Ryan Weege Achjian

Building a Database for Evaluating Smart

Contract Vulnerabilities Detection Tools

Sao Paulo, SP
2023

Ryan Weege Achjian

Building a Database for Evaluating Smart Contract

Vulnerabilities Detection Tools

Trabalho de conclusao de curso apresentado
ao Departamento de Engenharia de Com-
putagao e Sistemas Digitais da Escola Politéc-
nica da Universidade de Sao Paulo para
obtenc¢ao do Titulo de Engenheiro.

Universidade de Sao Paulo — USP
Escola Politécnica

Departamento de Engenharia de Computacao e Sistemas Digitais (PCS)

Supervisor: Prof. Dr. Marcos Anténio Simplicio Junior

Sao Paulo, SP
2023

Arquivo: Documento sem titulo 1 Paginaldel

Gerar a ficha catalogrédfica em https://www.poli.usp.br/bibliotecas/servicos/catalogacao-
na-publicacao

Salvar o pdf e incluir na monografia

Acknowledgements

I would like to thank Professor Marcus Antonio Simplicio Junior, for the guidance
and patience along the development of this work, as well as all the team of backdoors
detection and blockchain development of the Laboratério de Redes de Computadores
(LARC) of the Universidade de Sdo Paulo, for their support, constructive comments and

recommendations of recent works, trends and related topics.

Abstract

With the emergence of cryptocurrencies, transacting in a blockchain environment, such as
the Ethereum network, has become a common practice. As the volume of transactions
grows, new threats in the so-called smart contracts emerge continuously. Seeking to avoid
issues in the transactions, several detection tools have already been developed or are in
the process thereof. The intent of this work is to address the detection tool validation
process. To the best knowledge of the authors, so far there is no unified test database for
detection tools validation. The final result of this study will be the implementation of a
database that is as representative of the real world vulnerabilities present in the Ethereum

mainnet as possible.

Keywords: Blockchain, Security, Vulnerability, Solidity, Ethereum, Smart Contract

Resumo

Com o aparecimento das cripto-moedas, transagoes em ambientes de blockchain, como a rede
Ethereum, se tornaram uma pratica comum. Conforme o volume de transagoes cresce, novas
ameacas nos chamados contratos inteligentes emergem continuamente. Procurando evitar
problemas nas transagoes, uma série de ferramentas de de deteccao foram desenvolvidas
ao longo do tempo. Do conhecimento do autor, ainda nao existe uma base para validacao
de ferramentas de deteccao. O resultado final deste estudo visa implementar uma base
de dados que seja o mais representativa das vulnerabilidades presentes no mundo real na

rede Ethereum possivel.

Palavras-chave: Blockchain, Seguranca, Vulnerabilidade, Solidity, Ethereum, Contrato

Inteligente

List of Figures

Figure 1 — Results obtained in the [6] survey 18
Figure 2 — Results obtained in the [26] survey 19
Figure 3 — Selection of SC Applications to be Implemented 22
Figure 4 — Inclusion Framework for external Data Sets SCs 23
Figure 5 — Workflow o 24
Figure 6 — The three types of vulnerabilities, as specified in [12] 30
Figure 7 — Example of call to the unknown SC 31
Figure 8 — Example of gas costly pattern SC 32
Figure 9 — Example of gasless send SC 33
Figure 10 — Example of Hash Collision Sign Verification SC 34
Figure 11 — Example of Hash Collision Signing SC 35
Figure 12 — Example of Mishandled Exception SC 35
Figure 13 — Example of Overflow SC 36
Figure 14 — Example of Reentrancy SC. 37
Figure 15 — Example of Self-destruct Unprotected Call SC 39
Figure 16 — Example of Unprepared for Self-destruct SC 40
Figure 17 — Example tx.origin SC. oo 41
Figure 18 — Example tx.origin attack SC 41
Figure 19 — Example Weak Rand SC 42
Figure 20 — SCs Implementation Workflow 46
Figure 21 — JSON file configuration, 49
Figure 22 — Bash Code that Implements the Automation Module 50
Figure 23 — Example of Automatic Usage of the Database Using SmartCheck . . . 51
Figure 24 — Blockchain Hype in 2019 55
Figure 25 — Proposed Workflow for Vulnerability Detection Tool Validation 57
Figure 26 — Example of the RemixIDE developer interface 62
Figure 27 — RemixIDE Ethereum Execution Environments 63
Figure 28 — RemixIDE Supported Compiler Versions (Incomplete) Sample 64
Figure 29 — Example the Deployment of a SC in the Shanghai Test Environment . 65
Figure 30 — RemixIDE Connected to a Locally Genereted Ganache Testnet 65
Figure 31 — Example the Deployment of a SC in the Local Ganache Testnet 66
Figure 32 — Example of Locally Created Testnet Accounts 67

Figure 33 — Example of Blocks Generated by Interacting with the Ganache Testnet 68
Figure 34 — Example of Block Content in the Ganache Testnet 68
Figure 35 — Example of Transaction Content in the Ganache Testnet 69

List of Tables

Table 1 — Number of each Vulnerability in The Database by Source (Part 1
Table 2 — Number of each Vulnerability in The Database by Source (Part 1
Table 3 (Part 1
Table 4 Number of each Vulnerability in The Database by Source (Part 1

Number of each Vulnerability in The Database by Source

)
)
)
)

List of abbreviations and acronyms

SC Smart Contract

1.1
1.2
1.3
131
1.3.2
1.3.3
1.34
1.35
1.3.6

4.1
4.2
4.3

5.1
5.2
521
522
523
524
525
5.3
54

6.1
6.2
6.3

Contents

INTRODUCTION e e e e e e e e e e 11
Objectives L 11
Justification 12
Work Organization 13
Introduction L 13
Conceptual Aspects 13
Methodology 13
Requisites Specification L 14
Development 14
Final considerations 14
CONCEPTUAL ASPECTS i it e e e e e e i e e e 15
Stateof the Art 16
METHOD e e e e e e e e e 21
REQUISITES SPECIFICATIONS 24
Database Characteristics Specifications 24
Developed Smart Contract Specifications 25
Externally Sourced Smart Contracts Specifications 26
DEVELOPMENT e e e e e e e e 27
Technologies 27
Database Construction, 29
Lead Example 43
Variations Implementations 43
IA Assisted Implementation 45
Addition of Externally Implemented Smart Contracts 46
Database Smart Contracts Labeling 47
Automation Module Implementation 49
Tests and Evaluation, 51
FINAL CONSIDERATIONS i i et i e e 54
Conclusions 54
Contributions 56
Future Works 56

Bibliography o 58

ANNEX 61
ANNEX A - REMIXIDE INTERFACE AND CAPABILITIES 62

ANNEX B - GANACHE INTERFACE AND CAPABILITIES 67

11

1 Introduction

Starting in 2008 with Bitcoin, digital currencies have become a reality for many
businesses and common people around the world. With the decentralized network provided
by blockchain technologies anyone is empowered to transact in this digital world with
ease. One way to do that is through smart contracts [14]. Those are simply pieces of code,
like any other software, that seek to implement more complex financial functionalities
besides simple money transfer without the need of a trusted intermediary. There are
many programming languages that can be used to implement smart contracts, but the
most common language used in this environment is Solidity, which is an object oriented

programming language created by the Ethereum Foundation for their network.

With a growing number of everyday users, the safety of the smart contracts who
power these financial transactions has been a growing concern for users, companies and the
scientific community focused in information security. As the number of daily transactions
through smart contracts, as well as the volume of funds on them increases, malicious
pieces of code or bugs introduced during their development could mean a huge loss for
the parties involved. This has already happened before as can be seen by the examples

presented in the justification section.

1.1 Objectives

The main objective of this project is to provide the means to perform the vali-
dation of any future vulnerability detection tool. The focus in terms of validation is the
implementation of a database comprised of several examples of SC vulnerabilities together
with highly accurate labels for each vulnerability present in the SCs. The examples should
be short but representative of real life usages of SCs. That should enable the database to
measure a vulnerability detection tool detection capability in a simple environment, that
is, in examples without many dependencies and complex logic that often have low quality
labels. Such other examples of databases have already been presented in the scientific

literature.

A second objective for this project it will be to propose a validation method that is
more reliable than the methods in use today. In the context of this work and the problems
presented with detection tools validation "more reliable" means a validation framework
that can assert with more certainty the capabilities of the tool, that does not depend
of the given time the validation takes place (unlike the validations who extract a smart
contract database from the Ethereum mainnet, as was explained previously) and, therefor,

is able to compare the performance of the different vulnerability detection tools.

Chapter 1. Introduction 12

1.2 Justification

As previously presented, as the volume of transactions that take place in various
blockchain networks grow, notoriously Bitcoin and Ethereum networks, it is necessary
to be aware of the vulnerabilities that can be present in the smart contracts that make
this transactions possible. Focusing on the Ethereum network, numerous attacks involving
solidity code vulnerabilities have already taken place and resulted in voluminous losses in

funds for the parties involved. Some notorious examples are the following:

In 2016 a reentrancy attack in a crowdfunding SC that received the nickname
of "The DAQO" stole 3.6 million ethers, which, at the time, amounted to about US$50
million. This was one of the first large proportions attack in Ethereum and the first to
use the reentrancy technique. In 2022 hackers used a bridge (which is a way to connect
different blockchain networks together and make transfers of funds between them possible)
vulnerability to steal a sum that amounted more than US$320 million. This attack has
since received the name of Wormhole Attack. Recently, SC vulnerabilities that were not
noticed during the development of SC already deployed in the Ethereum mainnet have
been exploited as ransoms. The attackers identify a vulnerability in a complex SC powered
DApp and demand the owners a ransom ion order to disclosure the vulnerability, under the

treat of selling the vulnerability knowledge in the dark web or exploited the vulnerability.

With the examples presented and other attacks that happened in the ethereum
network over the years, the community have growing concerns with the vulnerabilities
that may be present in the smart contracts operating in the network and being developed.
Following this trend, many studies have already presented different kinds of detection tools
with the aim of finding possible vulnerabilities in a solidity code. Many of this initiatives
have supposedly achieved positive results and enabled smart contracts to be analyzed
during and after their development phase. The possibility of utilizing these tools have

improved the safety of transacting in the Ethereum network.

The development of vulnerabilities detection tools have been gaining steam since
2019. However, it have been noticed the absence of a robust and verifiable framework for
validating the detection tools that have been as much as those that are being developed.
Most of the validation of the detection tools have been based in using big unlabeled
databases extracted from the Ethereum mainnet itself based on an arbitrary start date (for
example, all the smart contracts deployed after January 1st of 2015). This database is then
scanned for vulnerabilities with the newly developed detection tool and the smart contracts
that are pointed as vulnerable are analyzed by undisclosed specialists who determine if

the supposed vulnerability pointed by the tool is, in fact, a vulnerability.

In the present situation it is extremely difficult to assert that the state of the

art vulnerability detection tools have a satisfactory detection capability. Besides that,

Chapter 1. Introduction 13

without an accurate validation framework it is almost impossible to determine if the newly
developed tools are in fact contributing with the improvement of the state of the art
capabilities. This statement is also corroborated in the scientific literature, as is presented

in chapter 2.

1.3 Work Organization

This work is organized in the following chapters:

1.3.1 Introduction

The 1 chapter presents an introduction to the detailed development of the henceforth
work. It is comprised of a thorough contextualization of this work and where in the scientific
development it fits as well as a justification of why the development and the results presented
are important to the development of the current state of the art and to the scientific and

developer communities.

1.3.2 Conceptual Aspects

The 2 chapter, the theoretical aspects that underlined all the development of
this work will be presented. Those aspects include technical definitions and conventions
that are of utmost importance to understand the development that will be presented.
Besides that, this chapter presented the current state of the art regarding the current
vulnerability detection tools validation capabilities. This is achieved by the presentation
of a comprehensive review of the scientific literature that was undertaken prior and during

the development of this work.

1.3.3 Methodology

The 3 chapter presets the methods that were utilized during the development of this
work in order to obtain a logic conclusions. Besides that, the methodology also explains
how the author conducted the work in terms of the choices that presented themselves
during the development of this work in order to achieve coherent results. Lastly, the
method presented makes it possible to anyone with the basic knowledge of programming
language, blockchain and SCs to be able to reproduce the results of this work. It is
important to notice, nevertheless, that the reproduction of this work would hardly result
in an identical database as the one presented in this work. However, every database that
were to be constructed following the methodology and steps presented would ensure that
this other database has the same characteristics as the one presented in this work, as well

as permitting the developer to reach the same conclusions.

Chapter 1. Introduction 14

1.3.4 Requisites Specification

The 4 chapter presents the the guidelines that oriented the development of this
work. Those guidelines include the aspects that were deemed indispensable to the developed
database in order to consider it a worthy contribution to the scientific understanding of
the are were this work is situated. That is, the criteria considered to consider this works
development success. This specifications include quantitative and qualitative parameters

for the developed database as well as the automation module.

1.3.5 Development

The 5 chapter begins by providing an overview of the technologies that were selected
for the development of this work. Those technologies are explained and their selection
is justified. Besides that, this chapter aims to provide a detailed explanation of all the
steps that were taken during the development of this work. This explanation includes a
thorough description of each of those steps as well as a justification of why it was taken.

Furthermore, all the projects decisions are explained in this chapter.

Chapter 5 also presents an overview of the characteristics of the constructed
database, such as directories, file contents, vulnerabilities examples and explanations and
output examples. In addition to that, the interaction with the database is explained and
exemplified. This ensures that the reader can make sense of what have been developed
and can readily use the database to its full potential, as well as modify it as he or she

deems relevant.

1.3.6 Final considerations

The 6 aims to summarize which goals was achieved under the development of this
work as well as formalize and specify the proposal of which the constructed database takes
part. Besides that, the main challenges encountered by the author during the development
are also presented and explained. Lastly, the scientific contributions achieved by this work
are highlighted and a list of future works that are made possible after the development of

this work is presented.

15

2 Conceptual Aspects

To the development of this work a great number of technical concepts needed to

be taken into account.

One of them is the definition of review coverage, that is, how to determine that
the literature review undertook was enough to cover the most important vulnerabilities

already encountered and compiled.

To deal with that situation, it was considered that the reviews already presented in
the literature ware representative, or at least partially representative, of the current state
of the academic knowledge of the smart contract vulnerabilities. Therefor, the review was
first comprised of different reviews that ware analyzed and compiled into a single list of
know vulnerabilities. After that, other recent attacks that ware still not contemplated into

these works ware also added to the list.

The other important challenge in terms of definitions is related to vulnerability
variation, that is, the different ways to implement the same vulnerability and how to assert
that most of them ware taken into account during the development. This definition is a
real challenge in terms of every computational scientific work that requires a great number
of code variations. That is because there is no concrete definition of variation in this scope.

Therefor, the project followed the following metrics:

First, the possible implementation variations ware separated into two groups: those
who interfere directly with the modus operandi of the vulnerabilities and those who don’t.
After that, other vulnerabilities databases in other scopes ware analyses in order to assert
how many examples each of them presented. This analysis resulted in the number of 10
different implementations of each vulnerability. Lastly, every group of 10 implementations
ware separated in a way that resulted in 6 implementations ware of the first group (present
some kind of modus operandi interference) and 4 ware of the second group (do not present

any kind of modus operandi interference).

With a vulnerability corpus implementation concepts well defined, the next im-
portant aspect to define is the selection of detection tools for test. In order to do that,
the main point considered was the detection tool references among the literature and in
other development medias, such as citations of the tool in github and other developer
communities. This approach considers that, the more a tool is referenced, the more impact
it’s development had and still have in the community. This is a strong indicator that
the tool is widely utilized. Therefor, the characterization of this tools in terms of its

performance as defined in this work will be more relevant.

Chapter 2. Conceptual Aspects 16

With the definitions presented it is possible to search in the scientific literature for

relevant works. This step is of extreme importance and its results are presented below:

2.1 State of the Art

The Ethereum block-chain network is one of the most widely used to this date. The
safety of the smart contracts who power the transactions in this network have prompted
many groups across the world do work in developing tools to identify possible vulnerabilities
in the smart contracts codes. This concerns can be verified by the numerous review works
about smart contract vulnerabilities, noticeably in the Ethereum network, and vulnerability
detection tools that have been published since 2019 [12] [11]. At first the validation of the

first generations of detection tools was done in an ad-hoc manner.

The authors of [25], [5], [15], [21] and [20] validated their respective vulnerability
detection tools by extracting a large amount of smart contracts directly from the Ethereum
mainnet. The database was then inspected by the newly developed detection tool and the
results ware then analysed. The analysis on the results obtained for each group vary, but

can be roughly classified as one of the two alternatives listed below:

1. The extracted database was also inspected by one or more other detection tools
already presented and supposedly verified in the scientific literature. The analyses
then consisted in comparing the results obtained by this inspection with the one
obtained by the newly developed tool, much like as if the legacy tool was a benchmark.
The focus in this validation approach was to identify if the new tool could detect
those vulnerabilities pointed by the legacy tool and verify among the smart contracts
deemed vulnerable by the new tool if they represent a real vulnerability that the

legacy tool was unable to detect.

2. The extracted database, or more often the contracts deemed vulnerable by the
newly developed detection tool, was then send to specialists in block chain security
for a manual verification and a comparison of the new tool inspection with the
specialists analysis. Note that, in this approach, the results obtained by the new tool
are validated in the same "benchmark like" way as in the previous alternative. The
difference between those validation methods is what is considered the benchmark
itself.

Following this early validation approaches, a widely cited work recognized by
performing a reliable validation test compared with the other contemporary works, was [7].
In the validation process for this vulnerability detection tool the authors noted that most

of the smart contracts deployed in the Ethereum mainnet were simple contracts, probably

Chapter 2. Conceptual Aspects 17

implemented for test reasons. The authors argued that allowing the validation database
to contain multiple simple test smart contracts that are not specially implemented for
validation reasons could result in a biased analyses were the newly developed vulnerability
detection tool is able to detect various "naive" vulnerabilities that resulted from the test
nature of this contracts. This could result in a false assertion that the detection tool have
a high accuracy even if it fails to detect more complex vulnerabilities that really represent

a threat to real world services or are maliciously introduced into the smart contract code.

In order to avoid this kind of unreliable analyses when performing the validation of
vulnerability detection tools, the authors proposed to simple filter the obtained database
by the number of transactions. The reason for this approach is based in the fact that test
contract have arguably way less transactions then a real world service. All contracts with
to few transactions would be excluded from the test database. The result was a 1000 smart
contracts database that was arguably free from too simplistic test smart contracts and

could provide a better test environment for the newly developed detection tool.

As new vulnerability detection tools in Ethereum smart contracts were developed,
some researchers deemed necessary to do review works on these tools to compare the
accuracy and detection capabilities of each one of them. On of the most cited of these
review works was [6]. In this review the authors pointed that, in order to perform a
reliable and fair comparison among vulnerability detection tools, one must test this tools
in the same conditions, which includes a same database. The authors then proceeded in
their analyses by testing the selected tools in two groups of smart contract: a database
comprised of a large amount of unlabeled smart contract extracted directly from the

Ethereum mainnet and a small database of labeled smart contracts.

The authors noted the absence of a labeled database with vulnerable smart contracts
for vulnerability detection tools validation that they could use as the small labeled database.
Pointing that this represents a major setback for the detection tools comparison processes,
the authors compiled a group of 69 smart contracts, from several sources, that were
examples of know vulnerabilities. While not ideal, this approach was deemed acceptable
by the authors, who urged the community to address the lack of a reliable validation and

comparison labeled smart contract database.

As the survey results, the [6] work noted a sharp difference from each of the
vulnerability detection tools measured accuracy and the accuracy presented in the papers
that presents each of the studied vulnerability detection tools. Figure 1 presents the
obtained results. The best performing vulnerability detection tools, which was Mythril [4],
could detect only 27% of the labeled vulnerabilities and detected 215 vulnerabilities in
the unlabeled database. It is important to notice that a vulnerability detection tool could
be developed specifically for a group of vulnerabilities. Considering that, a low detection

accuracy in a comprehensive survey such as that its not enough to question the current

Chapter 2. Conceptual Aspects 18

state of the art of the SC vulnerability detection tools. However, considering the output of
all the tools, only 42% of the the labeled database were correctly labeled. This fact points

to a gap in the current vulnerability detection capabilities.

Table 5: Vulnerabilities identified per category by each tool. The number of vulnerabilities identified by a single tool is shown
in brackets.

Category HoneyBadger Maian Manticore Mythril Qsiris Oyente Securify Slither Smartcheck Total
Access Control 0/190% 0/19 0% 4/19 21% 4/19 21% 0/19 0% 0/19 0% 0/19 0% 4/19 21% (1) 2/19 11% 5/19 26%
Arithmetic 0/220% 0/22 0% 4/22 18% 15/22 68% 11/22 50% (2) 12/22 55% (2) 0/22 0% 0/22 0% 1/225% 19/22 86%
Denial Service 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/ 70%
Front Running 0/7 0% 0/7 0% 0/7 0% 217 29% 0/7 0% 0/7 0% 2/7 29% o7 0% 0/7 0% 217 29%
Reentrancy 0/8 0% 0/8 0% 2/8 25% 5/8 62% 5/8 62% 5/8 62% 5/8 62% 7/8 88% (2) 5/8 62% 7/ 8 88%
Time Manipulation 0/5 0% 0/5 0% 1/5 20% 0/50% 0/5 0% 0/5 0% 0/50% 2/540% (1) 1/520% (1) 3/ 560%
Unchecked Low Calls 0/120% 0/120% 2/1217% 5/1242%(1) 0/12 0% 0/120% 3/1225% 4/1233%(3) 4/1233%(1) 9/1275%
Other 2/367% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/30% 3/3100% (1) 0/3 0% 3/3100%
Total 2/115 2% 0/115 0% 13/11511% 31/11527% 16/115 14% 17/115 15% 10/1159% 20/115 17% 13/115 11% 48/115 42%

Table 6: Total number of detected vulnerabilities by each tool, including vulnerabilities not tagged in the dataset.

Category HoneyBadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total
Access Control 0 101 280 241 0 0 6l 200 3 911
Arithmetic 0 0 11 921 62l 69l 0 0 231 2571
Denial of Service 0 0 0 0 278 11 0 21 190 591
Front Running 0 0 0 211 0 0 551 0 0 761
Reentrancy 0 0 4 161 51 51 3z0 151 71 841
Time Manipulation 0 0 41 0 41 50 0 51 21 20
Unchecked Low Level Calls 0 0 4 300 0 0 211 131 141 821
Unknown Unknowns 51 2 251 321 0 0 0 281 8l 1001
Total 5 12 761 2151 9sl g0l 1141 831 761 769

Figure 1 — Results obtained in the [6] survey

As Mythril is developed by an audition company, ConsenSys, and maintained
by the community, there is no scientific paper describing its development and tests. As
an example of the disparity between the vulnerability detection tools in their tests and
the results obtained in [6], the second best performing tool can be considered, which is
Slither [7]. This vulnerability detection tool correctly detected only 17% of all the labeled

vulnerabilities.

In [8] the authors created an API that enables developers to easily reproduce the
methodology presented in [6] by providing the database used in a user-friendly platform.
The authors also upgraded the labeled database to encompass 143 labeled SCs presenting
the same 10 vulnerabilities. The presented framework also can automatically test new
vulnerability detection tools and compare them to the ones that were test in the [6] review.
To the knowledge of the author, this is the only platform of its kind presented to the

developer community to this day.

Following [6] work, the authors of [26] conducted another review in the current
state of the art vulnerability detection tools capabilities together with the proposal of a
novel SC bugs and vulnerabilities classification. The database compiled to test the selected
detection tools was made of one example of SC with each vulnerability, one without and,
in some cases, misleading scenarios were the tool could easily misinterpret a certain piece

of code. The results obtained were somehow better that the ones presented by [6], but still

Chapter 2. Conceptual Aspects 19

were less promising than the ones presented by most of the detection tools presentation

validation tests.

100

50
90 84
§ Pl
B0
0 67 AT
/ g
&0 56 55 -
50 4 -1 ol
] 33
%0 25 72
20 - 12 - 10
10 0o ICI] oo
g N n
\y >] & J 5 T & L
A g & o i G g &= P
e = s 2 -3 o .5 £ .3
= L o ot o o & N &

Pl I_F}

B Covarage Prea=on W Recll

Figure 2 — Results obtained in the [26] survey

In order to obtain a labeled database of vulnerable smart contracts, the authors
of [24] presented the following approach: first, a large amount of smart contracts were
extracted by from the Ethereum mainnet. The authors then selected a group of five
vulnerability detection tool that was deemed reliable and inspected the extracted database
with the tools. To determine if a certain smart contract should be labeled as vulnerable ad
which vulnerability should be attributed to it the authors performed a majority vote from
the five detection tools. One of the challenges noted by the authors was the incompatibility
among vulnerability detection tools which makes it difficult to execute them in parallel.
To tackle this problem the authors implemented a docker container containing all the
tools and their respective dependencies. The authors did not perform a survey of relevant

detection tools using their data set but pointed to doing it in a future work.

The authors of [27] constructed a public labeled following a similar approach.
First, they collected a wide array of safety reports by various consulting groups, most
notably ConsenSys, a widely recognized block chain company that also works with smart
contract security. Most of the collected reports were of complex DApps owned by various
individuals and institutions. The authors then have put together a large group of block
chain specialists and students of the CHINA university block chain lab to analyse both,
the reports and their respective DApp smart contracts. This work resulted in a 1600 plus
DApps database comprised of more than 23000 labeled smart contracts.

Chapter 2. Conceptual Aspects 20

Unlike the previously cited work, the authors of this paper noted that, as complex
decentralized applications, most of the smart contracts of a same DApp, have a high degree
of dependence among themselves. This issue posses a challenge for vulnerability detection
tools validation and comparison because every detection tool deals with dependencies in a
unique way. To overcome this difficulty the authors came up with an ingenious solution:
they created a dependency resolution tool that resolves the dependencies of a group of

smart contracts before the vulnerability detection tool get to analyse them.

The authors used the constructed DApps database together with their newly
developed dependencies resolution tool to perform a survey of some of the most cited
vulnerability detection tools in the scientific literature. During the comparison of the
chosen detection tools capabilities, the authors noted that most of them were not able to
analyse most of the smart contracts in the database. The most successful tool in just being
able to analyse a certain contract was able to inspect just above 8000 of the 23000 smart
contracts, which corresponds to less than 35% of the database. This result prompted the
authors to raise concerns about the quality of the current state of the art vulnerability
detection tools. This 2023 work corroborated the concerns pointed out by [6], that most of

the state of the art vulnerability detection capabilities may be severely overstated.

However, considering the labeling of a large SC database, the authors of [13] were
the first to cite, in the work itself, the challenges posed by manually a posteriori labeling of
a large SC database. In their work, they selected a group of 250 test SCs with vulnerabilities
for the task of validating their newly developed vulnerability detection tool from a group of
already filtered 5700 SCs. The authors explain that it took the work of 11 SC vulnerability
experts more than 440 hours of work to label all the 5700 SC. This corresponds to roughly
three months work, considering a workload of 8 hours per day, 20 days per month. Note

that, in the case presented at [13] work, each SC were labeled in just above one hour.

Unlike the two previous works, the authors in [9] proposed a vulnerability detection
tool validation framework based in a vulnerability insertion tool. The logic behind this
approach is that it is unreasonable to construct a large labeled vulnerabilities in a reliable
way. Therefor, the solution presented by this group was to collect a large group of smart
contracts and perform vulnerabilities insertions using their newly developed tool. The
inserted vulnerabilities consisted of "code snipets", which are small pieces of code that
implement a certain vulnerability in a generic way. The insertion tool would then insert this
code snipets in a location that it deemed fit. The vulnerabilities inserted would be labeled

in the process of insertion and the validation would only consider inserted vulnerabilities.

21

3 Method

To construct a SC vulnerability database that possess all the characteristics de-
scribed in the 4 chapter, the methodology adopted to guide the development of this work

was as follows:

First, the current vulnerability detection tool validation, testing and comparison
were surveyed. The selected papers were mostly detection tool presentations and surveys.
In the survey, the focus was on the methodology regarding the testing of the tool(s) phase.
The most cited of the reviewed papers were selected as the source of the proposed test
framework method, which ended being the implementation of a vulnerability database
that comprised of simple, representative and accurately labeled SCs to be used together
with another much larger unlabeled database, as explained in the contributions section of

chapter 6.

In order select the vulnerabilities that would be considered for addition in the
database, a survey of the scientific literature were conducted in order to identify the most
commonly cited vulnerabilities. Those that were most frequently cited in the selected
papers were chosen. Besides that, all the chosen vulnerabilities were certified to be included
in the Smart Contract Weakness Classification Repository [19], updated to [1]. It is
important to notice that the selected nomenclature did not follow the cited sources, but it

was certified that the vulnerability represented an entry or sub-entry of this classification.

To obtain a representative database, that is, a database that represents real usages
of SCs, it was decided that all the developed SCs (except for one of each) would implement a
real functionality. To determine which were the affected applications for every vulnerability,
an Al tool was used. The results presented by the AI tool were then searched using
Google search engine in order to identify if the results were trustworthy. If the the search
resulted in many forums, technical sites, such Wired and Medium, blogs, scientific works
(particularly [14])) and other media corroborating and commenting into the application,

the AI output was considered accurate.

First, every considered vulnerability was studied and understood in order to
determine which kinds of applications would be threatened by it. Then, some applications
were randomly selected to be implemented with the vulnerability. The final developed
SC was completely functional in terms of the selected application since the applications

usability was also considered during the tests.

To keep the SCs developed different to one another in terms of how the vulnerability
presets itself, the development of the database followed an approach that guaranteed three

main implementation sources, the author, a generative Al and third party developers.

Chapter 3. Method 22

Applications Selection and Applications Random Selection
Validation for each Vulnerability and Implementation

—»“—»F
¢
&)

5

éoa Oy O oo]

1
1

<

1

(&] =
-

Figure 3 — Selection of SC Applications to be Implemented

Three SCs, on average, were manually implemented; another two SCs, on average, were
implemented using a generative Al tool combined with a manual revision phase; other
databases that presented similar characteristics to the developed work were also added.
This step considered that each implementation method would results in, at least, small
differences n the way a certain functionality was developed, much like the difference

between human developer’s codes.

Under the addition of SCs from other databases, only databases that were presented
in the scientific literature were considered, except in the case of those sourced at ConsenSys.
ConsenSys is a company that performs the audit of SCs and is regarded as a reference for
smart contract vulnerability classification and detection. The inclusion criteria for SCs
from external databases were that the vulnerability were clearly labeled and explained and
that the SC were considered simple enough to be comparable to those developed. That is,
their has less then 300 lines of code. The SCs that were not added the database were also

compiled, but were not included in the database.

Chapter 3. Method 23

External Database

)

—x —x
Designated One of the Selected
_— et Characteristics? Vulnerahilities
—x —x — o I o |
— — —_— I Yes Yes
— % —x No No Inclusion on the
database
—x — X
Compiled Included as “others”

Figure 4 — Inclusion Framework for external Data Sets SCs

24

4 Requisites Specifications

The developed work aimed to implement a database similar to the labeled database

presented in [6]. In order to achiever that, the developed database were specified as follows:

4.1 Database Characteristics Specifications

The proposed database will be used for validating and testing the capabilities of
vulnerability detection tools. To achieve that the developed database should follow a series
of specifications that will ensure that the results of its usage are accurate and reliable.
First, the usage workflow of the database would be as follows: First, the user should
provide the way for the database to call the selected vulnerability detection tool. Then
the selected tool should be executed in all of the SCs in the database and the outputs

consolidated in the selected directory. This workflow is also presented in figure 5.

Q

Figure 5 — Workflow

The developed database should also be able to be utilized autonomously. It is
unreasonable to offer a database with dozens of SCs without offering the user the ability
to run a certain vulnerability detection tool in all of the database automatically. The
autonomous usage of the database should also be simple and transparent. That is, its

usage should require only one simple interaction from the end user, such as the need to

Chapter 4. Requisites Specifications 25

write just a command line, and the module should transparently inform the user of each

steps it is performing.

Another important aspect that need to be taken into account is the compatibility
of the database with the different detection tools. Some of them analyze only solidity
code, other analyze byte code as well. Therefor the database ware implemented in solidity
only and utilized the latest solidity version available to avoid any kind of incompatibility
during the analysis. Besides that, the presented automation technique using a simple bash
file following the vulnerability detection tool command enables a standardized execution

mechanism.

Lastly, any user should be able to add its own SCs to the database without having
to modify the automation module. That is achieved by setting the bash script to run the
detection tool in all the files inside the Base directory. That enables the user to add any
number of SCs to the database and even add new types of vulnerabilities by adding new
folders. The project will be made open source in a convenient future date and will enable

any user to contribute to the database or modify it for its personal usage.

4.2 Developed Smart Contract Specifications

The main characteristic regarding the labeled database presented in [6] is that its
SCs were simple and accurately labeled. In order to implement a database that had this
same characteristics it was decided that the SCs would have a maximum of 300 lines of
code, ideally averaging 100 lines per contract. To obtain a high accuracy in the labels
in the SCs in the database the vulnerability that the implemented SC would have was
decided a priori, that is, before the implementation started. This step, together with test
focusing in verifying the vulnerability exploitability, ensured that the vulnerability was

present, functional and correctly labeled.

Another important aspect specified for the developed of the database is that all
the SCs should be representative of the real life use cases of SCs in the Ethereum network.
That is, all of the SCs in the database should represent an usual application presented
in the Ethereum mainnet, such as fungible and unfungible tokens marketplace, ethers
wallet, lottery, loan, SC based investments and others. However, each of the vulnerabilities
selected would also include a SC that only implements the vulnerability itself. The reason
for that is to have a basic example of each of the vulnerabilities and to serve a as base for
the other SCs implementations. Besides the SC application being representative of real
life usages of SCs, the vulnerabilities should also be considered relevant to the scientific

and developer communities.

Chapter 4. Requisites Specifications 26

4.3 Externally Sourced Smart Contracts Specifications

As presented in the state of the art review (in chapter 2), small and incomplete
databases of SCs labeled vulnerabilities examples have already been compilated in the
scientific literature, particularly the 69 SC database compiled in [6]. Those examples
SCs have the setback of being mostly simple examples, with many of them presenting a
SC that implements only the vulnerability, without any other kind of application. This
characterized this SCs as not representative of real life applications of SCs in the Ethereum
network. However, their addition to the developed database could potentially enrich it by
adding SCs implemented by third parties. This is positive because since every developer
has its own unique way of writing code, some variations could arouse in the vulnerability

implementation.

Besides that, some vulnerability detection tools offer a similar database of simple,
example-like SCs that implement vulnerabilities. The reasons for those SCs is to offer the
tool user a simple data set to observe the tool detection capabilities and to understand
the vulnerabilities that the detection tool aims to detect. This SCs also can represent a
positive impact in the developed database for the same reasons cited above. It is important
to notice that many of this simple data sets were poorly documented. Many of them are
labeled as containing a certain vulnerability, but does not specifies were it is located into
the code.

27

5 Development

This section aims to provide a detailed explanation of the steps taken during the
development of this work. The utilized technologies will be presented together with a
justification for its usage. In addition to that, a timeline of activities will be presented.
Note that this timeline is a portion of the complete activities that will be undertaken by

the author in his master, which will be a continuation of this work.

5.1 Technologies

The development of this complex work requested a wide range of technologies.
Those tools enabled the implementation of the project, as well as the tests and evaluation

of the constructed database and other sub-systems that comprise the entire framework.

There are many different tools that enable a developer to implement and test smart
contracts for the Ethereum network. Most of this tools offer a text editor configured to
highlight the reserved words o the Solidity code. The chosen implementation environment
for the development of the smart contracts that comprise of the presented database was
the Remix IDE. This tool offers many advantages over simple Solidity text editors. Those

are (see more in the Annex A):

1. Access: The Remix IDE [18] offers the ability to develop smart contracts online in
a common web browser, such as Firefox or Chrome. The online environment offers
a default cloud workspace directory for the user with no login required. The user
can also create as many workspaces as he or she wants. But the most advantageous
characteristic of the Remix IDE is the ability to connect and modify local files using

a sub tool called Remixd.

2. Capabilities: The Remix IDE is a playground for smart contract implementations
that offer way more than just a simple text editor for the Solidity programming
language. The code is also analysed by Slither, a widely recognised vulnerability
detection tool and the results are highlighted in the smart contract code. This
capability was really useful in the implementation of the faulty smart contracts of
the database and offered an early insight in the ability of this specific detection
tool capability. Another capability of this tool that was imperative in the choice of
using it is that it offer a wide array of compiler versions and a Ethereum blockchain
test-net with a standard of 10 accounts. In the test-net the user can deploy his or
hers developed smart contracts and perform transactions in order to test it. This

built-in capability enabled the author of this work to easily test the developed smart

Chapter 5. Development 28

contracts along all the development. Besides this default test-net, it is possible to

connect the Remix IDE with various blockchain test-nets effortlessly.

3. Usability: The Remix IDE has an intuitive interface that presents all its capabilities
in an easy an orderly matter. This aspect is important because it enabled a smooth
learning curve of its usage and minimized the time necessary to learn how to operate
it.

Remix IDE offered the ability to develop and test smart contracts. But the default
blockchain test-net offered built-in in this tool does not enable the user to see the operations
undertaken in the blockchain level by the network. In order to be able to execute the
smart contracts in a blockchain test-net with all the operation information Ganache [3]
was used. This tool make it possible to create a local, custom blockchain transparent to
the user, that is, informations such as blocks information, mining information, individual
transaction information, errors logs, etc. One limitation of Ganache is that, at the time of

the development of this work, Ganache only accepts opcodes up to Solidity version 0.8.19.

This tools was useful for more in depth tests (see more in Annex B) in the
developed smart contracts. It is important to notice that not all of the smart contracts
implemented were tested in Ganache. The simple ones, such as the lead example of each
of the vulnerabilities, did not require this amount of information an the tests performed in

the Remix IDE were satisfactory enough.

The specifications of the project include a module that enables the user of the
database to execute his or her newly developed vulnerability detection tool in all the
database entries and compile the results in a specific directory chosen by the user. This
simple functionality was developed as a simple bash script. The development of this script
used the Notepad++ [10] text editor. This software offers a wide range of options for code
highlighting, which makes it easier to develop simple codes without the need of a full suite,
such as Visual Studio, or an advanced text editor, such as Visual Studio Code. No extra

package was used in Notepad+-+.

Lastly, an IA tool was chosen for the fast implementation of smart contracts with
minimized bias. The tool chosen for that was the GPT based chatGPT [17]. The selection
of this tool was based in the recent reviews of this newly developed AI tool and its focus
in code generation. It is important to notice that the author of this work is well aware of
the limitations of this kind of technology and thoroughly tested all the functionalities in
the smart contracts developed by chatGPT in order to assert that the code was developed

correctly. The author also analysed the output code for vulnerabilities.

An important aspect of the tools presented is that all of them are free. This aspect

was really important in order to avoid unnecessary costs in the development of this work.

Chapter 5. Development 29

Besides that,avoiding proprietary software and tools make it easier to reproduce the this

work.

5.2 Database Construction

The first step in building the vulnerability database was to perform an in depth
review of the types of vulnerabilities already know to the scientific and developer com-
munities. As a scientific work, the performed survey focused in scientific papers. First,
the string solidity AND smart contract AND (vulnerability OR vulnerabilities OR bug
OR bugs) AND (survey OR review) were used in Google Scholar and Semantic Scholar
scientific search engines. The results were then narrowed down by eliminating non-survey
papers and by reading the remaining works abstracts. The selected works comprise the

survey papers pointed out in the references of this work.

After selecting and exterminating the survey papers, roughly three kinds of vul-
nerabilities were identified in the Ethereum blockchain environment [12] [28] [11]. Those

were:

1. Solidity language related issues: Those vulnerabilities arouse from the solidity
language itself, which is the programming language used to implement SCs in the
Ethereum network. This kinds of vulnerability include arithmetic bugs, gas related

issues inter-contractual calls and other logic bugs.

2. Ethereum VM related issues: Those vulnerabilities are closely related to the way
the Ethereum Virtual Machine operates. Those include the immutable characteristic
of the Ethereum blockchain (note that not all blockchain are inherently immutable.
Even the Ethereum network has already implemented the reversion of several blocks
due to "theDAO" attack back in 2016 [23] [2]) and issues related to Ethers lost during

a transfer.

3. Ethereum Blockchain Design related issues: Those vulnerabilities are related
to the mining policy adopted in the Ethereum network and the block related
variables that are available to the SCs. Besides that, this kind of vulnerabilities also
include possible external data feeds that could be harmful to the smart contract
correct execution. Examples of this vulnerability category are block timestamp and

transaction ordering dependency and untrustworthy external oracles.

The sub-types of vulnerabilities presented in the figure above were not considered

for the selection of vulnerabilities.

The vulnerability types selected from the three presented vulnerability kinds was

the Solidity language related issues and some of the Ethereum blockchain design related

Chapter 5. Development

Root Cause Sub-Cause
A N
r ar
[Uncontrolled Resource Consumption
External Dependence
Malleable Entropy Sources
Insufficient Authorization
Solidity Improper Validation
Programming % Improper Exception Handling
Language | Useless and Repeated Code
Fallback Function Invocation
Variable Sized Parameter
Gas Limit Constraints
L mproper Access Control
Eths;'::l:} Immutability
Machine Missing Orphan Proof
Malleable Miner
BE::;ﬁgm Transactional Privacy
Design Malleable User

Untrustworthy Data Feeds

Figure 6 — The three types of vulnerabilities, as specified in [12]

issues. This choice is due to the close relationship that this kind of vulnerability has with
the implemented SC code. Ethereum blockchain design related issues have, in most cases,
some aspect that manifests itself in the SC code. The Ethereum VM issues were not
considered since this kind of vulnerability can hardly be detected in a SC code and mostly

occurs due to the Ethereum VM specificities during a transaction.

With the selection of which kind of vulnerabilities would be considered, the selection
of which vulnerabilities would be included took place. This task were achieved by identifying
vulnerabilities how were present in more then two thirds of the revised survey papers
with a cap of 10 vulnerabilities. This cap aimed to guarantee that the development of the
database would be smoothly and with the vulnerabilities examples would have the desired

quality given the project timeline.

The selected vulnerabilities were the following:

1. Call to Unknown: This kind of vulnerability is characterized by a call to another

SC, that is ether a "call" or a "delegatecall", to an external untrustworthy address.

Chapter 5. Development 31

In that aspect every external call is deemed insecure and worthy of a warning, even
if the called address is defined by a supposedly trusted administrator of the SC. It is
important to remember that in a decentralized environment, in the user perspective,
most other users are to be considered untrustworthy. An example of this kind of

vulnerability is as follows:
% call_to_unknown_1.sol X

=0.7.0 -0.9.0;

Calling

call(.encodeWithSignature("func(uint256)", p

Figure 7 — Example of call to the unknown SC

Note that, in the line 11 of the code in figure 7, the SC executes a call to an address
given by an unknown user in the function CallU arguments. This is a typical example
of a call to the unknown vulnerability. The address that will be called by the function
is unknown to anyone except the user calling the function until the moment that

the SC function is executed.

2. Gas Costly Pattern: The gas costly pattern vulnerability is characterized by an
computational expansive pattern in the SC code. This complex execution fluxes
can result in a high gas fee to the function caller, even if the user service request
is simple, like the reading of an array element, an can even empower a malicious
agent to perform a denial of service in the SC by requesting unreasonable complex

operations.

This kind of bug is common in a vast array of applications and programming
languages, regardless of them having a relationship with blockchain technologies.
Many of the computational complex operation regard as gas costly patterns are
well known by the scientific and the developer communities. However, the Solidity
language have some specificities that are unique to it, such as the logging of events
in a transaction. For example, SC developers can log events during a transaction by
using the "log" or the "event" functions. The implementation of "log" is simpler, but

it has a bigger computational burden when compared to the "event" function.

In figure 8 one can notice the usage of two "for" structures (lines 62 and 76) in a
same function. Those functions perform a linear unstructured search in two different

arrays, products and clients respectively. "For" stances, specially in an unstructured

Chapter 5. Development 32

% costly_pattern

Figure 8 — Example of gas costly pattern SC

manner, are highly unadvised due to they having a high computational cost. The
function "buyProduct" performs two of those operations, meaning that it is a perfect
example of an non-optimized, gas costly SC function. Lastly, iterating in an array
length, such as in the presented example, is a risky operation since many applications

do not have a direct control over a certain array size.

3. Gasless Send: Gasless send, a sub-group of the mishandled exception venerability
type, is a situation when an funds transfer fail without reverting the whole transaction.
The issue of not reverting an unsuccessful operation is that the gas payed for the
mining of the transaction is lost besides the possibility of spurious states in the SC
execution, which could lead to the unusability of the SC service. This vulnerability
arouse by the usage of low level functions, which are a class of functions in the
Solidity language that ensures the continuity of the transaction regardless of the

correct execution of the function. This functions offer a boolean return value that

Chapter 5. Development 33

is true in case of a successful function execution and false otherwise. This return
parameter can be easily forgot during the SC implementation and make the contract

vulnerable.

wallet

OWner ;

addFund

Figure 9 — Example of gasless send SC

In figure 9 a simple example of this kind of vulnerability is presented. Note that
lines 19 and 25, of the "withdraw" and "transfer" functions respectively, implement
an Ether transfer using "address.send(value)", which is a low level function. The
return boolean of the ".send" function is not being used to revert the transaction in
case of a transfer failure of this function, which characterizes a typical gasless send

vulnerability.

4. Hash Collision: Hash collision is a situation where two distinct entries to a certain
hash function result in the same output. This situation represent serious problems to
hash dependant application such as message signing using hash functions. In a hash
collision scenario, an attacker could provide a valid, supposedly signed, malicious
entry to an application. This is the case in the Ethereum SCs environment as well.

The lines 20 and 21, in the "addUsers" function, in the code presented in figure 10

Chapter 5. Development 34

represents a SC that accepts signed messages to add users. The users argument is

configured in the following way:
[[userl, user2, ...J,[adminl, admin2, ...]]

admins, [] regularUsers, signature)

.length; i++) {

Figure 10 — Example of Hash Collision Sign Verification SC

The acceptance of signed messages as valid is not an issue by itself. The vulnerability
emerges due to an ambiguity in a specific kind of in code signing process. Solidity
offers two functions to encode and sign data, which are "abi.encode(data)" and
'abi.encodePacked(data)". In the second case, as exemplified in lines 36, 39 and
42 of the "encode" function in figure 11, the functions perform a simplification
of the encoded data before encoding and signing it. In the case of invoking the
abi.encodePacked() function with the data stricture presented as argument for the
function in figure 10 the result would be equivalent to:

abi.encoded([userl, user?, ..., adminl, admin2, ...J)

If an attacker changes the arrays to the following:
[[userl, user2], [..., adminl, admin2, ...J]

The encoded data would be the same:

abi.encoded([userl, user?, ..., adminl, admin2, ...])

5. Mishandled Exception: The mishandled exception vulnerability is also a kind
of issue that is not specifically related to SCs, but could be present in any kind of
computational service. It is characterized by an error situation during the execution

of a transaction that is not handled properly and can result in lost of funds (such as

Chapter 5. Development 35

if (mod
1
if(mode == 2

1
if(mode == 3

Figure 11 — Example of Hash Collision Signing SC

in the case of a gasless send) and inconsistent states of execution in the SC. This

kind of issue emerges with the usage of low level functions.

"Insufficient balance"

.send(_amount) ;

Figure 12 — Example of Mishandled Exception SC

The example presented in figure 12 the vulnerability presents itself in the way way
as in a gasless send vulnerability. That is, a ".send" function is being used to transfer
Ethers from the SC to another address and accepts the transaction (does not reverse
it) regardless if the ethers transfer was successful. Another case that can result in a
mishandled exception is the ill implementation of the code in the "catch" statement

in an "trycatch" structure.

6. Overflow and Underflow: An overflow or underflow is a situation where a sum
(or subtraction) results in a value bigger (or smaller) than the one supported by the

used variable. This kind of vulnerability can result in ambiguous execution states

Chapter 5. Development 36

and in the circumvent of time restrictions for transacting in a certain SC. The most

simple example possible for this kind of vulnerability is presented in figure 13.

Figure 13 — Example of Overflow SC

Note that, in line 3 of the code presented in figure 13, the Solidity compiler version
is set to 0.7.6, while other SC examples presented in this work use compiler versions
above 0.8.0. This is due to the fact that, beginning in Solidity version 0.8.0, overflow
and underflow situations are automatically considered exceptions an throw an error
that reverts the transaction instead of proceeding. Besides that, all SCs deployed
in the Ethereum mainnet that does not manually check for overflow and underflow

situations are prone to this kind of issue.

The situation is aggravated by the fact that Solidity offers a wide range of unsigned
integer sizes, beginning in "uint8", which is comprised of 8 bits, to "uint256", which
is comprised of 256 bits. To reduce gas costs in transacting with the SC, developers
usually set the unsigned integer to the lowest value thought to be necessary for the
SC application to perform correctly. This practice, besides justified and encouraged
when using Solidity version 0.8.0 or above, can make old SC particularly vulnerable

to this kind of issues.

7. Reentrancy: Reentrancy issues are one of the most famous kinds of vulnerabilities
present in Ethereum SCs. That is due to the fact that the "the DAO" attack, which
was cited in the 1 chapter, and result in the lost of more than US$320.000.000,00,
was due to a reentrancy vulnerability. This attack was a landmark for the research
of Ethereum SCs vulnerabilities and ways to try to tackle them because it drew a lot
of attention to the sum that was misappropriated and the decision of the Ethereum
community to revert all transactions that occurred after the attack in order to "undo"
the theft.

This vulnerability is due to a simple logic error in the implementation of transfer

functions in wallet SCs. The problem consists in transferring the funds in a transaction

Chapter 5. Development 37

before updating the internal variable that represents the user balance, as is shown in
the lines 20 to 24 in figure 14. When a SC receives Ethers it can automatically run
arbitrary code in the so called "fallback" function. This enables the attacker SC to

call the function to withdraw funds again, before the balance value being updated.

The logic behind performing that way is due to the sense that a failed transfer could
result in an inconsistent state in the SC where a user end up losing funds due to
not receiving the fund of the transfer and having its balance updated. This is line of
thought comes from a developing mindset that is not compatible with a blockchain
SC environment. In an SC where a transfer fails and is correctly managed, all the

transaction is reversed, including the update to the balance value.

.sender.call{value: bal}("");

"Failed to send Ether");

(sent, B

.sender] = bhal - amount;

amount)

= amount);

to] += amount;
ount;

Figure 14 — Example of Reentrancy SC

Chapter 5. Development 38

It is important to notice that the reentrancy vulnerability is usually due to the
transferring logic presented above together with the usage of the low level function
"call" for performing the funds transfer. Other transferring functions, such as "send"
and "transfer" usually avoid the problem, even if the transfer is being made before
the user balance update. This is due to the gas limit that those functions implement,
which is less then its needed to run any command in the fallback function of the
receiving SC. However, using those functions to keep transferring before updating

the user balance is ill advised.

8. Self-destruct Misuse: SCs in the Ethereum blockchain can make use of a function
called "self-destruct". This function essentially marks the SC as destroyed and makes
it impossible to call any of its functions. This function also transfer all Ethers stored
in the SC to a given address. The misuse of this function can result in two kinds of
vulnerabilities, one related with the call to the self-destruct function in a SC, and
another related to SCs that does not expect to receive values from "self-destructing'

contracts.

In the SC presented in figure 15 the self-destruct function, in line 27, occurs when a
user calls the "destroy" function. It is noticeable that any user can call this function,
which could result in a malicious or unintentional destruction of the SC. This means
a definitive denial of service to the service implemented by the SC until the owner
or another user decides to deploy a similar SC, and that all the funds in the SC will
be transferred to the "owner" address, regardless of the proposed fund management

of the SC.

Figure 16 presents a different kind of vulnerability related to the self-destruct function.
In this case, the SC implements a simple game where players are able to transfer the
sum of 1 ether to the SC. When a transfer results in the balance of the SC being
equal to 7, the player who did the last transaction is considered the winner receives
all the 7 ethers from the SC.

In this scenario, an ill-intended user of the Ethereum network could try to lock the
game in the EtherGame SC by transferring more than 7 Ethers to it. It is impossible
to do so by directly transferring Ethers to this SC since the receiving function
"deposit", in line 25, only accepts 1 ether per transaction. But if the user creates a
SC that receives more than 7 Ethers and "selfdestruct it" marking the EtherGame
SC as the receiver of the funds in his or hers SC, the EtherGame SC would be forced
to accept the transaction, and the game would end with no winner. That is, all the
Ethers deposit in this SC would be lost.

9. Tx.origin: This vulnerability is related to the usage of the tx.origin transaction
flag. This variable keeps the address of the account who started the transaction. The

misuse of this value as an equivalent to msg.sender, which is a flag that stores the

Chapter 5. Development 39

simpleWallet{

owner ;

| balances;

owner = .sender ;

amount ;
.transfer(_ amount

(owner)

Figure 15 — Example of Self-destruct Unprotected Call SC

address of the caller of the latest action, could lead to serious security breaches in
the target SC restricted access functions. For this attack to work the attacker needs
to perform social engineering in the target SC administrators.

In the example presented in figure 17 the functions "withdrawFunds", "transferFunds'
and "transferOwnership" of the "Wallet" SC perform an identity check in the function
caller in the lines 18, 25 and 32 respectively. If an attacker tries to break the access
restriction in those functions by calling them directly he or she won’t have any

success. However, the attacker could try calling those functions indirectly.

Suppose the attacker develops an SC as the example presented in 18. This SC

references the Wallet SC in the "wallet" variable. The "awesomeFuntion' calls the

Chapter 5. Development 40

10.

nce -= targetAmount

r

mount

- == winner,

) .balance

Figure 16 — Example of Unprepared for Self-destruct SC

withdrawFunds function in the Wallet SC with the value of 1 ether an transfer this
value to the owner of the attack (lines 50 and 51 respectively). In this scenario, the
msg.sender flag of the transaction will be the address of the "CoolService" SC, while
the tx.origin flag will be the address of the account who called the "awesomeFuntion".
If the attacker could successfully convince one of the Wallet SC users to call the
awesomeFunction in his or hers SC, the tx.origin flag would the the address of this

user and the attack would be successful.

Weak rand: Random numbers generation is an important step in many computa-
tional operations. In Ethereum SC random number also play an important role in
many situations. As in other computational applications, a good sources of entropy

are scarce in the Ethereum environment. To tackle that issue a random number

Chapter 5. Development

41

Figure 17 — Example tx.origin SC

Figure 18 — Example tx.origin attack SC

Chapter 5. Development 42

sourced from a high entropy source is used as the 256 bits seed to the build-in keccak
random number generator. Keccak is a proven random number generation algorithm
that is widely used in many computational areas. The vulnerability arouses when the
seed to the keccak algorithm comes from a low entropy source or can be manipulated

by a third party.

- == manager, "Only the n

ent amount sent to buy tickets");

random()

Figure 19 — Example Weak Rand SC

The SC presented in figure 19 is a simple lottery application that generates a weak
random number. The keccak function, in line 30, receives the block.timestamp and
an iterator as seed. The block.timestamp variable is the timestamp of the signed
block where the transaction is located in the Ethereum chain. This value can be
tempered by the transaction miner, who has the ability to mine a certain block in
a 900 milliseconds window. The developer of this SC also added an iterator to the
block.timestamp seed in order to get an increased entropy. However, note that the
iterator is updated only when a winner is selected, in line 41 of the "picWinner'
function. That is, during a same game in this lottery SC, the random generator
entropy source will be only that of the block.timestamp variable. This is a typical

scenario of a weak random number generation.

Chapter 5. Development 43

After the selection of which vulnerabilities would be included in the constructed
database, another literature review took place in order to provide an overview of the
construction methods that were being used to validate, compare and review SC vulnerability
detection tools capabilities. The papers were selected by searching Google Scholar and
Semantic Scholar with the following search strings: solidity AND ("validation database’
OR 'dataset” OR 'datasets") AND (vulnerability OR vulnerabilities OR bug OR bugs)
AND "Automated Analysis Tools" and solidity AND "smart contract” AND "vulnerability
detection tool". From the presented results, 50 papers were selected by only inspecting the

title. From those 50, a further selection was undertaken based on the papers abstract.

The selected papers were vulnerability detection tools reviews and vulnerability
detection tools. The focus in the analysis of those papers were in the technique used to
test vulnerabilities detection tools, particularly the construction of the test database in

each case. The results of this literature review were already presented in the 2 chapter.

After the selection of the 10 vulnerability kinds and the literature review aimed at
validation database construction methods, the database implementation took place. This

implementation followed the henceforth steps:

5.2.1 Lead Example

The first step in the database construction process was the implementation of a
SC that contains one of the selected vulnerabilities. This SC only included the functions
needed to implement the selected vulnerability and was used as the main reference for the
implementation of the vulnerability variations. Another important function of implementing
an SC that included only the vulnerability was to help this work author to understand
each of the studied vulnerabilities and have the opportunity to inspect the exploitation of
those issues. This contracts are also intended to be used as a minimum baseline for the

detection tools tests and validation.

It is important to notice that this lead example of each vulnerability was not
necessarily developed specifically for this study or by the research authors. Some of the
works reviewed brought examples of the vulnerability analyzed. When these example were
tested and proved functional (older works utilized outdated solidity implementations) they

ware added without any modifications and the source was properly identified as a comment
in the SC .sol file.

5.2.2 Variations Implementations

With a good lead example for reference, more SCs with variations of the vulnerability
were implemented. Those contracts added other functionalities to the lead example. The

new functionalities could be related to the vulnerability or not. For example, a wallet

Chapter 5. Development 44

contract with a reentrancy vulnerability could have an added functionality that enables
the user to view his or her value invested in the contract. This functionality is not related

to the core function of the vulnerability.

The following variations were considered as having an influence in the way the

vulnerability works:

1. Line Order Exchange: The first and most simple variation in a vulnerable code
itself is changing of the position of the lines that implement the vulnerability or the
location o the vulnerability in the function itself. Most of the vulnerabilities present
in the database have undergone this kind of variation. One example of this technique,
in the case of a tx.origin vulnerability, would be to perform the identity check at the

end or in the middle of the function, instead of in the start of it, as its usually done.

2. Conditional Exploitation: Another kind of variation considered was the imple-
mentation of a SC that, in a same function or service provided, only presented itself
if a specific set of conditions were met. One example of this kind of variations can
be observed in the hash collision vulnerability. Only the abi.encodePacked encoding
and signing function is vulnerable to hash collision due to ambiguity. However, a
function can be implemented to encode data for several reasons, and the user can
have the ability to choose which encoding mechanism he or she wants. In that case,
the vulnerability would only be noted, in terms of execution, when the user selects

the abi.encodePacked function as the encoding method.

3. Vulnerable Service "Modularization": Another variation considered in a vul-
nerability exploitation was the implementation of the vulnerability in a different
function. In the case of the tx.origin vulnerability, that would mean that the caller
verification would be done in a separate function or in a modifier, which is a specific

kind of function in Ethereum SCs that is usually used to check any kind of data.

4. Similar Vulnerability Implementation: One of the most important kind of
vulnerability variation that was considered, similar implementations consists in
modifying the specific lines that implement a vulnerability. For example, in the
case of an external call to the unknown, most of the examples presented in the
literature consist of the "call" function. However, Solidity also implements a similar
function called "delegatecall". The difference between the two is the the latter calls
the external code in the same context as the caller SC. That is, the caller can access
and change the state of the caller SC.

Another important example of this kind of vulnerability variation presents itself in
the mishandled exception vulnerability. Most examples presented in the literature

consider a mishandled exception situations where the SC code ether ignores or does

Chapter 5. Development 45

not deal correctly with a low level function return call. However, for more general
external calls exception handling, Solidity also provides a try/catch stance. The

ill-implementation of the catch stance can also be considered a mishandled exception.

It is important to notice that not all the vulnerabilities considered are prone to all
of the variations presented above. Besides that, when possible, multiple variations were
implemented at once in order to configure a greater variation from the usual cases. The
usage of other implementation methods, such as the generative Al, also contributed to

adding variations to each of the vulnerabilities implementation variations.

The importance of performing this step were to obtain a database that truly
implements real life applications of SC. Besides that, adopting this step in the developments
adds to the challenge that the database presents to the tested vulnerability detection tool.

This enables the user of the database to perform a most accurate test of the tool.

5.2.3 |A Assisted Implementation

Lastly, the selected GPT based tool was used to assist the implementation of
more variations of each of the vulnerabilities. It is important to notice that the generated
codes were not added to the database as they were implemented by the Al tool. The
author have modified every generated code in order to guarantee its functionalities and
the vulnerability exploitability. The implementation of examples using the Al tool was

based in the following steps:

1. Potential Threats: First, a query was generated asking the tool about the kinds of
threats that a certain vulnerability offered to different SCs applications. That is, the
functionalities that could be affected by the vulnerability (based in the knowledge of
the AI tool) were listed. This list was then filtered by the author in order to avoid
results that could characterize an Al daydream. An Al daydream is a situation were
an generative Al tool generates a result unrelated to the user query. This situation

result from several reasons and can’t be avoided completely.

2. Threat Example: After the enumeration of potential threats to possible Smart
Contract functionalities and their filtration, two of them were selected to be imple-
mented. This implementation consisted in querying a request for the Al tool of an
example of the given vulnerability in an Smart Contract in a way the its is possible

to observe the selected threat.

3. Modification of Generated Code: The code generated by the GPT based tool
usually contained inconvenient characteristics, such as over simplistic SCs, Scs that
did not contain the requested vulnerability and faulty code. That prompted the
author to modify the generated codes in order to attain higher quality SCs.

Chapter 5. Development 46

In all the modifications the original functionality of the SC requested to the Al tool
was preserved. Modifications only modified the implementation and added other

functionalities that complemented the target functionality generated.

Researcher @

(oo
< b

XI
XI

-

A 4
Distinct
@ Directories
8 ¥
) |=| mmmp | = -
— X — X
GPT 3.5

Figure 20 — SCs Implementation Workflow

5.2.4 Addition of Externally Implemented Smart Contracts

The main third party vulnerable, labeled, SC source selected was the one presented
in the [6] work. This database already compile many other small databases and potentially
presents greatly accurate labels since it was specifically curated for a scientific work.
Besides that, some vulnerability detection tools that present a labeled example database
were also included. The selected vulnerability detection tools that offered such database
and were selected were [22], [4], [21] and [16].

Some of the additions from external SC databases were examples of vulnerabilities
that were not part of the 10 selected vulnerabilities of the constructed database. This
SCs were also included in the database in a separate directory called "others". When
the automation module is called for the autonomous usage of the database, the results
regarding this folder is also presented separately from the other SCs results.

It is noticeable that all of the third party SCs the were added to the database were
from Solidity version 0.4.x, were "x" represents an arbitrary version. In order to keep the
consistency of the database with the specification of implementing SCs with the latest
Solidity version at the time of the development of this work, all the SCs that were not

added to the "other" classification were updated to be compatible with Solidity version

Chapter 5. Development 47

0.8.19. The exclusion of the SCs that were not included in the 10 selected vulnerabilities

presented in the update process were due to the time constrains.

At the end of this step, the developed database comprised 182 SCs, from which 50
were developed specifically for this work, 77 were added in the selected vulnerabilities and
55 were added as "others". The database itself already points to a gap in balance of the
databases already developed since more than 53% of the added SCs that were not tagged
as "others" were only from one kind of vulnerability (Over/Underflow). It is important to

keep in mind this unbalance when using the presented database.

Database Composition

Source Call to Uknown | Constly Pattern | Gasless Send
Manual 3 3 3
GPT 2 2 2
Curated [6] 0 2 4
Mythril [4] 1 2 0
SmartCheck [21] || 0 0 0
HoneyBadger 0 0 0
22]

Manticore [16] 0 0 0
TOTAL 6 9 9

Table 1 — Number of each Vulnerability in The Database by Source (Part 1)

Database Composition

Source Hash Collision Mishandled Ex- | Over/Underflow
ception

Manual 2 3 3
GPT 1 3 2
Curated [6] 0 1 15
Mythril [4] 0 2 0
SmartCheck [21] || 0 0 0
HoneyBadger 0 0 0
[22]
Manticore [16] 0 0 21
TOTAL 3 9 41

Table 2 — Number of each Vulnerability in The Database by Source (Part 1)

5.2.5 Database Smart Contracts Labeling

The labeling was undertaken before and during the development of each of the
database’s SCs. Before the start of the implementation of a certain SC it was decided
which functionality the SC would have and which vulnerability would be present. During

the development of the SC the vulnerability label was added as soon as the vulnerability

Chapter 5. Development 48

Database Composition
Source Reentrancy Selfdestruct TX.origin
Manual 3 3 3
GPT 2 2 2
Curated [6] 10 0 2
Mythril [4] 1 2 1
SmartCheck [21] || 0 0 2
HoneyBadger 0 0 0
22)
Manticore [16] 1 0 0
TOTAL 17 7 10

Table 3 — Number of each Vulnerability in The Database by Source (Part 1)

Database Composition
Source Weak Random Others
Manual 4 0
GPT 2 0
Curated [6] 9 25
Mythril [4] 1 2
SmartCheck [6] || O 0
HoneyBadger [6] || 0 0
Manticore [6] 0 28
TOTAL 16 55

Table 4 — Number of each Vulnerability in The Database by Source (Part 1)

itself was implemented in the SC. This strategy guarantees that the labeled vulnerabilities
in all the SC in the database have 100% accuracy considering the Solidity version during

the time of development.

It is important to notice that all the SCs in the database are prone to having
unlabeled vulnerabilities in addition to those that were labeled. The labeling step took
into account the focus vulnerability who was considered during the development of each
specific SC.

The labels were consolidated as a JSON file. The structure adopted to the organiza-
tion of this file was a label for all the file content; a label for each of the 10 vulnerabilities
present in the database; two labels for each vulnerability, representing the SCs that were
manually developed and the ones that were developed with Al assistance; a list of the
files from each vulnerability, implemented in a specific way (manual or GPT) with the
information regarding the file name and the name of the SC implemented in the specified
file; a list of vulnerabilities for each SC with the information of the function where each
vulnerability is located, the code line and the severity of the vulnerability. In figure 21
presents the vulnerability label for the file "call-to-unknown-1.sol", which is the file that

implements the code in figure 7.

Chapter 5. Development 49

1 =l

2 = “datasetLabels™ {

3 = “call_to_uknown" : {

4 = "Manual” : [

5k {

B “fileMame” : "call_to_uknown_1.sol",
[} “contractName” : "Calling”,

8 = “vulnerabilities” : [{

g “function” : "calll”,

0 “line” -

L]

"severity” : "high"

1

|
(o5 L
I

i].,
Figure 21 — JSON file configuration

5.3 Automation Module Implementation

The automation module of the database enables the user to execute a certain
vulnerability detection tool in all the implemented SCs automatically, that is, without
the need to the user to execute the command to call his or hers vulnerability detection
tool in every one of the SCs in the database manually. The implementation consisted in
a simple bash code that reads a string that takes as argument the calling code to the
vulnerability detection tool with all its required arguments and the output directory to
the tool reports. The script then executes the desired vulnerability detection tool in all
the SCs in the database and consolidates all the reports in a directory selected by the user,

as explained in chapter 4. The resulting script is presented in figure 22.

A bash code is a type of file in Linux systems that enables the caller to run the
command lines written in the code automatically in the Linux terminal. To call the script
the user only need to type in the command terminal the following line:

.run-on-database.sh -c¢ "emd with args" -o output/directory -j

In the command line presented above the following elements can be identified:

1. .run-on-database.sh: this element calls the script in the "run-on-database.sh" file

2. -c "cmd with args": the flag "-¢" indicates that everything inside the quotes will
be interpreted as the command to call the vulnerability detection tool that the
users wants to run in all the SCs of the database. The calling command for the tool
should include all the tool flags that the user wants to use in the execution, and the
place were the user text the smart contract name in the tool command should be
substituted with a "%sc". This symbol will be inform the script were the SC name

should be inserted in the detection tool command line.

Chapter 5. Development 50

#l/bin/bash

usage() {
echo "§(basename "$0") [‘command’ -o out_dir 4]"
exit;

}

out_file_type="txt"
while getopts e o:j flag; do
case "&{flag]” in
c) cummand ${OPTARG}:;
o) outdir=S{OPTARG]::
i) out_file_type="json";;
?) usage;;
esac
done
Tif[-z "$command}"] |1 [-z "H{outdir}" J; then

usage

[S

2 D00 =]

[T

[l =
=== Y

[=

1 if[1-d J: then
22 mkdir |
23 fi

25 vulnerabilities=5%(Is Base)

26 Elfor \rulnerability in :do

27 printf "\nAnalyzing files on vulnerability: $wulnerabilityin”

28 development_ types (s Basefﬁvulnerablllty}

29 —| for development_type in ;do
E contracts=5(ls Baseiﬁ\.rulnerabllltyfﬁdevelopment type)
— for contract in ; do

32 Dut_f|le_name=$[\rulnerab|||ty}_$[develupment_type}_$[c:nntract%_"}.$[am_ﬁle_type}

33 run_instruction=5(echo Scommand | sed "s/%sc/Basel/${vulnerability}/${development_type}\${contract}/g”)
34 run_instruction="%run_instruction”

35 echo "Analyzing contract $contract with command: $run_instruction”

36 > Bfoutdir)/S{out file"name] 2> /devinull

37 - done

38 - done

39 “done

Figure 22 — Bash Code that Implements the Automation Module

3. -0 output/directory: the flag "-0" indicates that the following string will be
interpreted as the output directory where the user wants to compile all the execution
reports that the vulnerability detection tool generates. All the output files follow
same convention: SCFileName-Manual GPT.txt. Note that the output is a text file.

4. -j : the flag "-j" is an optional flag that indicates that the detection tool output will
follow the JSON format and should be identified as such. In the presence of this
flags all the output files will be JSON files (.json) and will continue to follow the

same name convention as specified for the text files in the item above.

In order to enhance the user usability, a simple help menu was also implemented
and is shown as a result of any incorrect call to the script. Besides that, all the steps
undertaken automatically by the script are printed in the command terminal aiming to
guarantee that the user is aware of every step undertaken. In figure 23 and example of
the output generated by the automation script is presented. In this case, the vulnerability

detection tool selected for an automatic test in the database was SmartCheck [21].

Chapter 5. Development 51

Iryan, 1-virtual-machine: .frun_on_database.sh -c "smartcheck -p % -0 salda

Analyzing files on vulnerability: call_to_uknown

Analyzing contract call_to_unknow_4.sol with command: smartcheck -p Base/call_to_uknown/6PT/call_to_unknow_4.sol
Analyzing call_to_unknow_5.sol with command:

Analyzing 1. command:

Analyzing t o_unknown_2.s i ommand :

2.
Analyzing contra call_to_unknown_3.50l with command:

Analyzing files on vulnerability: costly_pattern

Analyzing sol with command:

Analyzing tly_pattern_5.sol with command: " stly_pattern/GPT/costly_

Analyzing tly_pattern_1.sol with command: " ostly_pattern/Manual/cost

Analyzing tly_pattern_2.sol with command: ostly_pattern/Manval/costly_pat
Analyzing contra .50l with command: tly_pattern/Manual/costly_pattern_

Analyzing files on vulnerability: gasless_send

Analyzing " gasless_send_4.sol with command:

Analyzing t gasless_send_5. i mmand :) -p Base/gasless_send/GPT/gasless_send_5.sol
Analyzing t gasless_send_1. h command: " -p Base/gasless_send/Manual/gasless_send_1.sol
Analyzing gasless_send_2.sol with command: -p Base/gasless_send/Manual/gasless_send_2.sol
Analyzing gasless_send_3.sol with command: smartcheck -p Base/gasless_send/Manual/gasless_send_3.sol
Analyzing vulnerability: hash_collision

Analyzing t collision_3.sol with command: smartcheck -p Base/hash_collision/6PT/hash_collision_3.sol
Analyzing t ollision_1.sol with command: smar ¢ -p Base/hash_collision/Manual/hash lision_1.sol
Analyzing contract hash_collision_2.sol with command: smartcheck -p Base/hash_collision/Manual/hash_collision_2.sol

|Analyzing files on vulnerability: mishandled_exception

Figure 23 — Example of Automatic Usage of the Database Using SmartCheck

5.4 Tests and Evaluation

One of the most important steps in any system development is the testing of the
implemented functionalities. The developed database was tested in two different ways.
The first one considered the implementation of each of the SCs individually and its of

their functionalities. The tests undertook were the following:

1. Compilation: The smart contract were compiled using the Remix IDE. The IDE
offers a comprehensive analysis of the code besides simple logic checks before com-
piling it, such as the results of Slither, a vulnerability detection tool that is well
regarded in the scientific community. Besides that, this platform offers warnings for
situations that does not prevent compilation but could result in execution issues,
such as deprecated code, unused local variables and incorrect or inconsistent function
visibility.

Every smart contract was modified until no errors were reported by the platform
using the latest Solidity version compatible with Ganache, which was 0.8.19. The
modifications also sought to resolve most warnings, but no all of them. The reason
for that is that some of the vulnerabilities and its side-effects in the SC code are
already know in the community and therefor marked in the code as warnings. It is
important to notice that, in the case of Gasless Send vulnerabilities, the compilation

used Solidity version 0.7.6.

2. Vulnerability Exploitability: After all errors and non-related warnings were

resolved, the vulnerability was tested in order to guarantee that it was exploitable.

Chapter 5. Development 52

That included the correct implementation of the vulnerability and a logical situation
that permitted the vulnerability to induce unwanted behavior in the SC. For example,
an reentrancy vulnerability for funds transfer is only usefully, in terms of its maleficent
usage, in wallet SCs that receives ethers from many different user. In this scenario a
wallet implemented for the usage of a single user would be considered a logical error

in the vulnerability implementation.

The tests were undertaken in both, the test environment build-in in the Remix-IDE
and in a tailor made local blockchain configured in the Ganache testing tool. The
test followed a unitary test strategy were all possible input were tested in order
to ensure the vulnerability usability. Multiple scenarios were also tested in order
to observe how the vulnerability would affect the SC execution. Those scenarios

included, for example, invalid requests.

3. Side Functions: The DAPPScan [27] work pointed out that that many of the test
databases constructed specifically for testing vulnerability detection tools comprised
of the so called "toy smart Contracts'. The authors defined those as simple SCs
that included the basic functions needed to observe the vulnerability in action. The
authors pointed that this simple SCs have few to none real world application and
does not represent the real world applications that the SCs are usually for. In order to
avoid the problems pointed in the cited work, all the SCs in the database implement

a common real world application.

Because of that, all other functions in each of the SCs, besides the ones affected by
the vulnerability that the SC implements, were tested in order to guarantee their
functionality. This test aimed to assert that the SCs really implemented the desired

real life application and could henceforth be considered examples of real life SCs.

All the SCs included in the were able to pass all the specified tests presented above

and were then deemed with sufficient quality to be considered as part of the database.

Before conducting the cited tests in each of the SCs, a second test were undertook.
The second test aimed to ensure that all of the SCs in the database could be swept
by vulnerability detection tools and that the automation script developed was working
correctly. Besides the automation script functionality check, this test, in the context of the
two database test framework presented by [6], would assert that the database could be

considered the small, simple and highly accurately labeled database presented in the work.

This test consisted in selecting two vulnerability detection tools, one static and
another dynamic, and to observe the output generated by both of them when the automatic
script was called with each one of them. The tools selected were SmartCheck (static)
[21], due to its simplicity and fast execution, and Mythril (dynamic) [4], due to its active

development community and wide range of detected vulnerabilities. The test was considered

Chapter 5. Development 53

successful when both tools were able to generate valid output reports for all the SCs in
the database. It is important to notice that a valid output does not necessarily means
a correct output. That is, the stopping criteria of the test considered as valid outputs

non-black reports and the absence of error messages.

54

6 Final Considerations

6.1 Conclusions

The main objective of this work, which was the development of a simple, accurately
labeled vulnerable SC database, that was representative of the real life applications of
Ethereum SCs, was successfully achieved. The developed database also demonstrated
the desired characteristic of being able to be correctly scanned by both, static and
dynamic vulnerability detection tools, regardless of the tools ability to correctly identify
the vulnerabilities presented in the database. This important characteristic enables the the
presented database to be used as a simple benchmark in evaluating vulnerability detection
tools detection capabilities in regards to the vulnerabilities footprint in a Solidity SC in a

simplified environment.

The main difficulties noticed during the development of the database were the

fallowing:

1. The quality of the SCs implemented by generative Al was poorer then expected. All
the SC that were automatically generated were thoroughly reviewed, as explained in
chapter 5. However, many SCs generated by the GPT based Al were only partially
functional or presented a vulnerability who was not exploitable. In rare cases, the
output ignored the part of the query asking for a vulnerable SC. This resulted in
a greater then expected time reviewing and rewriting entire portion of the SCs

generated.

There are two main reasons identified as the root cause of this issues when imple-
menting vulnerable SCs via generative Al. Firstly, the chosen Al is likely trained to
avoid generating any programming code that can be harmful in any way, specially if
the query ask specifically to generate a vulnerable code. The second reason is the
limitations of the language recognising mechanism of the chosen generative Al as

well as the possibility of the queries being inaccurate or mildly accurate.

2. Blockchain technologies, such as SCs, are experiencing the effects of the so called
hype cycle. This phenomenon is an observed reaction from developers, scientists
and users regarding the adoption of a certain technology. Developed by Gartner
Company, the hype cycle of any technology is divided into five regions. Particularly,
Gartner identifies one of this regions as the so called "Peak of Inflated Expectations",

which corresponds to a great volume of adoption of the technology even if the

Chapter 6. Final Considerations 55

environment were the technology is being applied does not have a direct relation

with the technologies real capabilities.

According to Gartner, in 2019, SCs (figure 24) were in the "peak of inflated expec-
tations". Despute the wide adoption of this technology at this point, the spread of
information regarding SCs functionalities, capabilities, vulnerabilities and security
mechanism was occurring in a fast, unorganized pace. This resulted in a great deal
of information regarding SCs vulnerabilities being generated without the academic

formalism, which resulted in many non-scientific sources of information.

Hype Cycle for Blockchain Business, 2019

Blockchar in Supply Chan -

Blockchaer in Logetas — Smant Conracss
ond Tranapodation |
Biockchan i C5Pw = | - Biockchan in Insursnce

~~ Bockchar in Educaton
Blochchmr RewandL L oyaty Mode

BIOCRINSN N GOvVeryment

BoChan n Gaming —.
Cryplocurency Suody Gervicen
Rinrkrban o Unltss

Bocichan n O aad Gas

A wedbT

expectations

Smart Asses = Basec ACH
Decertrakred AScromous Paymants
O Blocuchan n
Blockohan for Customer 20 Preving
. DotalCryplocurrency = Degptil Adtat Exchanges
Blcckehain for Acverssng @ 1\ Tt L L Cryptocurrencies
bor :I'rl 'h.l"rﬂF Fanges - 1COs
g ' - than Lis \
Lesd Gonesalicr '\~ Datriduted Ladgens
As of July 2019
time
Mateau wil be reached
o y o] ® y a f 2

Figure 24 — Blockchain Hype in 2019

Regarding that aspect, filtering high quality information was a challenging task.
Besides that, some vulnerabilities are not yet fully characterized in the scientific
literature. In the scope of this work, the author decided to consider only information
that was corroborated by scientific works, with the exception of Mythril vulnerability
detection tool. This exception is due to this tool being the result of the work of
ConsenSys, a well know SC audition company, and being consistently updated by
the developed community . This choice limited the amount of information who was

taken into account during the development of this work.

Chapter 6. Final Considerations 56

6.2 Contributions

The most important contribution to the research area comprised of the development
and validation of vulnerabilities detection tools is the database itself. As noted in [6] and
to the knowledge of the author of this work there is no other database that was developed
specifically for vulnerability detection tool validation following the method adopted in the

development of this work.

It is important to notice that the development of all the smart contracts were
made by the author of this work. Some code pieces from external sources, such as internet
articles and github repositories, were also used and are all identified in the SC code as
a comment. That is, the corresponding piece that was taken from an external source is

labeled as such and the source is also provided.

As its noticed by [27], much of the vulnerability detection tools of Ethereum SCs
are not able to be executed in complex scenarios, such as a complete DApp comprised of
several interconnected SCs, internal and external libraries. As much as a setback as that

is, [6] points that a complete validation should follow the following steps:

1. First, the vulnerability detection tool should be tested in a simplified environment.
That is a database comprised of SCs that does not have many dependencies and
complex execution fluxes, but have their vulnerabilities labeled a priori and with a

high degree of certainty.

2. Then, the detection tool should be tested in a second database, this time comprised
of real life SCs extracted from the Ethereum mainnet. The second database is not
labeled and the results of the tested vulnerability detection tool should be analyzed

in terms of false positives as in [6].

This project proposes the usage of the presented database as the simple a priori
labeled test database and any other wide, real life, unlabeled SC database. That is, the
same steps undertook in the [6] work should be taken using the presented database as the
set of labeled SCs. Besides that, since the database will be made public, the author of
this work invites all interested researchers and developers to contribute with the database,
since paving the ground for future surveys and improvements in the state of the art in

vulnerability detection tools.

6.3 Future Works

After the development of this work many new possible research paths were identified

as worthy of investigation. The corresponding future research opportunities are:

Chapter 6. Final Considerations 57

Real Life SC

Q Databse
@EEE

Results Repository A Results Repository B

Figure 25 — Proposed Workflow for Vulnerability Detection Tool Validation

1. The further development of the constructed database, prior to its expansion, would
be a worthy endeavour. Tasks identified as possible future steps include the labeling
of other vulnerabilities in the database, besides the focus ones; the update of the
SCs deemed "other"; the standardization of the vulnerabilities names according to

preferably [1].

2. The developed smart contract database represents only ten types of vulnerabilities.
According to the Smart Contract Weakness Classification Repository, there were
over 30 types of vulnerabilities already know to the developer community in the time
of the development of this work. It is important to notice that new vulnerabilities
are being discovered as time passes. Therefor, expanding the database representative
of vulnerabilities by adding other types of vulnerabilities that were not yet included

is worthy endeavour for future development.

3. Since the developed database adopted a new method of implementation, it would be
reasonable to conduct a survey of the current state of the art vulnerability detection
tools capabilities using the database. The survey, together with other surveys already
present in the literature, would enable the scientific community to have a broader

view of the current state of the art.

o8

Bibliography

Chaals Nevile et al. EEA EthTrust Security Levels Specification vi. Access in 2023.
URL: https://entethalliance.org/specs/ethtrust-sl/.

Vitalik Buterin. Hard Fork Completed. Access in 2023. URL: https://blog.
ethereum.org/2016/07/20/hard-fork-completed.

ConsenSys. Ganache. Access in 2023. URL: https://trufflesuite.com/

ganache/.

ConsenSys. Mythril. Access in 2023. URL: https://github.com/Consensys/
mythril.

Filippo Contro et al. “EtherSolve: Computing an Accurate Control-Flow Graph
from Ethereum Bytecode”. In: 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). 2021, pp. 127-137. po1: 10.1109/ICPC52881.
2021.00021.

Thomas Durieux et al. “Empirical Review of Automated Analysis Tools on 47,587
Ethereum Smart Contracts”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE "20. Seoul, South Korea: Association for
Computing Machinery, 2020, pp. 530-541. 1SBN: 9781450371216. DOI1: 10.1145/
3377811.3380364. URL: https://doi.org/10.1145/3377811.3380364.

Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: A Static Analysis Framework
for Smart Contracts”. In: 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB). 2019, pp. 8-15. DOL:
10.1109/WETSEB.2019.00008

Joao F. Ferreira et al. “SmartBugs: A Framework to Analyze Solidity Smart Con-
tracts”. In: Proceedings of the 35th IEEE/ACM International Conference on Au-
tomated Software Engineering. ASE ’20. Virtual Event, Australia: Association for
Computing Machinery, 2021, pp. 1349-1352. 1SBN: 9781450367684. DOI: 10.1145/
3324884.3415298. URL: https://doi.org/10.1145/3324884.3415298.

Asem Ghaleb and Karthik Pattabiraman. “How Effective Are Smart Contract Analy-
sis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug Injection”. In:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2020. Virtual Event, USA: Association for Computing Machin-
ery, 2020, pp. 415-427. 1SBN: 9781450380089. pOI1: 10.1145/3395363.3397385.
URL: https://doi.org/10.1145/3395363.3397385.

https://entethalliance.org/specs/ethtrust-sl/
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://trufflesuite.com/ganache/
https://trufflesuite.com/ganache/
https://github.com/Consensys/mythril
https://github.com/Consensys/mythril
https://doi.org/10.1109/ICPC52881.2021.00021
https://doi.org/10.1109/ICPC52881.2021.00021
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385

Bibliography 59

[10]

[11]

[12]

[13]

Don Ho. Notepad++. Access in 2023. URL: https://notepad—-plus—-plus.
org/.

Zulfigar Ali Khan and Akbar Siami Namin. “Ethereum Smart Contracts: Vulnerabil-
ities and their Classifications”. In: 2020 IEEFE International Conference on Big Data
(Big Data). 2020, pp. 1-10. bor: 10.1109/BigData50022.2020.9439088.

Satpal Singh Kushwaha et al. “Systematic Review of Security Vulnerabilities in
Ethereum Blockchain Smart Contract”. In: IEEE Access 10 (2022), pp. 6605-6621.
DOI: 10.1109/ACCESS.2021.31400091.

Zeqin Liao et al. “SmartDagger: A Bytecode-Based Static Analysis Approach for
Detecting Cross-Contract Vulnerability”. In: Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2022. <conf-
loc>, <city>Virtual</city>, <country>South Korea</country>, </conf-loc>:
Association for Computing Machinery, 2022, pp. 752-764. 1SBN: 9781450393799. DOTI:
10.1145/3533767.3534222. URL: https://doi.org/10.1145/3533767.
3534222.

Lin. “A survey of application research based on blockchain smart contract”. In:
(2022), pp. 635-690. DOI: 10.1007/s11276-021-02874 - x. URL: https :
//doi.org/10.1007/s11276-021-02874-x.

Loi Luu et al. “Making Smart Contracts Smarter”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. CCS ’16.
Vienna, Austria: Association for Computing Machinery, 2016, pp. 254-269. 1SBN:
9781450341394. DOI: 10.1145/2976749.2978309. URL: https://doi.org/
10.1145/2976749.29783009.

Mark Mossberg et al. Manticore: A User-Friendly Symbolic Execution Framework
for Binaries and Smart Contracts. 2019. arXiv: 1907.03890 [cs.SE].

OpenAl. chat GPT. Access in 2023. URL: https://openai.com/chatgpt.

Remix. Remizr IDE. Access in 2023. URL: https://remix.ethereum.org/
#lang=ené&optimize=false&runs=200&evmVersion=null &version=

soljson-v0.8.22+commit.4fcl097e. js.

SmartContractSecurity. Smart Contract Weakness Classification. Access in 2023.

URL: https://swcregistry.io.

Wesley Joon-Wie Tann et al. Towards Safer Smart Contracts: A Sequence Learning
Approach to Detecting Security Threats. 2019. arXiv: 1811.06632 [cs.CR].

https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://doi.org/10.1109/BigData50022.2020.9439088
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.1145/3533767.3534222
https://doi.org/10.1145/3533767.3534222
https://doi.org/10.1145/3533767.3534222
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1007/s11276-021-02874-x
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://arxiv.org/abs/1907.03890
https://openai.com/chatgpt
https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.22+commit.4fc1097e.js
https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.22+commit.4fc1097e.js
https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.22+commit.4fc1097e.js
https://swcregistry.io
https://arxiv.org/abs/1811.06632

Bibliography 60

[21]

[26]

[27]

28]

Sergei Tikhomirov et al. “SmartCheck: Static Analysis of Ethereum Smart Contracts”.
In: Proceedings of the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain. WETSEB ’18. Gothenburg, Sweden: Association for
Computing Machinery, 2018, pp. 9-16. 1SBN: 9781450357265. DOI: 10 .1145/
3194113.3194115. URL: https://doi.org/10.1145/3194113.3194115.

Christof Ferreira Torres, Mathis Steichen, and Radu State. The Art of The Scam:
Demystifying Honeypots in Ethereum Smart Contracts. 2019. arXiv: 1902.06976
[cs.CR].

Jeffrey Wilcke. To fork or not to fork. Access in 2023. URL: https://blog.
ethereum.org/2016/07/15/to-fork-or-not-to-fork.

Chavhan Sujeet Yashavant, Saurabh Kumar, and Amey Karkare. ScrawlD: A Dataset
of Real World Ethereum Smart Contracts Labelled with Vulnerabilities. 2022. arXiv:
2202.11409 [cs.CR].

Jiaming Ye et al. “Vulpedia: Detecting Vulnerable Ethereum Smart Contracts via
Abstracted Vulnerability Signatures”. In: J. Syst. Softw. 192.C (Oct. 2022). 1SSN:
0164-1212. por: 10.1016/73.3ss.2022.111410. URL: https://doi.org/
10.1016/73.3ss.2022.111410.

Pengcheng Zhang, Feng Xiao, and Xiapu Luo. “A Framework and DataSet for
Bugs in Ethereum Smart Contracts”. In: 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 2020, pp. 139-150. por: 10.1109/
ICSME46990.2020.00023.

Zibin Zheng et al. DAppSCAN: Building Large-Scale Datasets for Smart Contract
Weaknesses in DApp Projects. 2023. arXiv: 2305.08456 [cs.SE].

Haozhe Zhou, Amin Milani Fard, and Adetokunbo Makanju. “The State of Ethereum
Smart Contracts Security: Vulnerabilities, Countermeasures, and Tool Support”. In:
Journal of Cybersecurity and Privacy 2.2 (2022), pp. 358-378. 1SSN: 2624-800X. DOI:
10.3390/73cp2020019. URL: https://www.mdpi.com/2624-800X/2/2/
19.

https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
https://arxiv.org/abs/1902.06976
https://arxiv.org/abs/1902.06976
https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork
https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork
https://arxiv.org/abs/2202.11409
https://doi.org/10.1016/j.jss.2022.111410
https://doi.org/10.1016/j.jss.2022.111410
https://doi.org/10.1016/j.jss.2022.111410
https://doi.org/10.1109/ICSME46990.2020.00023
https://doi.org/10.1109/ICSME46990.2020.00023
https://arxiv.org/abs/2305.08456
https://doi.org/10.3390/jcp2020019
https://www.mdpi.com/2624-800X/2/2/19
https://www.mdpi.com/2624-800X/2/2/19

Annex

ANNEX A - RemixIDE Interface and
Capabilities

Figure 26 — Example of the RemixIDE developer interface

62

ANNEX A. RemizIDE Interface and Capabilities

DEPLOY & RUN TRANSACTIONS

Remix WM (Shanghai)

Remix

Remix VM (Merge)
Remix VM (London)
Remix VM (Berlin)

Remix VM - Mainnet fork

Custom - External Http Provider

Dev - Hardhat Provider

Currently you have no contract

instances to interact with.

Figure 27 — RemixIDE Ethereum Execution Environments

ANNEX A. RemizIDE Interface and Capabilities

64

SOLIDITY COMPILER
COMPILER

0.8.23+commit.f704f362

Z2+commit.4fc1097e

W b

O+co
S+commit.7dd6d404

0.8.17+commit.BdfA5f5f

0.8.16 +commit.07a

Warning: This contract

ceive ether function
Consider adding a receive ether

function.

Figure 28 — RemixIDE Supported Compiler Versions (Incomplete) Sample

ANNEX A. RemizIDE Interface and Capabilities

65

DEPLOY & RUN TRANSACTIONS

.sender]]

At Address

Figure 29 — Example the Deployment of a SC in the Shanghai Test Environment

DEPLOY & RUN TRANSACTIONS

Publish to IPFS

At Address

[vn] from

Figure 30 — RemixIDE Connected to a Locally Genereted Ganache Testnet

ANNEX A. RemizIDE Interface and Capabilities

66

DEPLOY & RUN TRANSACTIONS

Provider

sender]]

At Address

[block:4 txIndex:-] from

Figure 31 — Example the Deployment of a SC in the Local Ganache Testnet

ANNEX B - Ganache Interface and
Capabilities

- Ganache - 0 %

MINING STATUS WORKSPACE

CURRENT BLOCK GAS ER
o HTTP:/127.0.0.1:7545 AUTOMINING SOLID-CLOCKS

§ PRICE GAS LMIT HARDFORK NETWORK ID
20000000000 6721975 MERGE 777

MNEMONIC HD PATH

suit noble easy spawn when debris describe isolate firm extra squeeze polar m&44'60'0"0account_index
ADDRESS BALANCE TX COUNT INDEX
0x8Be6493Daa9FD69Bdd7194cE2b44A424A856TFe5 100.00 ETH]] &
ADDRESS BALANCE TX COUNT INDEX
0x4a02f682D6066d0C8C4F8447233dOE1cCOF619b3 1600.06 ETH 0 1 d;’
ADDRESS BALANCE TX COUNT INDEX
0x8984CF1f3D8646013587468FC48F797eAE456436 100.00 ETH 0 2 éj
ADDRESS BALANCE TX COUNT INDEX d;
OxC25912BFEFO42E97F4c086437A4b7¢910126dc4® 100.00 ETH] 3

ADDRESS BALANCE TX COUNT INDEX
0xE40431243efaf7d545b875AD922f9a7b720Ba4cC 100.06 ETH 0 4 dJ
ADDRESS BALANCE TX COUNT INDEX
0x3C34d5B55633DFEF6BAEDBEOC21bb3d4508A965D 100.00 ETH] 5 &
ADDRESS BALANCE TX COUNT INDEX
0x5E667dF477e2A73f3e50d7eD6cd7D0aBAc5820e6 100.06 ETH 0 6 J
ADDRESS BALANCE TX COUNT INDEX
0xa27F207120885615bf9Ca0554a52526fB5AF00bT 100.00 ETH] 7 &

Figure 32 — Example of Locally Created Testnet Accounts

ANNEX B. Ganache Interface and Capabilities

68

(38) BLocks

GAS PRICE GAS LiMIT HARDFORK NETWORK ID c MINING STATUS W CE
20000000000 6721975 MERGE 5777 HTTP:, .0.1:7545 AUTOMINING SOLID-CLOCKS

BLOCK MINED ON GAS USED
4 2023-11-23 17:46:57 308313
BLOCK. MINED ON GAS USED
3 2023-11-23 17:45:51 3000000
BLOCK. MINED ON GAS USED
2 2023-11-23 17:44:27 3080000
BLOCK MINED ON G6AS USED
1 2023-11-23 17:43:34 3000080
BLOCK. MINED ON GAS USED -
0 2023-11-23 17:42:07 [} S

Figure 33 — Example of Blocks Generated by Interacting with the Ganache Testnet

LM HARDFORK NETW MINING STATUS

CURRENT BLOCK GAS PRICE X 1D C WORKSPACE
4 20000000000 21975 MERGE 5777 0. AUTOMINING SOLID-CLOCKS

-k BLOCK 4

GASUSED GASLIMIT MINED ON BLOCK HASH
308313 6721975 2023-11-23 17:46:57 0x660dcd3e20c4620d99b3e639f6a5b5€4082d1941b767d9956b3becc235355035

oncs [conrract crearzon]
9x68b852938bb4629d617b78711Fe8799cd720926bd93148583bb1fb9a877c738¢ SR
FROM ADDRESS CREATED CONTRACT ADDRESS GAS USED VALUE
8x8Beb493Daa9FD69Bdd7 194 cE2b44AL24AB56Ffe5 OxBObE9OE35E26378bfE454382dDabA082bsecd2DO 308313 8

Figure 34 — Example of Block Content in the Ganache Testnet

ANNEX B. Ganache Interface and Capabilities

69

TRANSACTIONS

IMIT HARDFORK NET!

GAS PRIC ORK
20000000000 21975 MERGE 5777

~mck TX 0x68b852938bb4629d617b78711fe8799cd720926bd93148583bb1fb9a877c738¢c

SENDER ADDRESS CREATED CONTRACT ADDRESS
0x8Be6493Daa9FD69Bdd7194cE2basAL24AB56T feb 0xBObE9OE35E26378bfE454382dDabA082b4secd2DO

VALUE GASUSED BAS PRICE BAS LIMIT MINED IN BLOCK
0.60 ETH 308313 3340228749 308313 4

TX DATA

6x6680604052348015610010576000880fd5b506104a280610020600039600013fe6080604052600436106100345760003560e01c8863272235e314616039578063853828b61
4610076578063a26759cb14616008d575b600080fd5b34801561004557600080fd5b50610060600480360381010061005b91906102e5565b610097565b60405161006d919061
832b565b60485180910398135b348015616082576000801d5h5061008b6100af565b805D61009561022b565b005D600E6020528068005260406000206000915890505481565
b600080600B33 73T A ffffffffffffffffffffffifffffffiffffffl673ffffffffffrfiffffffffffffffffffffffiffff16815260200190815260200160002054116100fa
57600080fd5b6000337 3 Fffffffffffffffffffffffffffiffffffffrffioe000803373ffffffffffffffffffffffffffffffffffififffle73fffffffffrfffffffffffre
i fffffffff1681526020019081526020016000205460405161015290610377565b60006040518083038185875af1925050503d806000811461019b57604051915060
1f19603f3d011682016048523d82523d6000602084013e6101a0565b606091505b50509050806101e4576040517f08c379a0000000000060600000000000000000000000000
0000000000000000081526004016101db90610329565b60405180910390fd5b60008060003373Fffffffffffffffffififffffffifififfffffffl673ffffffffififffffff
A fffffffff16815260200196081526020016000208190555050565b3460008033 73 fffffffffffffffffffffffffffffffffffffff1673fffffffffffifffff
R fffffffffffff16815260200190815260200160002060008282546102799198610438565b92505081905550565b600080fd5b600073FffFffffffffffffffffff
e fffiffffff82169050919050565b60006102b282610287565b9050919650565b6102c2816162a7565b81146102cd57600080Td5h50565b6000813500506102d1816
102b9565b92915850565b6000602082840312156102fb576102fab10282565b5b6000610309848285016182d0565b91505892915050565b6000819050919050565b61032581
610312565b82525050565b600060208820196050610340680083018461031c565b92915050565b600081905692915050565b50565h6800610361600083610346565b915061036
€82610351565b6000820190569190568565b600061038282610354565b9156819050919050565b600082825260208201905092915050565b7F4661696C656420746f2073656e
6420457468657200000000000000000000E000600082015250565b60006103d360148361038C565b91506103de8261039d565b602882019050919050565b600060208201985
©81810360088301526104028161683c6565b9050919850565b7 f4e487b7100000060000000000000000060006 600052601160045260246000
fdob600e61044382610312565b915061044€83610312565b925082820190508082111561046657610465610409565b5b9291505056T€a2646970667358221220081e7447eb9
bc2d176c5be5367973besb79f3847faeBad1c40b460e9bobf14d264736T6C63430008130033

EVENTS

Figure 35 — Example of Transaction Content in the Ganache Testnet

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives
	Justification
	Work Organization
	Introduction
	Conceptual Aspects
	Methodology
	Requisites Specification
	Development
	Final considerations

	Conceptual Aspects
	State of the Art

	Method
	Requisites Specifications
	Database Characteristics Specifications
	Developed Smart Contract Specifications
	Externally Sourced Smart Contracts Specifications

	Development
	Technologies
	Database Construction
	Lead Example
	Variations Implementations
	IA Assisted Implementation
	Addition of Externally Implemented Smart Contracts
	Database Smart Contracts Labeling

	Automation Module Implementation
	Tests and Evaluation

	Final Considerations
	Conclusions
	Contributions
	Future Works

	Bibliography
	Annex
	RemixIDE Interface and Capabilities
	Ganache Interface and Capabilities

