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RESUMO

Field Programmable Gate Arrays são dispositivos compostos por elementos de lógica,
memória e roteamento que permitem a implementação de um circuito arbitrário através
de sua programação. Suas aplicações são inúmeras e incluem prototipagem de circuitos
integrados para aplicações específicas (Application Specific Integrated Circuits) e imple-
mentação de aceleradores em hardware. Duas desvantagens de FPGAs comerciais são a
área de substrato dedicada ao roteamento de circuitos e o fato da memória de programação
ser geralmente volátil, fazendo com que o dispositivo deva ser reprogramado sempre que
for reiniciado. Memórias não-voláteis baseadas em memristores possívelmente contornam
ambas questões, porém esses elementos são mais suscetíveis a defeitos de fabricação do
que transistores.

Esse trabalho propõe uma nova arquitetura de elementos de roteamento baseados
em células de memória não-voláteis que conseguem mitigar taxas de defeito moderadas
antes de inviabilizar a implementação de um circuito devido à falhas no roteamento. A
arquitetura é simulada e comparada no quesito funcional ao estado da arte de memórias
não-voláteis baseadas em memristores (células 2-Transistor-2-Memristor) utilizando Ver-

ilog to Routing (VTR) e um simulador próprio desenvolvido em Python. Em comparação
com memórias do tipo Static Random Access Memory, com 6 transistores por célula, a
arquitetura proposta possui um ganho de área aproximado de 14,29%, além de fornecer
gate-boosting às chaves de roteamento, diminuindo o atraso de circuitos implementados.
Em comparação com memórias 2-Transistor-2-Memristor, a arquitetura proposta suporta
taxas de defeito até três vezes maior.

Palavras-Chave – FPGA, Place and Route, Arquitetura de Roteamento, Memristores,
Tolerância a Defeitos, Memória Não-Volátil.



ABSTRACT

Field Programmable Gate Arrays are devices composed of logic, memory and routing
elements that allow the implementation of an arbitrary circuit through its programming.
Their applications are numerous and include Application Specific Integrated Circuits pro-
totyping and the development of hardware accelerators. Two disadvantages of commercial
FPGAs are the substrate area dedicated to the routing architecture and the fact that the
program memory is usually volatile, meaning the device must be reprogrammed every time
it is power-cycled. Non-volatile memristor-based memories can possibly overcome both
issues, but these elements are more susceptible to manufacturing defects than transistors.

This work proposes a new architecture of routing elements based on non-volatile mem-
ory cells that can mitigate moderate defect rates before making a circuit implementation
infeasible due to routing failures. The architecture is simulated and compared function-
ally to state-of-the-art non-volatile memristor-based memories (2-Transistor-2-Memristor
cells) using Verilog to Routing (VTR) and a proprietary simulator developed in Python.
Compared to Static Random Access Memory type memories with 6 transistors per cell,
the proposed architecture has an approximate area gain of 14.29%, and also provides gate-
boosting to routing switches, decreasing the delay of implemented circuits. Compared to
2-Transistor-2-Memristor memories, the proposed architecture supports up to three times
higher defect rates.

Keywords – FPGA, Place and Route, Routing Architecture, Memristors, Defect-Tolerant,
Non-Volatile Memory.
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1 INTRODUCTION

Since their introduction, Field Programmable Gate Array (FPGA) have excelled at
prototyping complex digital circuit designs while avoiding Non-Recurring Engineering
(NRE) costs until the design is robust enough for fabrication. The current challenge of
device scaling in FPGA devices is not the area dedicated to hard blocks, but the area
dedicated to routing elements. Today, more than half of the FPGA total area and delay in
implemented designs is dedicated to routing. Great part of this contribution comes from
the area occupied by the programmable memory cells, which store information about
which routing elements are enabled or disabled. The state-of-the-art for programmable
memory cells is a 6-transistor Static Random Access Memory (SRAM) cell, which means
any programmable switch needs to fit at least 7 transistors in the FPGA fabric area.
Another disadvantage of this design is that the information is only retained in the memory
cells as long as the device is connected to power sources, which can lead to unnecessary
power usage in idle moments.

An alternative to transistor-based SRAM cells is memristor-based memory cells.
Memristors are passive elements whose resistance is given by the historical current flow
through the device. This resistive element can be used as non-volatile storage and its
fabrication process is CMOS compatible. Memristors can not only be integrated with
CMOS devices but also do not share the same fabric area of transistors by being con-
structed between Back End-Of-Line (BEOL) metal lines. A disadvantage of the use of
memristors is that the yield of the fabrication process for memristors is prone to consid-
erable failure rates. In an FPGA, these failures lead to completely unusable memory cells
and, consequently, also unusable routing elements.

This work proposes a novel routing element architecture based on non-volatile mem-
ristive memory cells. The architecture is robust enough to withstand minimal to moderate
defects in the memory cells while still successfully routing designs with high FPGA uti-
lization. A Python framework is also developed to simulate and evaluate the proposed
architecture.
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This work is organized as follows: Chapter 2 introduces technical background and work
of art for FPGA architecture, memristive systems, and fault-tolerant design in FPGAs.
Chapter 3 explains the most relevant aspects of the Verilog to Routing (VTR) tool used for
FPGA architecture simulation. Chapter 4 describes the novel memory cell architecture
and the developed Python module to simulate it and how it is integrated into VTR.
Chapter 5 explains the chosen evaluation metrics, results achieved and a mathematical
proof for verification. Lastly, Chapter 6 summarizes findings and presents challenges met
and possible extensions for this work.



14

2 BACKGROUND AND PREVIOUS WORK

2.1 FPGA Architecture

FPGAs are devices composed of programmable logic and routing elements and input
and output (I/O) interfaces. Most modern devices include memory blocks and complex
hard logic blocks such as Digital Signal Processing (DSP) blocks, multipliers as well as
entire co-processors such as the UltraScale device family from Xilinx [4,5]. This advance
enables the design of large and complex digital circuits through (re-)programming the
device.

A Basic Logic Element (BLE) in an FPGA consists of a K -input Look-Up Table (LUT)
and a flip-flop which can be bypassed to use the registered or unregistered output of the
LUT as the output of the BLE [6]. Groups of N BLEs are usually bundled together in an
FPGA with routing multiplexers for local interconnect to define a so-called Configurable
Logic Block (CLB), illustrated in Figure 2. By implementing the truth table of any given
part of a digital circuit in a LUT, CLBs can mimic the exact functionality of small parts
of a circuit employing programming. The FPGA routing elements are then responsible
to interconnect CLBs and realize the complete design.

Device scaling would allow fitting more LUTs with more inputs into a CLB in the
same area. Such an idea would benefit from fast local interconnects by implementing
more logic inside a CLB and relying less on the FPGA routing resources to minimize the
delay. Nonetheless, it has been proven empirically in [7] that the best area-delay product
is achieved with LUTs with 4-6 inputs and clusters of 3-10 BLEs, which are the values
used in commercial devices [8].

One of the possible classifications of modern FPGAs is island-style FPGAs, which this
work focuses on. On island FPGAs, logic and hard blocks are surrounded by vertical and
horizontal channels of pre-fabricated, directed wiring segments and programmable routing
switches [6]. The channel width defines the number of wire segments in a channel, and the
wire length defines how many logic blocks a wire segment spans. At every intersection,
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Figure 1: FPGA architecture example. White blocks are I/O, orange blocks are logic
blocks, blue blocks are memory blocks and green blocks are multipliers. The black lines
are a rough representation of wiring segments and routing elements. Source: author.

there is a switch box (SB) responsible for connecting an incoming wiring segment to an
outgoing wiring segment at another channel, while the pins (input or output) of a logic
block are connected to wiring segments through a connection block (CB). An overall view
of island FPGAs is shown in Figure 1, and its routing architecture in detail is shown in
Figure 3.

In modern devices, a single programmable switch is usually implemented as a Static
Random-Acess Memory (SRAM) cell controlling a pass-transistor or a tri-state buffer.
Both switch boxes and connection blocks are a collection of programmable switches and
may present different architectures. Currently, they are usually implemented as a two-
level pass-transistor based multiplexer as it was shown to provide the best area-delay
product and is currently used in commercial devices [8, 9]. A patent filed by Xilinx is
shown in Figure 4 that exemplifies such topology [1].

The physical limitation of FPGA devices is usually regarding routing elements. Pre-
vious work done by Chiasson and Betz has proven that routing elements account for more
than 50% of the fabric area and critical path delay of designs in FPGAs [10]. Optimiz-
ing the routing architecture is then crucial to the device’s performance. To describe the
parameters of the routing architecture, the terminology proposed by Rose and Brown is
used [11]. Here the previously introduced channel width is denoted by W , the number of
logic blocks a wire segment spans is denoted by L for length, the number of wires a given
CLB can connect to via a CB is denoted by Fc,input and Fc,output for connection block flex-
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Figure 2: Configurable logic block example. Source: author.

ibility of the respective pins, and the number of outgoing wiring segments able to connect
to an incoming segment in an intersection is defined as Fs for switch box flexibility.

Optimizing the routing architecture is not a trivial task. Increasing the number of
resources may lead to underuse and wasted area, while not enough resources do not allow
enough flexibility to route complex designs. In [11] it was shown that the best area-
delay product was achieved by Fs of 3 or 4 and Fc of 0.7W to 0.9W . Later research
then suggested lower Fc,input and Fc,output, which is going to be adopted in this work
[6]. Furthermore, in [10] was also shown that using transmission gates instead of pass-
transistors could lead to a better area-delay product if gate-boosting is not available for
the programmable switches.

2.2 Memristive Systems

The memristor was first proposed by Chua in 1971 as a nonlinear resistor with memory
[12]. A memristor behaves as a resistor at any given instant in time, but its resistance
is determined by the history of the current that flowed through the element. Later,
Chua generalized the concept of memristive devices and systems to any circuit that could
mimic the functionality of the original memristor [13]. Resistive Random Access Memories
(ReRAM) is one such system and is going to be taken into account in this work. ReRAM is
used nowadays for "in-memory computation", especially for deep learning workloads [14],
but its fabrication process is CMOS compatible and could be used in FPGAs to increase
device density, lower power consumption, and enable scenarios where the device is not
connected to power at all times.
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Figure 3: FPGA routing architecture in detail. A logic block is again represented in
orange, while connection blocks are in green and a switchbox is shown in blue. Source:
author.

FPGAs store their programmable information in SRAM cells, the most common array
being a 6 transistor (6T) cell. This type of storage is volatile, meaning information is only
retained as long as there is an external source providing power to the device. ReRAM, on
the other side, can keep information stored in memristive elements indefinitely, potentially
decreasing power consumption when not needing to be connected to a power source. By
being compatible with CMOS fabrication process, ReRAM cells do not share the same
fabric area as transistors by being built between the backend-of-line metal lines, increasing
device density. In this work, the 2-Transistor-2-Memristor (2T2R) model proposed by [16]
is going to be considered as the minimal resistive unit for information storage. In this
model exemplified in Figure 5 two memristors are placed in series between Vdd and ground.
The node between the two memristors is connected both to the gate of a routing switch and
to another pass-transistor responsible to set their resistive states through a programmable
voltage VP . In an optimal use case, setting VP accordingly and enabling the transistor
connected to it sets one memristor in High Resistive State (HRS) and the other in Low
Resistive State (LRS). If the pull-up memristor is in LRS and the pull-down memristor is
in HRS then a logic "1" is stored in the cell and the routing switch is enabled. Following
this terminology, it is also possible to name a memristor in LRS as turned "ON" or in
a logic "1" state and analogously naming a memristor in HRS as turned "OFF" or in a
logic "0" state. This terminology is important to explain memristor faulty behavior.

The effectiveness of the 2T2R cell depends on the ratio between HRS and LRS as
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Figure 4: Routing multiplexer from [1]. From input to output there are always two pass-
transistors acting as routing switches controlled by memory cells. At the output there is
a buffer for signal restoration. The buffer presence makes the multiplexer unidirectional.
Source: [1].

the memristors act as a voltage divider and current technologies offer a big enough ratio
of about 104. Nonetheless, production defects in memristor may affect expected storage
cell behavior and this work focuses on three specific defect cases also explored in [17].
If independently of VP the memristor remains at LRS or HRS it is considered that the
element is Stuck at 1 (SA1) or Stuck at 0 (SA0), respectively. If the memristor remains
fixed in an intermediary resistive state that does not provide the expected difference ratio
for the 2T2R to function properly it is said that the element presents Undefined (UD)
behavior. Lastly, if the memristor does not present any kind of defect, it is then said to be
Free of Failure (FF). From this definition, it is possible to determine the error propagated
to the routing switch gate based on the error of the individual memristors of the 2T2R
cell, shown in Table 1. If any memristor presents an undefined error or if both pull-up and
pull-down present the same type of error, the memory cell will present undefined behavior
and the routing switch cannot be used. If one of the memristors is SA1, the cell error
takes preference on the pull characteristic: if pull-up is SA1 then the cell error is SA1, if
pull-down in SA1 then the cell error is SA0. Analogously, if one memristor is SA0, the
cell error takes preference on the unaffected pull network: a SA0 pull-up results in a SA0
error for the memory cell while a SA0 pull-down results in a SA1 cell error.

Non-volatile resistive RAM-based FPGAs were already explored in literature [18–20].
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(a) 6 transistor SRAM cell. Source: [15]

Vdd

Vp

(b) 2T2R ReRAM cell. Source: author.

Figure 5: Comparison between 6T SRAM cell and 2T2R ReRAM cell.
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UD UD UD UD UD

Table 1: 2T2R error based on pull-up or pull-down errors. Source: author.

Results are heavily dependent on the exact non-volatile technology used but aggressive
improvements of up to 96% lower routing resource area, 67% less delay, and 79% less
power consumption can be achieved. Although NV-FPGAs were already explored, the
reliability of process yields for ReRAM technologies is rarely discussed. Even currently
available processes such as the 40nm ReRAM process from TSMC [21] do not present
100% of yield. The presence of defects in routing elements directly affects the efficiency
of an FPGA. The novel architecture proposed can withstand minor fabrication errors
while still enabling circuit designs with high FPGA utilization to be routed and fully
implemented.

2.3 Fault-Tolerant FPGA design

This work builds mainly on top of the work done by Freiberger on the evaluation of
design routability in the presence of defect routing elements [17]. Freiberger simulated a
2T2R-based FPGA with memory blocks and fracturable inputs LUTs. With increasing
error probabilities, he then simulated the effect of individual memristor defects in the
global FPGA routing architecture and ultimately how it impacted the routability designs
from the VTR and MCNC20 benchmarks that were successfully implemented in a error-
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free FPGA. His results showed that the amount of routing edges grew quadratically to the
number of defect memristors, as usually a single memory cell is responsible for controlling
multiple routing switches. Additionally, it was shown that even for small designs with
about 5% of the FPGA’s logic blocks utilization could only be successfully routed with
error rates of up to 0,375% per memristor.

Concerning fault-tolerant design in FPGAs, the usual trade-off is robustness and area-
delay product. The most trivial solution is to increase the number of available routing
resources in the device, but as shown before most of the FPGA area is dedicated to then
routing area as this solution can lead to both increased area and a high amount of unused
resources. Another solution is to implement the robustness not in the FPGA fabric but in
the CAD tools, that identify defect elements through the use of test designs and can realize
placing and routing of designs that partially or completely avoid defect areas, but finding
a specific place and route solution for each device can be time consuming [22]. There may
even be cases where a valid placement solution does not provide any viable routing path
between two FPGA nodes due to defects and improving the CAD algorithms does not
lead to a solution. Both of these solutions take advantage of a priori defect knowledge to
handle them at the programming stage.

Another kind of approach is scenarios where FPGAs are exposed to a high amount
of radiation (i.e. aerospace applications) and the configuration bitstream is corrupted by
what is called Single Event Upset (SEU). In this case, Triple Modular Redundancy (TMR)
or Quintuple Modular Redundancy (QMR) is used to replicate logic modules and depend
on a majority voter circuit to forward the expected design implementation to the next
domain [2]. TMR and QMR are designed to handle FPGA defects while the application
is running in-field and there is no means of reprogramming the device. The approach
is extremely robust as in TMR 2 out of the 3 replicas of a single logic module need to
fail for the error to be propagated to the next stage while in QMR 3 out of 5 replicas
need to fail. The downside is having to replicate each logic module thrice or five times
in addition to adding a voter circuit between each set of replicas. For this work, the
defects can be known beforehand and the information is used to take advantage of lower
circuit redundancy, but the voter mechanism is somewhat adapted to add robustness to
the memristor-based routing element this work presents in Chapter 4.
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Figure 6: Exemplification of TMR design from [2].
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3 VERILOG TO ROUTING (VTR)

3.1 VTR Standard Flow

VTR is a set of open-source Computer Aided Design (CAD) tools for FPGA architec-
ture exploration and CAD algorithms research [3]. The standard execution flow of VTR
shown in Figure 7 takes a Verilog description of a circuit design and an XML-file de-
scribing the target FPGA architecture and produces output files for the packing, placing
and routing of the given design as well as area, speed, and power results. VTR starts by
using Odin II to synthesize the high-level description of the circuit into a flattened netlist
of logic gates, flip-flops, and complex logic blocks such as adders, multipliers, and RAM
slices. As an option, VTR can also be built to use Yosys together with Odin II in the
elaboration stage to increase Verilog-2005 support and optimize device utilization. Next,
a technology-independent logic optimization is done by ABC, which maps the circuits
into LUTs, flip-flops, and blackboxes. Using the technology-mapped circuit file, Versatile
Place & Route (VPR) parses the architecture file to generate a routing resources graph
for the target architecture and runs packing, placement and routing on the design. The
XML architecture files do not necessarily specify the device size, only the arrangement
of logic and hard blocks. By default, VPR creates a big enough device to fit all blocks
in the technology-mapped netlist with the smallest channel width that allows successful
routing.

The toolflow is highly modular as every stage produces an output file that can be
independently fed into the following stage by other sources. Odin II takes a Verilog
circuit description and an XML architecture file as input and produces the netlist in a
Berkley Logic Interchange Format (BLIF) file, and ABC uses BLIF netlists both as input
and output. The complete flow of VPR takes a BLIF netlist and an XML architecture
file as input and produces output files for packing, placing and routing stages, as well as
a final output file with statistics on each stage. Alternatively, VPR can also save an XML
file of the routing resources graph from the target architecture represented as routing



23

nodes and edges. In this work, the Routing Resources (RR) XML file is used for the
simulation, edited with defect elements and fed back into VPR, which also accepts the
RR file directly. Ultimately, VPR can run any stage independently using an adequate
packing, placement or routing file as input.

BLIF File

Elaboration 
(Odin II)

BLIF File

Logic Optimization &
Technology Mapping 

(ABC)

Net File

Packing 
(VPR)

Place File

Placement 
(VPR)

Route File

Routing 
(VPR)

RR Graph File Architecture File

Analysis
(VPR)

Implementation metrics

Circuit File

Figure 7: VTR standard flow. Source: author.

3.2 FPGA Architecture representations

The FPGA architecture file provided to the VTR flow has all the information needed
to describe the device’s architecture. The file’s format is defined by VTR and although
extensive, some points are crucial to this work and therefore briefly explained. The first
tag in the file is always <architecture>. The possible top-level tags are the following:

• <models> Contains a list of supported BLIF sub-circuit (.subckt) model names.
Important for using dedicated hard blocks.

• <tiles> Contains a list of functional blocks and their properties to compose the
FPGA grid. All blocks need to be defined in the <complexblocklist> tag.
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• <layout> Defines a pattern of how tiles should be arranged in the FPGA grid. If
an <auto_layout> is defined, VPR creates a device following the defined pattern
with the minimal size needed to fit a chosen design, otherwise, if a <fixed_layout>

is defined, an arbitrary width and height need to be written as tag parameters to
create a device with a fixed grid size.

• <device> Contains the resistance of minimum-width transistors, the routing switch
type used, the name identifying a connection block switch in <switchlist> and the
area occupied by a 1x1 logic block.

• <switchlist> Specifies the routing switches used. Each switch has a type, a name
and physical properties.

• <segmentlist> Specifies each type of wiring segment used in the architecture.

• <complexblocklist> Defines each functional block to be used in the tiles section.

What is of most importance in this work are the <device> and <switchlist> tags. The
<device> tag defines both the switchbox type, meaning how an incoming wire is routed
to another track, and the name of the connection block defined in the <switchlist> tag.
The available switchbox types are the planar switchbox used in Xilinx 4000 FPGA, the
Wilton [23] switch, the universal [24] switch, and a custom-defined switch. For this work,
the chosen switchbox type is the Wilton switch. The <switchlist> tag can have at least
two switches, and with the information from the <device> tag, it is possible to know
which switch "id" represents a connection block, while the remaining switches represent
switchboxes. Regarding switch types, the available options are a multiplexer, a tristate
buffer, a pass transistor, a simple wire or a non-isolating buffer. For this work, the only
switch type considered is the multiplexer.

From the architecture file, VTR creates an intermediary representation of routing
resources in a so-called RR graph file. This file is also in an XML format and it represents
pins as nodes and routing elements connections as edges. The relation between the actual
architecture and the RR graph is illustrated in Figure 8. The most important tag in the
RR graph file is the <rr_edges> tag, which contains a list of all routing edges in the
device generated by VTR. Every <edge> tag inside <rr_edges> has the id of its source
node, sink node, and routing switch. With the three parameters, it is possible to identify
if the edge is from a CB or a SB and it is possible to recreate the element to later simulate
its defects by grouping edges that share the same sink node.
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(a) Routing architecture detail (b) Corresponding routing resource graph

Figure 8: Routing resource graph representation from [3]. Dotted lines are switchbox
connections and dashed lines are connection blocks connections.

VTR is bundled with multiple sets of architecture files, ranging from FPGAs with
only logic blocks to more complex FPGAs with memory slices and DSP blocks. The
architecture used is described in the "k6_frac_N10_mem32K_40nm.xml" file. The ar-
chitecture is chosen to provide a direct comparison with the work done by Freiberger.
It provides a reasonable delay model for a 40 nm technology device based on the com-
mercial Stratix IV with fracturable 6-input LUTs organized in clusters of 10 LUTs each.
The architecture also has 32 kilobits of memory slices with variable data width and mul-
tipliers with 36 and 18 bits of width. As described in the VTR documentation, the
transistor size is modeled after the iFAR architectures [25] which is based on 45 nm
node technology and linearly scaled down. The routing parameters of the architecture
are L = 4, Fc,input = 0.15, Fc,output = 0.1. The channel width can be user-defined or is
automatically set to the minimum needed to route a chosen design.

3.3 Command Line usage

VTR is run through the command line and a comprehensive explanation of all of
its execution options is available in its documentation. This work will only explain rel-
evant options used to ensure reproducibility. The first important script used in the tool
is "run_vtr_flow.py", which has two required arguments: a circuit description in Ver-
ilog and an FPGA architecture file. Without further arguments, "run_vtr_flow.py"
executes the complete flow described in Figure 7. To run specific stages, the options
--starting_stage or --end_stage can be used, followed by the desired starting or end
stage name. The --device option allows the definition of a fixed layout for the target
architecture. The prerequisite is defining the layout inside the <layout> tag in the ar-
chitecture file and using its name following the option. Every architecture needs to have
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at least one <auto_layout> defined which VPR uses as default. To set a fixed chan-
nel width the option --channel_width followed by the desired channel width is used.
Additionally, --write_rr_graph and --read_rr_graph followed by a file name can be
used to save or load a RR graph file. "run_vtr_flow.py" automatically parses all options
and forwards them to their respective stage. If options unknown to VTR are included,
"run_vtr_flow.py" forwards them to VPR. An example of how the script is run in this
work is in Listing 3.1, where $VTR_ROOT is the directory where VTR is installed.

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py circuit.v fpga_arch.xml --

,! device fixed20x20 --channel_width 60 --write_rr_graph rr_graph.xml

Listing 3.1: VTR example usage where $VTR_ROOT is the directory where the tool is
installed.

The second script used is "run_vtr_task.py", which takes a VTR task name as input.
VTR tasks provide a framework to run scripts over a set of benchmark and architecture
files with multiple parameters. To setup a task, a directory with the task’s name needs
to be created under $VTR_ROOT/vtr_flow/tasks and it needs to contain a folder called
"config" with a single configuration file inside called "config.txt". The configuration file
sets the architectures and benchmarks directories through archs_dir and circuits_dir di-
rectives. Each architecture and benchmark file is then set through arch_list_add and
circuit_list_add directives, respectively. The script to be run in the task can have two
sets of options to be passed to each invocation. The first set is passed to every invocation
and the second set has each entry added to the first set separately. This is useful to define
a common set of options along with a second range of options to be swept. Executing
"run_vtr_task.py" runs the defined script ("run_vtr_flow.py" by default) over the vec-
torial product of the architecture files list, benchmark files list, and script parameters
list. The results of all executions are parsed at the end by defining a parse file, which is
a collection of files and regular expressions to be parsed from all script executions and
compiled in a single file as tabular data. An example of a VTR task "config.txt" file is
shown in Listing 3.2.

# Path to directory of circuits to use

circuits_dir=benchmarks/verilog

# Path to directory of architectures to use

archs_dir=arch/timing

# Add circuits to list to sweep
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circuit_list_add=ch_intrinsics.v

circuit_list_add=diffeq1.v

# Add architectures to list to sweep

arch_list_add=k6_N10_memSize16384_memData64_stratix4_based_timing_sparse.

,! xml

# Parse info and how to parse

parse_file=vpr_standard.txt

Listing 3.2: VTR task configuration file example from [3].

The script also accepts options of its own. The number of tasks to be run in parallel can
be defined with the option -j followed by the number of threads to create and additional
parameters can be passed to the task script by using the option -s followed by the options
set. An example of the command-line usage of "run_vtr_task.py" is shown in Listing
3.3.

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_task.py task_name -j 8 -s --

,! channel_width 60

Listing 3.3: VTR task example usage. $VTR_ROOT is the installation directory of VTR.
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4 IMPLEMENTATION

The 2T2R arrangement from [16] and Freiberger’s evaluation [17] are taken as a
starting point. The 2T2R arrangement uses two memristors and one transistor as an
information storage unit and a second transistor as a programmable switch. Freiberger
considered three possible types of error affecting these memristors - SA0, SA1 and UD -
and their effects in the memory cell (Table 1). Connection blocks and Switch boxes use
2-stage pass-transistor multiplexers as routing switches (Figure 4), and a cell error can
have multiple effects on the structure.

In the most trivial case, if one memory cell is afflicted by a SA0 error, all switches
controlled by the storage cells and their respective paths cannot be used as they will never
be enabled. If one memory cell is afflicted by a SA1 error, then the switches controlled
by it are always going to be active, and so should their respective routing paths. This
situation implies two consequences: if in a given stage only one cell is afflicted by a SA1
error, then the affected path is the only possible usable path in the multiplexer; if, on the
other hand, more than one path if afflicted by a SA1 error, then both paths are active
and a potential short circuit is present at the end of the stage and the routing multiplexer
cannot be utilized. If a storage cell is affected by a UD error then the programmable
switch behavior is undefined and the routing multiplexer cannot be used to avoid short
circuits as well. This error relation is summarized in Table 2.

From this behavior, it is possible to define an error tolerance per multiplexer stage.
Given a routing multiplexer stage with n inputs, the stage can tolerate up to n� 1 SA0
errors, up to 1 SA1 error, and no UD error. If both stages respect this tolerance the
multiplexer is still usable. Clearly, the most critical type of error to a multiplexer stage is
UD due to its prevalence over the other types, followed by SA1 errors which cannot occur
more than once, and SA0 being the most permissive type of error. As long as there is
a single routing path in every stage not afflicted by SA0, the routing multiplexer is still
usable using solely the path not affected by SA0. Note that in this situation the viable
path may even be affected by a SA1 error.
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First stage error
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FF All paths

usable
SA0 paths
unusable

Only SA1
paths usable

Multiplexer
unusable

SA0 SA0 paths
not usable

SA0 paths
not usable

Only SA1
paths usable
excluding
SA0 paths

Multiplexer
unusable

SA1 Only SA1
paths usable

Only SA1
paths usable
excluding
SA0 paths

Only SA1
paths usable

Multiplexer
unusable

UD Multiplexer
unusable

Multiplexer
unusable

Multiplexer
unusable

Multiplexer
unusable

Table 2: Effect of memory cell errors on a routing multiplexer

4.1 Proto-Voter Cell

A novel architecture of defect-tolerant routing element is proposed in Figure 9 inspired
by the voter design of TMR. In this architecture, there are two memory cells controlling
a single routing switch, which are called the main and the control memory cell. Each of
these individual cells follows the same layout as the 2T2R cell without the programmable
switch. The control cell selects which signal to drive the routing switch gate and the main
cell is one possible option of driving signal. If the control cell is storing a logic "1", the
main cell can directly controls the programmable switch. If otherwise the control cell is
storing a logic "0" the programmable switch gate is connected to ground and therefore
disabled. The control cell acts as voter to enable programmability or completely disable
a programmable switch if the main cell presents harmful errors to the routing multiplexer
architecture. The complete arrange is from now on called proto-voter cell.

In the proposed design, if the main cell has any error that would hinder the routing
multiplexer utility, such as a UD error or a second SA1 error in a single stage, the control
cell can select the ground terminal to drive the routing switch and force a SA0 error.
On the other hand, if the control cell is afflicted by a UD error, the main cell can be
programmed to store a logic 0 and thus paired with the ground so there is no signal to be
driven and the programmable switch is again safely "always OFF". A third scenario is a
main cell with a SA1 error and a defect-free control cell, which can freely switch between
ground and the SA1 main cell to virtually pose as a defect-free cell from the programmable
switch point of view. The programmable switch gate behavior using a proto-voter cell
arrangement is summarized using Table 3
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Vdd + Vt Vdd + Vt

Vp Vp
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Figure 9: Proto-Voter cell schematic

Control cell
FF SA0 SA1 UD

M
ai

n
ce

ll FF FF SA0 FF SA0
SA0 SA0 SA0 SA0 SA0
SA1 FF SA0 SA1 UD
UD SA0 SA0 UD UD

Table 3: Programmable switch gate behavior using a proto-voter cell as NV-memory.
Source: author.

The proto-voter cell prioritizes disabling defect routing paths to keep the routing
multiplexer usability. In contrast to the base 2T2R cell, a proto-voter cell will only
forward a UD error to the routing switch if both the main and control cells are afflicted
by a UD error or if the pair has both SA1 and UD errors. For SA1-type of error, the
robustness is even better: a SA1 error will only be forwarded to the routing switch gate
if both the main and control cell are afflicted by a SA1 error. If only one of the cells is
afflicted, the other can still provide a logic "0" state, directly through the main cell or by
selecting the transistor connected to the ground through the control cell.

The proto-voter cell arrangement presents some design challenges. First of them is
the pass-transistor cascade arrangement. For NMOS the charging profile of the device is
shown in Figure 10. The output of the pass-transistor can only be charged up to Vdd � Vt
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where Vt is the threshold voltage of the device, which is a considerable signal degradation
for state-of-the-art technologies. As an example, 22 nm node technology is used in [10]
and for 0.8 V of Vdd, the output can only switch between 0 V and 0.55 V, with a very
slow slew rate above 0.45 V. For the proto-voter cell, the routing switch gate signal may
not be strong enough when the main cell is driving a logic "1". To solve the challenge,
gate-boosting is proposed, where a voltage greater than Vdd is applied at a transistor’s
gate.

t

Vout(t)

Vdd - Vt

Figure 10: Charging profile of a NMOS device used as pass transistor. Source: author.

Gate-boosting itself is also a challenge because it degrades the device due to hot carrier
effect and an extra voltage domain is needed for the FPGA. It can be argued that the
presence of NV-storage will allow the device to not be connected to a power source thus
prolonging the device’s lifespan. For the extra voltage domain, it can also be justified
through the use of the memristors. The characteristics of the 2T2R require +3 V and
-3 V for programming, the pull-up memristor to be connected to +1.2 V and the pull-
down memristor to be connected to 0 V [16]. As the memristor already requires different
voltages, the extra power domain is justifiable. Using 1.2 V as Vdd means the routing
switch gate will drive at logic "1" about 0.95 V, meaning 150 mV of gate-boosting, which
is close to the 200 mV Betz found experimentally to yield a better area-delay product
when using pass-transistors instead of transmission gates in [26].

4.2 Fault Tolerant Routing Mux Python module

To simulate both the base 2T2R memory cell and the proto-voter cell, a Python
module is developed called Fault-Tolerant Routing Mux (FTRM). The choice of Python
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is for ease of integration with VTR scripts and previous knowledge from the author. The
module is able to run a standalone simulation of an arbitrary number of independent
routing multiplexers or run the simulation based on a given RR Graph file.

The module has a high-level wrapper represented in figure 12 and some low-level
support classes represented in figure 11. The Errors class simply stores an enumerated
definition of each memristor error type, including the error-free (FF) state. "FF" is
stored as a 0, "SA0" is stored as a 1, "SA1" is stored as a 2, and "UD" is stored as a 3.
The RandomNumberGenerator class stores absolute probabilities for SA0, SA1 and UD
errors and generates a pair of errors following the given distribution through the use of
the instance function gen for generate. The MemCell class represents a 2T2R memory
cell without both transistors. It has two instance members representing the pull-up and
pull-down memristor states and a 2D matrix as a class member acting as a LUT for the
cell error based on Table 1 and the Errors class structure. The set_errors function set
each memristor state from errors received from a RandomNumberGenerator instance and
the get_cell_error function returns the error matrix value at the position given by the
pull-up and pull-down state. The ProtoVoterCell class represents the novel cell design.
It has the same structure as the previous class: a lookup matrix for the cell error and
two instance members, this time being MemCell classes representing the main and control
cells in the structure. It also has a set_errors and get_cell_error which work analogously
to the MemCell functions with the addition of receiving 2 pairs of errors to be set and
forwarding each pair to one of the MemCell members.

To represent a routing multiplexer, three classes are used: RoutingMux, FirstStage-

Block, and SecondStageBlock. The last two classes represent a first-stage multiplexer block
and a second-stage multiplexer block. Both classes have as instance members the id of
its sink pin, a list of source pins, a list of memory cells, and a boolean variable to show
if the block is usable or not. The main difference between both stages is that the second
stage block has a list of lists for source pins, as each of its input pins controls multiple
source pins from the first stage. The available functions for the classes are set_errors,
compute_block_error and get_defect_edges. The first function takes a RandomNumber-

Generator instance as input and forwards error pairs to each element in the memory cell
list, the second retrieves each cell error and computes the block error following the logic
in Table 2 while also setting if the block is unusable and the third function returns which
source-sink pair cannot be used due to errors.

The RoutingMux class contains its sink (output) node, a list of source (input) nodes,
and its memory cell type. After being created, an instance of this class computes the
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def compute_optimal_block_size():

mux_size = len(source_nodes)

block_size = mux_size # initial block size is mux_size
n_mem_cells = mux_size # initial number of cells is mux_size
partial_block = False # Partial block

for new_block_size in range(1, mux_size + 1):

# Check if a partial block is needed
partial_block = (mux_size % new_block_size) != 0

# Calculate new number of memory cells
new_n_mem_cell = new_block_size + (mux_size // new_block_size)

,! + partial_block

# If less memory cells are used, save new block size
if (new_n_mem_cell < n_mem_cells):

n_mem_cells = new_n_mem_cell

block_size = new_block_size

return block_size

Listing 4.1: Algorithm to find optimal block size. Source: author.

optimal block size for the first stage to use a minimal number of memory cells. The
algorithm used for this calculation is shown in Listing 4.1, taken from [17]. It tests the
multiplexer block size ranging from 1 up to the number of inputs, creating blocks of equal
input number plus a possible last block with fewer inputs if the integer division of inputs
by block size has a remainder. From the 2-stage structure shown in Figure 4, the number
of memory cells in the first stage is the maximum number of inputs from a first-stage
block, and the number of cells in the second stage is the number of firsts stage blocks.
The smallest block size with an optimal number of memory cells is chosen and the optimal
number of memory cell instances is created according to the chosen type. Each cell is then
stored in separate lists from the first and second stages to correctly compute their error
effects in the structure. To set and retrieve the errors in each cell the instance functions
set_errors and get_cell_errors recursively call the functions with the same name from
each memory cell. For testing reasons, the effect of cell errors on the routing multiplexer
is only computed after calling the function compute_block_errors which again recursively
calls the function with the same name inside a block type class.

The FaultSimulator class serves as a wrapper for both simulation types, containing
a RRGraphParser, a RandomErrorGen, a list of RoutingMux instances, and the desired
cell type, being the latter either MemCell or ProtoVoterCell. RRGraphParser is a class
responsible for parsing a RR graph file and storing its information in Python data struc-
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tures. It uses the Python library ElementTree to load, update and rewrite the RR graph
file. After loading the file, it searches for the switches node, where it can identify the id

number of switchboxes and connection blocks. The connection block id is identified by
the switch whose name is ipin_cblock, and the switchbox is identified by the remaining
switch whose name does not have "delayless" in it, as otherwise are dummy switches used
by VTR to create the device. After each switch id is identified, every node in rr_nodes is
parsed and a dictionary is created indexing source pins by their sink pin. Each dictionary
entry represents the pins from a routing multiplexer used in a SB or CB. Together with
the memory cell type, the pins dictionary is used to create RoutingMux class instances
representing a routing multiplexer.

Errors

FF = 0
SA0 = 1
SA1 = 2
UD = 3

MemCell

- pullUpState: int
- pullDownState: int
- errorLUT: list[list[int]] 

+ set_errors(pullUpError, pullDownError)
+ get_cell_error(): int

ProtoVoterCell

- mainCell: MemCell
- ctrCell: MemCell
- errorLUT: list[list[int]] 

+ set_errors(mainCellErrors, ctrCellErrors)
+ get_cell_error(): int

RoutingMux

- sinkNode: int
- sourceNodeList: list[int]
- cellList: list
- firstStageBlockList: list[FirstStageBlock]
- secondStageBlock: SecondStageBlock

+ build_mux(cell_type)
+ compute_block_errors()
+ compute_optimal_block_size()
+ get_cell_errors()
+ get_defect_edges()
+ get_mux_unusable()
+ set_errors(RandomErrorGenerator)

FirstStageBlock

- sinkNode: int
- sourceNodeList: list[int]
- cellList: list
- blockUnusable: bool

+ compute_block_error()
+ get_defect_edges()
+ set_errors(RandomErrorGenerator)

SecondStageBlock

- sinkNode: int
- sourceNodeList: list[list[int]]
- cellList: list
- blockUnusable: bool

+ compute_block_error()
+ get_defect_edges()
+ set_errors(RandomErrorGenerator)

Figure 11: Low-level UML class diagram of fault-tolerant-routing-mux module. Source:
author.

To run the simulation based on the loaded RR graph file, the FaultSimulator class has
to be instantiated with a cell type, an RR graph file name, and either a single probability
Pequal or individual probabilities for each type of error PSA0, PSA1 and PUD. If a single
probability Pequal is given, its value is attributed to each error type. This means for
Pequal = 0.01 a given memristor will have P (SA0) = P (SA1) = P (UD) = 0.01, P (FF ) =

0.97 where P (SA0) is the probability of a SA0 error occurring, P (SA1) is the probability
of a SA1 error occurring, P (UD) is the probability of a UD error occurring, and P (FF )

is the probability for the memristor to remain error-free. The error probabilities are
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FaultSimulator

- rrg: RRGraphParser
- reg: RandomErrorGen
- muxes: list[RoutingMux]

+ run_standalone_sim()
+ run_simulation()

RandomErrorGen

- pSA0: float
- pSA1: float
- pUD: float

+ gen(): float

RRGraphParser

- cblockId: int
- switchboxId: int
- muxDict: dict{int: list[int]}
- fileTree: ElementTree

+ parse_switches()
+ parse_rr_edges()
+ get_mux_dict(): dict
+ get_total_num_edges(): int
+ update_rr_graph(filename: str, edges: dict)

RoutingMux

- sinkNode: int
- sourceNodeList: list[int]
- cellList: list
- firstStageBlockList: list[FirstStageBlock]
- secondStageBlock: SecondStageBlock

+ build_mux(cell_type)
+ compute_block_errors()
+ compute_optimal_block_size()
+ get_cell_errors()
+ get_defect_edges()
+ get_mux_unusable()
+ set_errors(RandomErrorGenerator)

Figure 12: High-level UML class diagram of fault-tolerant-routing-mux module. Source:
author.

considered to be independent between memristors, which means for example that the
probability for a 2T2R cell to stay error-free is given by Ppull�up(FF ) · Ppull�down(FF ).

The RR graph file is then loaded and parsed by a RRGraphParser instance and a
RandomErrorGen instance is created with the input probabilities. With the parsed RR
graph and the given memory cell type, routing multiplexers are created and stored in a list.
By calling run_simulation, the function set_errors is called in each multiplexer providing
the aforementioned RandomErrorGen instance to simulate memristor errors in each cell
of the routing multiplexer. Then the block errors are computed and for each multiplexer,
the defect cells are stored in a list and the defect edges are stored in a dictionary indexed
by sink pin. The simulation also keeps a counter of how many multiplexers are unusable.

After the simulation, the defect edges dictionary is used to update the RR graph file.
The ElementTree class stores the XML-structured information from the RR graph file as
Python lists and dictionaries, which are not efficient to iterate through due to their size.
For efficiency, two Python sets are created. The first set contains all routing edges from
the rr_edges node and the second is a set of source-sink tuples created from the defect
edges dictionary as the pairs are always unique. The latter is used to find every node
corresponding to a defect edge and save these nodes in a new set of defect edges. Then
the set of defect edges is subtracted from the set of all edges to keep only the defect-free
routing edges, already typed as ElementTree nodes. For speed, the complete rr_edges

node is removed from the original ElementTree root and a new one with the same name is
created using the defect-free edges set as child nodes. The RR graph file is then updated
through the write method of the ElementTree class.
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The last step in the simulation is to generate a report. The report header contains the
architecture and circuit design files used, the simulation time, the time spent to update
the RR graph file and each error probability considered. The report body contains the
absolute and relative number for each error occurrence in the memory cells and defect
edges, as well as the percentage of unusable multiplexers. For debugging reasons the
report also provide the total number of routing edges in the device and the total number
of routing multiplexer edges.

The second type of simulation is implemented as a class function and can be run
independently. The standalone simulation takes as input a number n of multiplexers to
be created with a chosen cell type T and an array of failure probabilities Pequal which
works the same as above. The standalone simulation creates the n multiplexers with the
given memory cell type and simulates each memristor error as independent probabilities.
At the end of the simulation, the effect of the error in each memory cell is computed
followed by the effect on the multiplexers. As an output, the simulation delivers a report
containing the number of defect cells detailed with the count of each error, the number of
defect routing paths, and the number of unusable multiplexers. All of these metrics are
given for each error probability in the input array. Listing 4.2 shows an example usage of
the python module by itself.

import fault-tolerant-routing-mux as ftrm

import numpy as np

# Standalone simulation

p_array = np.arrange(0., 0.0006, 0.0001)

num_muxes = 10000

ftrm.FaultSimulator.standalone_sim(p_array, num_muxes, ftrm.MemCell)

# RR graph file simulation

fault_sim = FaultSimulator(ftrm.ProtoVoterCell, "arch_file.xml", p=0.005)

fault_sim.run_simulation()

Listing 4.2: FTRM example usage. Source: author.
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4.3 VTR Integration

The Python module is also integrated into the VTR toolflow for ease of use. The
toolflow described in Chapter 2 is implemented in "$VTR_ROOT/vtr_flow/scripts/flow.py"
and the "run_vtr_flow.py" script acts as a wrapper for it. As both the toolflow and the
developed module are written in Python, the first step is to import the fault-tolerant-

routing-mux module inside the "flow.py" file. As the module is related to the routing
part of the toolflow, it is integrated in the VPR stage, and six additional command line
arguments are added. As the new options are not recognized by VTR, they are automat-
ically forwarded to the VPR stage by the "run_vtr_flow.py script".

The first argument is --fault_sim, which when used, runs the fault simulation with
a default Pequal = 0.0005 considering 2T2R memory cells. The second new argument
is --cell_type, which has to be followed by either MemCell or ProtoVoterCell to set
which class is to be used as memory cells in the fault simulation. The last four arguments
are responsible for setting the fault probabilities. Using --equal_fault, --psa0, --psa1
and --pud followed by a number between 0.0 and 1.0 respectively sets Pequal, P (SA0),
P (SA1) and P (UD). If --equal_fault is used with a value greater than 0.33 it defaults
to 33% chance for each error type (and 1% of a chance of staying error-free). The use
of --equal_fault also overwrites any other command for individual probabilities. A
summary of added options in shown in Table 4 and two usage examples of this integration
are shown in Listing 4.3.

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py circuit.v fpga_arch.xml --

,! device fixed20x20 --channel_width 60 --write_rr_graph rr_graph.xml

,! --fault_sim --equal_fault 0.0001 --cell_type ProtoVoterCell

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py circuit.v fpga_arch.xml --

,! device fixed20x20 --channel_width 60 --write_rr_graph rr_graph.xml

,! --fault_sim --pud 0.0001 --psa1 0.0002 --psa0 0.0003

Listing 4.3: VTR example usage with FTRM integration. $VTR_ROOT is the directory
where VTR is installed. Source: author.

The expected execution flow assumes the user has defined a fixed device channel
length. If in addition to a fixed channel width VPR is set to write a RR graph file,
execute routing or execute analysis, flow.py runs VPR twice to ensure the produced files
in the first run can be re-loaded into VPR. To take advantage of this behavior, an extra
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Command line option Explanation
--fault_sim Runs defect simulation
--cell_type MemCell|ProtoVoterCell Define memory cell type to use in simulation
--psa0 p Set P (SA0) = p
--pSA1 p Set P (SA1) = p
--pSA1 p Set P (UD) = p
--equal_fault p Set P (SA0) = P (SA1) = P (UD) = p

Table 4: Command line options to run defect simulation with VTR. Source: author.

condition is added to run VPR a second time if --fault_sim is used. Listing 4.4 shows
the final execution flow. If --fault_sim is used, all other simulation arguments are
parsed and removed from the arguments list and --write_rr_graph is added if not yet
included as a RR graph file is needed for the simulation. Then VPR is run once, followed
by the defect simulation, and then VPR is run again with the modified RR graph file
from FTRM as input. An important implementation detail is that between VPR runs the
--write_rr_graph argument is removed and swapped by --read_rr_graph, otherwise
VPR generates another RR graph file in the second run and compares lazily to the RR
graph from the first run. Even in the case of no defect cells being removed from the
original file, FTRM may swap node order in the original file and the VPR check fails.
The final VTR flow with the defect simulation is shown in Figure 13.
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Figure 13: VTR CAD flow with integrated defect simulation of routing resources
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import fault-tolerant-routing-mux as ftrm

...

# Pack/Place/Route
if should_run_stage(VtrStage.VPR, start_stage, end_stage):

...

if route_fixed_w:

# The User specified a fixed channel width
do_second_run = False

do_fault_sim = False

second_run_args = vpr_args

if (...) or "fault_sim" in vpr_args:

do_second_run = True

if "fault_sim" in vpr_args:

# Set sim run and pop argument for VPR
do_fault_sim = True

ftrm_args = parse_and_pop_ftrm_args(vpr_args)

# Save rr_graph for simulation
if "write_rr_graph" in vpr_args:

# gets current defined RR graph filename
fault_sim_rr_graph = temp_dir / vpr_args["

,! write_rr_graph"]

else:

# defines a default RR graph file to be saved
fault_sim_rr_graph = architecture_copy.name + ".xml"

vpr_args["write_rr_graph"] = fault_sim_rr_graph

# First VPR run
vtr.vpr.run(...)

if do_fault_sim:

# Run simulation before second VPR run
fault_sim = ftrm.FaultSimulator(ftrm_args)

fault_sim.run_simulation()

# pop write argument to avoid second run check fail
vpr_args.pop("write_rr_graph")

# add read_rr_graph in place
vpr_args["read_rr_graph"] = Path(fault_sim.

,! get_faulty_rr_graph()).name

if do_second_run:

# Run vpr again with additional parameters.
# This is used to ensure that files generated by VPR can be

,! re-loaded by it
vtr.vpr.run_second_time(...)

...

Listing 4.4: Integration of fault-tolerant-routing-mux module into flow.py. Some code
parts omitted for simplicity. Source: author.
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5 EVALUATION

To evaluate the proposed architecture, the defect simulation is run on the chosen
architecture from Chapter 3 and on circuits from two benchmarks: MCNC20 and the
VTR circuit benchmark [3,27]. The MCNC20 benchmark is composed of small to medium
sized circuits for today’s standards. Most of them only make use of logic blocks, but they
are nonetheless used to directly compare the work done by Freiberger and to demonstrate
the novel architecture effect on simpler designs. The VTR benchmark on the other hand
is composed of medium to large designs which make use of hard blocks such as multipliers
and memory slices. The designs are a good baseline of analysis as there are relevant
implementations such as the Secure Hash Algorithm (SHA). A subset of circuits from
the VTR benchmark is chosen as some are too large to enable multiple test runs due to
simulation time.

To ensure VPR creates a device of fixed sized, two fixed FPGA layouts are included
in the target architecture file used in this work (k6_frac_N10_mem32K_40nm.xml):
fixed20x20 which defines a device of 20 blocks of width and height and fixed30x30 which
defines a device with 30 blocks of width and height. Both layouts follow the same tiling
pattern as the <auto_layout> already defined in the architecture file. The relation of
which circuit was implemented in which layout is shown in Tables 5 and 6 with the block
utilization of each circuit in the device. For the 20x20 grid a channel width of 60 is
chosen and for the 30x30 grid a channel width of 80 is used. These values were obtained
experimentally by Freiberger to be the minimum channel width that allowed routing the
largest design on the layout.

From both tables, it is seen that the total FPGA utilization is not representative of
the design load on the FPGA. Three clear examples of designs with high device load
are the "mkPktMerge.v" on the 30x30 grid and the "diffeq2.blif" and "elliptic.v" designs
on the 20x20 grid. The first and second designs have less than one-fifth of total FPGA
utilization but use a considerate amount of complex blocks. The utilization of memory
blocks from "mkPktMerge.v" is 94% in the 30x30 grid and the utilization of multipliers
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20x20 grid, 60 channel width
FPGA Utilization

Design Global I/O Logic Multipliers Memory
elliptic.blif 0.65 0.43 0.98 0 0

des.blif 0.43 0.87 0.46 0 0
bigkey.blif 0.42 0.74 0.50 0 0
apex2.blif 0.37 0.07 0.60 0 0
dsip.blif 0.36 0.74 0.39 0 0
seq.blif 0.35 0.13 0.56 0 0
s298.blif 0.33 0.02 0.56 0 0
alu4.blif 0.28 0.04 0.47 0 0
diffeq.blif 0.27 0.18 0.41 0 0
apex4.blif 0.26 0.05 0.42 0 0

ch_intrinsic.v 0.25 0.40 0.28 0.11 0
misex3.blif 0.25 0.05 0.42 0 0
diffeq1.v 0.22 0.45 0.15 0.62 0
ex5p.blif 0.22 0.12 0.33 0 0
tseng.blif 0.21 0.30 0.27 0 0
diffeq2.v 0.19 0.28 0.12 0.88 0

stereovision3.v 0.05 0.07 0.06 0 0

Table 5: FPGA utilization for designs evaluated on a 20x20 grid with a channel width of
60. Source: author.

by "diffeq2.v" reaches 88% of the blocks in the 20x20 grid. By looking only at the total
FPGA utilization one may think these designs can withstand high defect rates in routing
elements due to the low utilization, which does not hold.

The best example of the importance of looking into the utilization of separate func-
tional blocks is given by "elliptic.blif" with 65% global device utilization. By looking
into individual block types the design has 98% of logic block utilization and it was shown
experimentally during the simulations that the chosen channel width is heavily depen-
dent on a good placement solution. VPR uses simulated annealing to find a placement
solution. The algorithm starts with a random initial placement and a temperature pa-
rameter. To find a solution, swaps are made between blocks, and the cost of the move
is calculated to define the probability to accept it. If a move has a negative cost and
lowers the current temperature, it is always accepted, otherwise the higher the cost, the
lower the acceptance probability. If the move is accepted, the temperature is updated
and another move is attempted until the temperature reaches a set minimum threshold.
Every parameter of simulated annealing can be user-defined through the command line,
but the default parameters in VPR were obtained experimentally and are usually better
than any custom parameter provided [3]. The best-found alternative to ensure a viable
placement and consequent routing from VPR was to use different "seeds" for the initial
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30x30 grid, 80 channel width
FPGA Utilization

Design Global I/O Logic Multipliers Memory
or1200.v 0.41 0.87 0.43 0.05 0.12

mkSMAdapter4B.v 0.28 0.44 0.29 0 0.31
sha.v 0.24 0.08 0.35 0 0

raygentop.v 0.23 0.58 0.18 0.43 0
mkPktMerge.v 0.19 0.52 0.05 0 0.94

boundtop.v 0.13 0.34 0.14 0 0
ch_intrinsics.v 0.11 0.26 0.11 0 0.06

diffeq1.v 0.10 0.29 0.06 0.24 0
diffeq2.v 0.09 0.18 0.05 0.33 0

stereovision3.v 0.02 0.05 0.02 0 0

Table 6: FPGA utilization for designs evaluated on a 30x30 grid with a channel width of
80. Source: author.

placement.

From the previous insight, each combination of architecture and circuit is run multiple
times with different random seeds to avoid local minima in the placement and routing
algorithms when finding a valid solution. To implement such behavior in the simulation
flow, the custom-defined VTR tasks are run with the script option --seed X appended
to it, where X varies from 1 to 10. The --seed option is used by VPR to set a random
seed responsible for defining the initial placement. An example of the simulation runs is
shown in Listing 5.1

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_task.py fault_sim_20x20 -j 8 -s --

,! seed 1

$> $VTR_ROOT/vtr_flow/scripts/run_vtr_task.py fault_sim_20x20 -j 8 -s --

,! seed 2

Listing 5.1: Example of running a VTR task providing a different seed at each task run.

5.1 Evaluation metrics

With the simulation environment set up, the evaluation metrics for the defect simula-
tions are defined. Following Freiberger, the first metric analyzed is the number of designs
successfully routed with a given error probability. Considering 0% defect probability all
chosen designs are successfully routed in their respective architecture and device grid. All
defect simulations are run with equal probabilities for error types SA0, SA1, and UD,
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and consider the defect probabilities of any two memristors as independent. The second
metric analyzed is the percentage of defective memory cells versus the percentage of defect
routing edges in a given device grid. The third metric considered is the relative variation
of the critical path delay between the error-free solution and the design implementation
post-defect simulation. The critical path delay metric is considered a relative variation
because the architecture proposed by this work is purely functional. No modeling was
done regarding the area, delay, or power of the new routing element. This assumption
also justifies the use of a 40 nm technology architecture while considering 22 nm node
technology with 150 mV of gate-boosting in Chapter 4.

Although no circuit modeling was done for the proto-voter, its area and delay can still
be evaluated. Regarding the transistor area of the proto-voter cell, the number and type
of circuit elements used can be used to estimate the real gain against a 6T SRAM cell.
The proposed cell has one transistor for each memory cell inside it, two driven by the
control cell and two more to build the inverter, totaling six transistors plus the routing
switch. As discussed in Chapter 2, the memristors do not share transistor fabric area,
and even though the proto-voter cell has the same number of transistors as a standard
SRAM cell all but one of them are NMOS transistors. An SRAM cell has usually two
PMOS transistors for signal latching while the proto-voter cell only has one needed for
the inverter. As electron mobility is lower in PMOS-type devices, they are usually larger
than NMOS devices to drive the same current. Additionally, the NMOS transistors in
the word line in SRAM cells are usually larger than NMOS in the latch structure so that
they can overwrite the information latched during a write operation. In the proto-voter
cell, all NMOS transistors are of the same size. From the assumptions just given, it is safe
to say that the transistor area of the proto-voter cell can be smaller than the transistor
area of a 6T-SRAM cell. Assuming half of the electron mobility in PMOS devices against
NMOS devices, the proto-voter cell has at least 14,29% area gain versus 6T-SRAM.

Concerning the cell delay, the routing switch connected to a wiring segment is still
an NMOS pass-transistor. As gate-boosting is considered to justify the cascade design of
the proto-voter cell, it is also possible to assume the proposed architecture is faster than
a device with the same size technology node using pass-transistors or transmission gates
as switches and does not have gate-boosting available as shown by [10].

A final metric is used to verify the correctness of the simulation implementation. As
previously defined, the defect probabilities of memristors are independent. From Table 1,
the probability of a SA0 error in the 2T2R cell is given by:
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P (SA0) · P (FF ) + P (SA0) · P (SA1) + P (FF ) · P (SA1)

As both pull-up and pull-down memristor error probabilities are the same, the SA1
error probability is given by the same relation (in the 2T2R cell). Following this logic, the
probabilistic models for every type of error in both cells are plotted against the obtained
error probabilities in the defect simulation. This way if the simulation values are close to
the mathematical ground truth it is safe to assume the simulations are indeed correct.

5.2 Results

The defect simulation is run for both the 2T2R cell and the proto-voter cell. The
range of defect probability chosen was from 0% to 3% with multiple step sizes. Between
0% and 0.01% there is a 0.001% increment. Between 0.01% and 0.1% there is a 0.005%
increment. From 0.1% to 0.25% there is a 0.05% increment and from 0.25% to 3% there
is a 0.25% increment. Once more this probability is used for Pequal, which means for a
considered probability of 3% there is 91% of probability of a memristor staying error-free
and 9% probability of it presenting one of the 3 possible error types, each of them being
equiprobable with P (SA0) = P (SA1) = P (UD) = 3%.

Graphs 14, 15 and 16 represent the obtained error probabilities in the defect sim-
ulations against the probabilistic model assumed. As there is randomness involved in
generating each memristor error, the values are not exact but follow the ground truth
with great precision. An important insight from this metric is that for the probability
range chosen, the 2T2R cell present similar probabilities for all error types. For greater
error probabilities UD type errors actually grow faster as only one memristor needs to
present this error for the complete cell to present an UD error as well. In contrast, the
proto-voter cell presents almost ten times more SA0 errors but much less SA1 and UD
errors. This behavior is explained by the attempt to turn defect cells into SA0 cells as
it is the most permissive error type in a multiplexer stage. The expected probability
for a proto-voter cell with 3% of memristor defect probability to present a SA1 error is
approximately 0.31% against 5.55% in the 2T2R cell. For UD errors, the expected chance
from the proto-voter cell is 1.05% against 6.09% in the 2T2R cell, again considering 3%
probability of memristor defect. Although not shown, the chance of staying free of error
is slightly reduced: 77.77% in proto-voter cells against 82.81% in 2T2R cells considering
3% defect chance.

Overall, given the same defect chance for both architectures, the proto-voter cell will
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Figure 14: SA0 cell probabilities obtained for each cell versus mathematical ground truth.
Source: author.

present fewer defect edges as shown in Graphs 17 and 18. Both graphs show the relative
amount of defective memory cells and routing edges versus defect probability for both
cell architectures. The 2T2R cell presents a linear increase in defect memory cells and a
quadratic increase in defect edges as UD errors affect the whole multiplexer and in the
studied defect probability range, it is as equiprobable as the other errors. The proto-voter
cell presents a linear increase in both defect memory cells and routing edges, as SA0
errors are more common and their effect is restricted solely to a single routing edge. It
is also important to note that the number of defective memory cells grows faster in the
pro-voter cell: considering 3% of defect probability the proto-voter cell has 22.23% of
defective memory cells versus 17.19% in 2T2R cells. Here the relevance of fewer SA1 and
UD errors is highlighted.

Graphs 19 and 20 show the number of successfully implemented designs with a given
defect probability. Designs implemented with the 2T2R cells are in dark blue bars and de-
signs implemented with the proto-voter cell are in light blue. In the 20x20 grid 17 designs
can be implemented free of errors and in the 30x30 grid 10 designs can be implemented
free of error. The first important insight of both graphs is that for every scenario where
defect probability is in place, the proto-voter cells enable at least two more designs to
be successfully routed. The second insight is that there is some deviation where higher
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Figure 15: SA1 cell probabilities obtained for each cell versus mathematical ground truth.
Source: author.

defect probabilities enable more designs to be implemented than lower ones. This may be
due to the randomness of both the work done by VPR and the error generation from the
defect simulation.

Going more in detail using 2T2R memory cells, as defect probability increases more
routing resources are affected and unusable. The higher the device utilization from a
single block type in an FPGA, the lower its flexibility during placement to avoid blocks
near defect routing elements. In the 20x20 grid, the first designs to fail with defect
probabilities of only 0.002% are "elliptic.blif" and "diffeq2.v" due to their high utilization
of logic blocks and multipliers. It is also possible to argue that the use of memory blocks
is more critical to routing as the number of implemented designs falls more rapidly in the
30x30 scenario, where designs utilize at most 43% of logic blocks and multipliers. With
defect probabilities greater than 0.2% no devices can be implemented against 0.750% in
the 20x20 grid scenario.

In the case where proto-voter cells are used, the robustness is clearly shown. Apart
from a loss of one design at 0.065% defect probability, all of the 30x30 designs are fully
implemented up to 0.09% defect probability. At the same defect rate, the 2T2R cell can
only route 2 out of 10 designs. In the 20x20 grid case up to 16 out of 17 designs can
be routed with defect probability up to 0.1%, where only 6 designs are still routed using
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Figure 16: UD cell probabilities obtained for each cell versus mathematical ground truth.
Source: author.

2T2R cells. Considering at least one design routed, the proto-voter cells can withstand
up to 2.25% defect probability for each error type or 6.75% defect probability in total,
representing 3 times more robustness against 2T2R cells which withstand up to 0.75%
defect probability (2.25% in total). In the 30x30 grid case, the robustness is even greater:
the proto-voter cell can withstand up to 2% defect probability until not being able to
route any design against 0.2% maximum defect tolerance in 2T2R.

Regarding critical path delay variation, Graph 21 illustrates the results from all device
grids and memory cells used. The worst-case scenario in all combinations is an approx-
imate increase of 40% in the critical path delay. Common case scenario are variations
between 10% more or less the original critical path delay. The improvements can be ar-
gued as a better effort from VTR to find a viable place and route solution as the original
is not valid anymore due to defect routing resources. If a better solution is not available
or if a local minimum is found, then there is the case of an increase in the critical path
delay.
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Figure 17: Percentage of defect routing edges and memory cells using 2T2R. The amount
of defect edges grows quadratically due to the presence of UD errors or multiple SA1
errors in the same multiplexer. Source: author.

Figure 18: Percentage of defect routing edges and memory cells using proto-voter cell.
The amount of defect edges grows linearly due to the mitigation of SA1 and UD error
types. Source: author.
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Figure 19: Number of designs routed in a 20x20 grid for each memory cell type with
increasing defect probabilities. Source: author.

Figure 20: Number of designs routed in a 30x30 grid for each memory cell type with
increasing defect probabilities. Source: author.
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(a) CPD variation for 2T2R cell and 20x20
grid

(b) CPD variation for 2T2R cell and 30x30
grid

(c) CPD variation for proto-voter cell and
20x20 grid

(d) CPD variation for proto-voter cell and
30x30 grid

Figure 21: Critical path delay variation before and after defect simulation. Source: author.
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6 CONCLUSION

In the scope of this work a novel architecture of routing elements based on non-volatile
resistive memory is presented. The architecture has the same number of transistors as
currently used volatile cells but may be smaller due to having one less PMOS in favor
of an NMOS device. Regarding the delay, the architecture makes use of gate-boosting
while using the same type of routing switch as current commercial technologies, also
being supposedly faster than current devices that do not make use of gate-boosting. The
robustness in the design comes from the attempt to forward a more permissive error type
to the routing switch so that other switches in the routing multiplexer can still be used.

To help evaluate the proposed architecture performance, a Python module to simulate
memristor defects in 2T2R memory cells or in the proposed architecture is developed. The
module supports a standalone simulation of an arbitrary number of disconnected routing
multiplexers, as well as a simulation based on a given routing resource graph file to better
evaluate error effects on a fully connected network of routing resources. The module is
optimized to load and update large RR graph files, has a complete test suite, and is openly
available on GitHub.

An open-source collection of FPGA CAD tools called VTR is also used. VTR provides
ready-to-use FPGA architecture files and circuit designs, as well as a complete toolflow
responsible for implementing a chosen design in the desired architecture. The developed
Python module is integrated into VTR together with customizable parameters over the
command line. To fully evaluate the proposed routing element architecture, the defect
simulation is run for multiple defect probabilities between 0% and 3% over designs from
MCNC20 and the VTR benchmarks in a reasonable architecture for today’s standards:
“k6_frac_N10_mem32K_40nm.xml". The results showed that both the simulation is
correctly implemented, supported by mathematical proof, and the proposed architecture
can withstand up to 10 times more errors in comparison to the 2T2R memory cell.

A possible extension to this work is evaluating more complex designs and architec-
tures. Possible options for such extension are the Koios benchmark [28] and 22 nm tech-
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nology architectures with DSP blocks and gate-boosting support [29]. This combination
would allow evaluation of the design for deep-learning circuit modules, which has been
increasingly relevant in literature.

Another possible extension is to model area, power and delay of the proto-voter cell
using SPICE device models for better accuracy in improvements. The greatest challenge
it may prove is to find an available memristor model, as brief research by the author did
not prove successful.
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