despite the lack of precise accuracy, RSSI remains a viable indicator for localization
purposes due to its widespread availability across wireless devices without requiring
additional hardware. While RSSI measurements may not always provide sufficient accuracy
to determine the precise location, they still serve as a practical and accessible means for
localization within wireless networks.

Channel Hopping

In the presence of multiple WiFi (resp. ZigBee and 6LoWPAN) networks and
when no specific network is selected, the period of switching between detected channels is
approximately 600 milliseconds (resp. approximately 25 seconds).

For WiFi sniffing, it is not a problem because WiFi devices frequently send infor-
mation and the switching a channel period is relatively short. In other words, if a device is
transmitting on a channel that is not currently sniffed, that is not a big problem because
it is very likely that this device will also transmit data later when the channel is sniffed.

For ZigBee and 6LoWPAN sniffing, this results in infrequent updates of information
from other devices, which hinders the accuracy of the locating process. Therefore, we
recommend selecting a specific channel and tracking the devices operating within it when
using the ZigBee sniffer and then selecting the other channel.

ZigBee and 6LoWPAN have this longer period for sniffing between changing
channels because the idea is to leave some time for the investigators to update the signal
strength of these devices before hopping to the next channel since ZigBee/6LoWPAN
messages are not as frequent as WiFi. This longer window in which a channel will be
sniffed helps with this, although it is still recommended to select a specific channel to
sniff on. And since it will only sniff the channels in which there is the presence of a data
flow, it is still efficient in detecting the devices. However, there is a tradeoff involved:
only one channel is updated during the approximately 25-second interval. Consequently, if
an investigator approaches a device not on the current channel, it will not be updated,
potentially causing the device to be missed. The duration of this period can be adjusted
within the code, as will be shown in Appendix A.

Another problem appears for the 6LoWPAN sniffing in this sense. Since this
protocol shares the sniffing device with ZigBee, and ZigBee has the channel selection
through the networks, when a ZigBee channel, different from the 6LoWPAN channels, is
selected, the 6LoWPAN sniffing will be interrupted.
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On the other side, networks from 6LoWPAN are not shown in the “ZigBee Networks”
window, for it to be considered a network, it’d have to have a source short-address of
0x0000, which is not known because 6LoWPAN is propagating with the source extended
address. Therefore, it is not possible to determine 6LoWPAN networks and to sniff only
their channels, if no ZigBee networks in those channels are present.

ZigBee and 6LoWPAN Network Discovery

During the ZigBee/6LoWPAN network discovery phase, if ZigBee/6LoWPAN
devices fail to communicate within the time frame during which a specific channel is being
listened to, that channel will be ignored afterward. In such cases, the program would need
to be restarted to ensure proper sniffing. To avoid this situation, the period for listening
to a specific channel is set to 10 seconds, which has been tested thoroughly and it was
concluded that it is enough time for data exchange in a ZigBee/6LoWPAN network, but
it can also be changed in the code, as shown in Appendix A.

6.6 Conclusion

The experiments conducted in this chapter provided valuable insights into the
effectiveness of our IoT device identification software in a real-world testing environment.
The testing scenario setup involved carefully selecting devices, strategically placing them
within the environment, and configuring the necessary parameters. The testing process
consisted of launching the GUI, going around the house, and checking the devices’ RSSI.
The obtained results highlighted the challenges and strengths associated with identifying
WiFi, BLE, ZigBee and 6LoWPAN devices.

Regarding WiFi device identification, one of the challenges observed was the
presence of neighboring networks using the same channel as the testing environment. This
resulted in the display of additional devices that were not part of the testing scenario.

For BLE devices, it was found that the RSSI values experienced greater degradation
with distance and obstacles compared to WiFi technology. Despite this, the software proved
effective in identifying the BLE devices present in the environment.

When it comes to ZigBee devices, everything worked as expected, but we can see
that channel hopping presented a challenge both during the discovery and sniffing phases.
If devices did not communicate within the listening timeframe, the corresponding channel
would not be sniffed unless the program was restarted. Additionally, sniffing multiple
channels without specifying a particular one led to infrequent updates and impacted the
accuracy of the locating process. Therefore, selecting a specific channel was recommended
for optimal ZigBee device identification.
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The same conclusions as ZigBee can be achieved for 6LoWPAN: while the tool is
very useful when the communication is more present, but when the signals are scarce, it
can sometimes not capture them and the investigators might not find them. There is also
the problem of not discovering the 6LoWPAN networks due to the addresses only being
propagated in the extended format.

While the experiments provided valuable insights, it is important to acknowledge
the limitations of the testing environment and methodology. Factors such as the physical
layout of the environment, signal interference, and variations in device performance may
have influenced the results.

To enhance the reliability and applicability of testing for the developed software,
several key considerations should be addressed. Firstly, optimizing the physical layout of the
testing environment to simulate more diverse real-world scenarios, including varied room
sizes and obstructive structures, is crucial. Controlled experiments involving known sources
of signal interference and a wider array of IoT devices would provide a more nuanced
evaluation of the tool’s resilience. Additionally, incorporating a diverse pool of random
individuals in testing, representative of potential end-users or investigators, is essential.
This approach allows for a comprehensive assessment of the software’s efficiency, user-
friendliness, and accessibility across different skill levels and backgrounds. By incorporating
these refinements, the aim is to fortify the reliability and practicality of the IoT device
identification GUI in a broad range of investigative contexts.

In conclusion, the experiments and results presented in this chapter demonstrate
the functionality and effectiveness of our IoT device identification software. The software
was proved capable of identifying WiFi, BLE, ZigBee, and 6LoWPAN devices, albeit with
some challenges specific to each technology.
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7 Conclusions and Final Considerations

In this final chapter, we will revisit the key aspects discussed throughout this work
and provide a summary of the main findings. We will also address the limitations of our
solution and propose avenues for future work in the field of IoT forensics.

7.1 Key Findings and Contribution

This work aimed to investigate the field of IoT forensics and develop a solution
to aid police investigators in handling IoT devices at crime scenes. Initially, the context,
objectives, and methodology of the work were introduced. Subsequently, a general overview
of the Internet of Things and IoT forensics was provided. The work was then divided
into two distinct parts: the first part explored and summarized the state-of-the-art in IoT
computer forensics, while the second part described the developed solution for identifying
IoT devices.

Chapter 3 delved into existing IoT forensics frameworks and procedures. A lack of
research in the field of IoT forensic investigations, particularly in smart home forensics, was
identified. Furthermore, the reviewed frameworks and procedures exhibited shortcomings
in their implementation and testing.

Chapter 4 examined the underlying challenges associated with IoT forensics and
brought a specification needed for a tool. Existing digital forensics tools were explored,
highlighting their relevance and limitations in the context of IoT forensics. The need
for specialized tools, standardized procedures, best practices, and enhanced training and
education was emphasized. It was also observed that most research advancements assume
direct access to IoT devices. However, identifying IoT devices at a crime scene has become
increasingly challenging.

Chapter 5 presented the design and implementation of an IoT Device Identification
Software that facilitates the identification of IoT devices utilizing WiFi, BLE, ZigBee, and
6LoWPAN protocols. Detailed descriptions and integration steps for each device type were
provided.

Finally, Chapter 6 described experiments conducted to evaluate the effectiveness
of the developed solution. The results demonstrated the successful identification of IoT
devices using the GUI.
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7.2 Limitations and Future Work
While our solution is promising in addressing the challenges of locating IoT devices,

it also has certain limitations that should be mentioned and that can be covered by future
works.

Active Devices

One limitation of our software is its focus on detecting active devices (devices
engaged in communication activities). Consequently, devices that have infrequent data
transmission patterns, such as a sensor that rarely sends data, may not be detected by our
software. This represents a gap in our current approach, as it overlooks a subset of IoT
devices that operate on sporadic data transmission schedules. To address this limitation,
future work should explore strategies to enhance our software’s capabilities and incorporate
mechanisms to identify such devices with minimal data activity. By doing so, we can
provide a more comprehensive solution that covers a wider range of IoT devices, regardless
of their communication frequency.

Limited Device Support

Our solution currently focuses on WiFi, BLE, ZigBee, and 6LoWPAN protocols.
Although they are widely used in the IoT field, some IoT devices use different protocols to
communicate. Future works can expand our software by adding new hardware capable of
sniffing other protocols and incorporating them into the software.

Integration with Forensic Tools

Our solution operates as a standalone software. Future work should explore the
integration of our solution with existing digital forensics tools to enhance the overall
investigative capabilities and streamline forensic investigations ensuring forensically sound
evidence management.

7.3 Final Comments
In the end, the findings from this work contribute to the overall understanding and

improvement of IoT forensics. We want to highlight the importance of continuous research
in the field of IoT forensics. As the IoT ecosystem continues to evolve, the capabilities of
forensic tools have to evolve as well to keep pace with the challenges that are emerging in
this aspect.

Lastly, the IoT device identification software we built for locating IoT devices at
crime scenes can be considered a significant advancement in the IoT forensic field. Further
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refinements and enhancements can be made to the software to improve its performance,
expand its device compatibility, and integrate it with other existing forensic tools. However,
the successful tests conducted to locate the devices demonstrate its practical applicability
and potential for IoT forensic investigations. It can also serve as a foundation for further
research in this field.

The journey does not end here but rather opens up new avenues for research and
innovation in the field of IoT forensics.
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APPENDIX A – GUI setup

This Appendix will verse about how to configure the GUI for the use of the
investigators. It is necessary to adapt the serial ports in which the devices are connected,
and if the investigators want, they can change the timing of both phases of ZigBee sniffing.

A.1 Configuration of Serial Ports

For both devices, it is first necessary to install the drivers of them. For the nRF
devices, it is only necessary to install the nRF Connect For Desktop software that the
drivers are installed. For the ESP32, the drivers are available at their website.

After correctly installing the drivers and programming the devices, it is necessary
to find out to what serial port the devices are connected. For this step, it is better to
connect one device at a time and execute the procedure that will be described, because
then it is possible to keep track of which device corresponds to the serial port. It is different
for Linux and for Windows.

A.1.1 Finding the Serial Port on Linux

1. Connect the device via USB. In this example, it will be demonstrated for the BLE
Sniffer.

2. Open a terminal window and insert the following command: ls /dev/tty*.

3. It is possible that lots of results appear. The port for the sniffer starts by /dev/ttyACM
or /dev/ttyUSB. This is represented in the figure below.

Figure 31 – Serial Ports on Linux.
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4. If there is more than one port with these values, unplug the device, and go back to
step 2. From this, eliminate the ports that are still open, and the value is the one
that is not present this second time.

5. Input the port on the respective field for this sniffer in the code on the file main.py,
as represented and highlighted in the next figure.

Figure 32 – Changing the code to adapt the serial port in Linux.

6. Repeat the entire process for the other pieces of hardware until the three sniffers are
correctly put into the code.

A.1.2 Finding the Serial Port on Windows

1. Connect the device via USB. In this example, it will be demonstrated for the BLE
Sniffer.

2. Search for the “Device Manager" in the search bar, and open it.

3. On this new window, look for the “Ports (COM & LPT)" tab and expand it. From
there, the nRF device will appear as USB Serial Device (COM*), and the ESP32
as Silicon Labs CP210x USB to UART Bridge (COM*), with * being a number.
The result is shown in the following figure:

Figure 33 – Serial Ports on Windows.

4. If there is more than one port with these values, unplug the device, and go back to
step 2. From this, eliminate the ports that are still open, and the value is the one
that is not present this second time.

5. Input the port on the respective field for this sniffer in the code on the file main.py,
as represented and highlighted in the next figure.

6. Repeat the entire process for the other pieces of hardware until the three sniffers are
correctly put into the code.
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Figure 34 – Changing the Code to Adapt the Serial port in Windows.

A.2 Timing for ZigBee Sniffer
For the ZigBee sniffer, it has been mentioned that the time periods for the Network

Discovery and for the Sniffing processes are able to be changeable according to the needs
of the investigators. To do this, the procedure is similar for both cases.

A.2.1 Changing the Timing for Network Discovery

1. Go to the ZigBee_Sniffer.py file.

2. Find the findChannels function.

3. Inside it, there is a while command with a value of 10 being added to the rightmost
operand. This value is the time that will be waited. This line is highlighted and
represented in the following figure:

Figure 35 – Line that should be changed to alter the Network Discovery time in each
channel.
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A.2.2 Changing the Timing for Sniffing

1. Go to the ZigBee_Sniffer.py file.

2. Find the sniff function.

3. Inside it, there is a while command with a call to a function that has two values, 20
and 30, being added to the rightmost operand. This function is to generate a random
time between those two values. To change the value, it is possible to change the
lower or the higher one, and this will change the window of random time that time
will be for each channel in the sniffing phase. This line is highlighted and represented
in the following figure:

Figure 36 – Line that should be changed to alter the Sniffing time in each channel.
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APPENDIX B – Heltec WiFi LoRa V2 WiFi
Sniffer Firmware
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APPENDIX C – Programming the nRF52840
Dongle

(SEMICONDUCTORS, 2022c)
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APPENDIX D – Programming the nRF BLE
Sniffer Firmware

(SEMICONDUCTORS, 2022a)

The third step is slightly different that the one depicted on the figure because
we added the firmware in the project directory. The firmware HEX file for the chip is
named sniffer_nrf52840dongle_ble.hex and is located inside the folder firmwares as
explained earlier in section 5.3.2.
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APPENDIX E – Programming the nRF IEEE
802.15.4 Sniffer Firmware

(SEMICONDUCTORS, 2022b)

The third step is slightly different than the one depicted in the figure because
we added the firmware in the project directory. The firmware HEX file for the chip is
named sniffer_nrf52840dongle_802154.hex and is located inside the folder firmwares
as explained earlier in section 5.3.2.
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APPENDIX F – Programming the
Makerdiary nRF52840 BLE Sniffer Firmware

(MAKERDIARY, 2022a)

Also in this case, the third step is slightly different than the one depicted in the
figure because we added the firmware in the project directory. The firmware UF2 file for
the chip has the same name and is located inside the folder firmwares as explained earlier
in section 5.3.2.
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APPENDIX G – Programming the
Makerdiary nRF52840 Thread Emitting

Firmware

(MAKERDIARY, 2022b)

For this device, it is necessary not only to upload the firmware but also to configure
the environment. To configure everything beforehand, MakerDiary has a guide which can
be followed1.

After setting everything up, you can follow the steps given to configure the CLI
firmware, which will emit the Thread frames, steps that are also shown above.

1 <https://wiki.makerdiary.com/nrf52840-mdk-usb-dongle/guides/ncs/setup/>

https://wiki.makerdiary.com/nrf52840-mdk-usb-dongle/guides/ncs/setup/
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APPENDIX H – Performed Tests

H.1 Initializing the Sniffer

The first screenshot of the testing process. It simply shows the GUI after around 10 seconds
of initialization.

H.2 Finding WiFi Router

The second screenshot shows that the router was found and the network was selected,
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alongside with the router antennas.

H.3 Finding Camera

This screenshot shows when the camera was found in the GUI and selected.

H.4 Seizing the Camera

This screenshot shows the GUI after seizing the Smart Camera.
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H.5 Finding the Smart Socket

Here, the Smart Socket has an increase in its RSSI, being selected and looked for. The
ZigBee scan has already finished as well and it starts showing

H.6 Seizing the Smart Socket

Now, the Smart Socket has been found and seized on the GUI.



136 APPENDIX H. Performed Tests

H.7 Finding the BLE Headphones

Now that all WiFi devices that appeared on the GUI with a considerably strong signal
have been seized (except for the router, to keep the system alive), we went to the BLE
process. The headphone has been selected because of the signal strength that it assumed.

H.8 Seizing the BLE Headphones

After locating the BLE Headphones, they have been seized.
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H.9 Selecting the ZigBee Network

Then, after attesting that no more BLE devices were in the scene, the ZigBee network has
been selected to analyze.

H.10 Finding Hub and Motion Sensor

The first devices that were located were the Hub and the Motion Sensor.
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H.11 Seizing the Motion Sensor

Since the Hub is necessary for the system, only the motion sensor was seized at this moment.

H.12 Finding the Multipurpose Sensor

Then, locating the rest of the devices began, starting with the multipurpose sensor. It was
selected and tracked.
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H.13 Seizing the Multipurpose Sensor

After finding it, it was seized.

H.14 Finding the Presence Sensor

Then, the presence sensor was selected and tracked.
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H.15 Seized Presence Sensor and back to Hub

It was seized and then we came back to the Hub to seize it as well.

H.16 Seizing the Hub

The Hub was then seized.
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H.17 Seizing the Router

And lastly, since there are no more devices connected, the router was seized. It was left
for last because it makes the connectivity between most of the devices, and turning it
off could cause the devices to stop emitting signals. This should be a step taken by the
investigators in a crime scene.
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APPENDIX I – Second Performed Test

The first screenshot shows when the device initially appeared, at a distance of around 8
meters.

The second screenshot shows an approach, now around 6 meters.
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The third screenshot shows a distance of around 3 meters, just by the (closed) door.

The fourth screenshot represents the user already inside the room, at around 1 meter from
the emitter.
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The last screenshot shows the sniffer just by the emitter.
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