
PEDRO HENRIQUE CARVALHO DOS REIS

MACHINE LEARNING APPLIED TO CARD
PAYMENT FRAUD DETECTION

São Paulo
2022

PEDRO HENRIQUE CARVALHO DOS REIS

MACHINE LEARNING APPLIED TO CARD
PAYMENT FRAUD DETECTION

Work presented to the Polytechnic School

of the University of São Paulo to obtain the

Computer Engineer Title

São Paulo
2022

PEDRO HENRIQUE CARVALHO DOS REIS

MACHINE LEARNING APPLIED TO CARD
PAYMENT FRAUD DETECTION

Work presented to the Polytechnic School

of the University of São Paulo to obtain the

Computer Engineer Title

Major:

Computer Engineering

Advisor:

Prof. Dr. Reginaldo Arakaki

São Paulo
2022

Prof. Reginaldo Arakaki

ACKNOWLEDGMENTS

This project was only possible because of the effort, directly or indirectly, of a group
of people who supported me during this journey.

To my advisor, Prof. Dr. Reginaldo Arakaki, who spared no efforts to give me
all possible support for the project realization. Thus thank you so much professor for
the days in the Digital Systems Laboratory where we spent the mornings discussing the
improvements and next steps to conclude the project.

To the professionals from bank industry, who, through professor Reginaldo, I had
contact with and helped me clarify doubts and also suggested improvements. Your ideas
and clarifications were of great help for me.

To the countless friends who, even without knowing or having knowledge of the
project’s subject, did not spare any effort to help me in the spelling maintenance of
the monograph.

To my family members for staying with me during these last intense months of project
and giving me all the support to keep me focused on the experiments to finish this work.

RESUMO

As apostas financeiras envolvidas na detecção de fraudes com cartões de pagamento
são enormes e é um campo onde o desempenho e a decisão em tempo real são primordiais.
Por enquanto, os algoritmos Gradient Boosted Decision Trees (GBDT) são os mais utiliza-
dos para este tipo de problema, pois é o algoritmo de aprendizado de máquina mais bem
sucedido para dados tabulares. Entretanto, tem sido sugerido em trabalhos recentes que
os métodos de aprendizagem profunda poderiam superar o GBDT em dados tabulares.
A maioria dos estudos sobre ele compara os resultados em uma ampla gama de conjuntos
de dados, mas nenhum deles se concentra na detecção de fraude. A questão da detecção
de fraudes é particularmente complicada de ser abordada do ponto de vista do apren-
dizado de máquina, pois os bancos de dados dispońıveis são compostos principalmente
de pagamentos não-fraudulentos: isto é chamado de aprendizado desbalanceado. Como
a detecção de fraudes é uma questão muito espećıfica, foi decidido testar se os resultados
obtidos de trabalhos recentes podem ser aplicados a este problema.

Palavras-Chave – detecção de fraude, aprendizado profundo, aprendizado de máquina,
dados tabulares, dados desbalanceados, redes neurais, árvores de decisão, pagamentos
fraudulentos.

ABSTRACT

The financial stakes involved in detecting card payment fraud are enormous and it
is a field where performance and real-time decision are primordial. For now, Gradient
Boosted Decision Trees (GBDT) algorithms are the most used for this kind of problem,
as it is the most successful machine learning algorithm for tabular data. However, it has
been suggested in recent papers that deep learning methods could outperform GBDT on
tabular data. Most of the studies about it compare the results on a wide range of datasets,
but none of them focus on fraud detection. The issue of fraud detection is particularly
complicated to address from a machine learning perspective, as the available databases
are composed mostly of non-fraudulent payments: this is called Imbalanced Learning. As
fraud detection is a very specific issue, it was decided to test if the advanced results of
recent papers can apply on this problem.

Keywords – fraud detection, deep learning, machine learning, tabular data, imbalanced
data, neural network, decision tree, fraudulent payment

LIST OF FIGURES

1 Number of purchase transactions on global general purpose card brands

from 2014 to 2020 . 12

2 Dataset split configuration . 20

3 The code structure . 24

4 Perceptron . 27

5 Multilayer Perceptron . 27

6 Loss function over the epochs for each number of hidden layer considered

in the tuning . 29

7 F1 score over the epochs for each learning rate considered in the tuning . . 30

8 FT-T architecture . 34

9 XBNet architecture . 35

10 MLP loss curve . 38

11 MLP score curve . 38

LIST OF TABLES

1 Dataset properties . 20

2 Confusion matrix . 22

3 GBDT preprocessing results using imbalanced training data 26

4 GBDT preprocessing results using balanced training data 26

5 Best hyperparameter configuration set for XGBoost 26

6 XGBoost result after hyperparameter tuning 27

7 MLP parameters . 28

8 MLP result after tuning the number of hidden layers and learning rate . . 30

9 MLP - Partial Results II . 30

10 Best set of regularizers parameters . 31

11 Results of the non regularized (MLP) and regularized (R-MLP) MLP versions 31

12 MLP results for each loss function . 32

13 The ResNet training parameters . 33

14 ResNet model best trial’s hyperparameter set 33

15 ResNet result . 33

16 FTT result . 34

17 XBNet result . 35

18 Imbalanced training result . 37

19 Balanced training result . 37

20 Model’s result. t- means a tuned model . 39

21 XGBoost hyperparameter tuning configuration set 46

22 Regularized MLP hyperparameter tuning configuration set 46

23 ResNet hyperparameter tuning configuration set 47

24 Example dataset to learn how Target Encoder works 48

25 The encoded example dataset . 49

CONTENTS

Part I: INTRODUCTION 11

1 Introduction 12

Part II: RELATED WORKS 14

2 Related Works 15

2.1 Well-tuned Simple Nets Excel on Tabular Datasets 15

2.2 Revisiting Deep Learning Models for Tabular Data 16

Part III: PRELIMINARY CONSIDERATIONS 17

3 Preliminary Considerations 18

3.1 Programming Language, Frameworks and Technologies 18

3.1.1 Optuna . 19

3.1.2 Computational Platform . 19

3.2 Dataset . 19

3.3 Evaluation Metrics . 21

Part IV: EXPERIMENTS 23

4 Experiments 24

4.1 Code Structure . 24

4.2 Gradient Boosted Decision Trees . 25

4.2.1 Preprocessing . 25

4.2.2 Hyperparameter Tuning . 26

4.3 Multilayer Perceptron . 27

4.3.1 Number of Layers . 28

4.3.2 Learning Rate . 29

4.3.3 Preprocessing . 30

4.3.4 Regularization Cocktail . 31

4.3.5 Loss Function . 31

4.4 Residual Network . 32

4.5 Feature Tokenizer - Transformer . 34

4.6 eXtremely Boosted Network . 34

Part V: RESULTS & DISCUSSION 36

5 Results & Discussion 37

5.1 Imbalanced vs Balanced Training . 37

5.2 Unregularized vs Regularized MLP . 38

5.3 GBDT Supremacy . 39

5.4 Deep learning models . 39

Part VI: CONCLUSION 40

6 Conclusion 41

References 43

Appendix A – Hyperparameter Tuning Configuration Set 46

A.1 XGBoost . 46

A.2 MLP . 46

A.3 ResNet . 47

Appendix B – How does Target Encoding works? 48

PART I

INTRODUCTION

12

1 INTRODUCTION

These days, payments using cash are increasingly rare and, although solutions such as

checks have appeared it is inevitable that the majority of purchases are made from a bank

card. According to a study published by Statista [1], 468 billion bank card transactions

were made in 2020, a 6% growth over 2019.

Figure 1: Number of purchase transactions on global general purpose card brands from
2014 to 2020

Source: Study published by Statista [1].

Even though it is already a global trend, credit card payments are not completely se-

cure. A study by NilsonReport [2] estimates that in the next 10 years, $408.5 billion will

be due to bank card payment fraud. These frauds are made possible by several factors,

including card loss, improper sharing of card data, or even cardholder misuse. There-

fore, financial corporations must have a fraud detection system in place before validating

payments.

Historically, anti-fraud systems were based on a pre-programmed set of rules that

highlights a payment as fraudulent, e.g, in the past, payments made on holidays, where

13

the user did not inform the bank that he would be traveling, were considered as a fraud.

However, nowadays with online shopping, fraudsters have much more flexibility when it

comes to fraud, making these ruleset systems weak to detect frauds.

With computational advancement in recent decades, computer data processing has

increased significantly, allowing technologies such as machine learning (ML) to enter the

domain of bank fraud detection. In this type of system, a ML model analyzes historical

data and learns from it in order to be more efficient in fraud detection. Some benefits of

this type of system are:

• Speed of detection: fraud is never an expected event, so the system needs to

detect it quickly. ML enables this detection in real time;

• Manages mass amounts of data: with traditional systems, fraud detection can

be a laborious task as agents may have to wade through data manually to discover

discrepancies. Credit card fraud detection using ML is able to analyze mass amounts

of data quickly so inconsistencies or connections between various transactions can

be found faster;

• Adaptation to market changes: unlike traditional models that need to rewrite

their rules from time to time, with ML it is possible to monitor new market trends,

learning to better detect the latest fraudsters practices.

This project will study and implement ML models for fraudulent credit card payments.

It will consider recent findings and practices in two types of algorithms in the ML field,

Gradient Boosted Decision Trees (GBDT) and Deep Learning (DL).

PART II

RELATED WORKS

15

2 RELATED WORKS

As mentioned in Section 1, the types of models considered in this project will be

GBDT and DL. The first one, as we will see, is considered the state-of-art when dealing

with tabular datasets, however recent papers have challenged this statement by proposing

neural network (NN) based models that outperform GBDT. In this section it goes a short

description of each considered paper and its results.

2.1 Well-tuned Simple Nets Excel on Tabular Datasets

Focusing on the domain of tabular datasets, [3] studied improvements in deep learning

with better regularization techniques. It shows that the key to improving neural network

performance on tabular data lies in exploiting the joint and simultaneous application of

a large set of modern regularization techniques such as batch normalization, data aug-

mentation, weight decay, dropout, look-ahead optimizer and so on. Thus, even a simple

multilayer perceptron (MLP) achieves state-of-the-art results when conditioned by sev-

eral modern regularization techniques applied simultaneously. Then [3] provides a method

for regularizing a simple MLP network by searching for the best combination/cocktail of

13 regularization techniques for each dataset and providing an understanding of which

regularizers to apply.

With 13 regularizations, a large-scale experiment with 40 datasets show that modern

deep learning regularization methods developed in the context of raw data (e.g., vision,

speech, text) can significantly improve the performance of deep neural networks on tabular

data and outperform XGBoost, the current state-of-the-art method for tabular datasets.

The regularized MLP beat recent deep learning architectures on 38 of 40 datasets and 26

of 40 if compared to XGBoost.

16

2.2 Revisiting Deep Learning Models for Tabular Data

[4] describes the state-of-the-art in deep learning for tabular data and improves the

state of baselines by identifying several simple yet powerful deep architectures.

In fact, a large number of deep learning models for tabular data have been developed in

recent years. However, well-studied DL architectural blocks have not been fully explored

in the context of tabular data, so they are rarely used to design better baselines. With

this, the authors build on well-established architectures that are well known in other fields

and obtain two simple tabular data designs. The first is a residual network (ResNet) that

can serve as an efficient baseline, and the second is the feature tokenizer transformer

(FT-T), a simple adaptation of the transformer architecture that outperforms other DL

solutions on tasks like natural language processing and computer vision.

Comparisons of these models are performed on a wide range of public datasets us-

ing the same training and hyperparameter tuning protocols in order to investigate their

relative performance.

First, it was found that none of the others DL models could systematically outperform

the ResNet model. Due to the ResNet model simplicity, it can serve as a solid foundation

for future work. It has actually the best results for 6 datasets out of 11. Furthermore,

FT-T shows the best performance in most tasks, becoming a powerful new solution in

this field. Interestingly, FT-Transformer turns out to be a more general architecture

for tabular data because it performs well on a wider range of tasks compared to more

traditional ResNet and other DL models. The new baseline is also compared with GBDTs

such as XGBoost and CatBoost, showing that GBDT still performs better on some tasks.

Overall, FT-Transformer provides competitive performance on all tasks, while GBDT and

ResNet perform well only on some subsets of the tasks. Concluding that there is still no

general solution for tabular data among GBDT and deep models.

PART III

PRELIMINARY CONSIDERATIONS

18

3 PRELIMINARY CONSIDERATIONS

Before moving on to the experimental and procedural part, in order to improve the

reader’s understanding of the project, this section will define and clarify some key points,

as well as justify some decisions made and list the used technologies.

3.1 Programming Language, Frameworks and Tech-

nologies

The project was developed in python, a programming language widely used by the

academic and professional environment for data acquisition, processing and analysis. Be-

ing a high-level language and providing open-source libraries, python is a powerful tool

for implementing the data pipelines required for training machine learning models.

The main libraries and frameworks used with python are:

• Pandas: a library for data manipulation and analysis. In particular, it provides

structures and operations for manipulating numeric tables;

• Scikit Learn: an open source machine learning library. In the project scope, it

was used for encoding the numerical features and evaluating the models;

• Category Encoders: using the same syntax pattern as scikit-learn, it is a library

with specific transformation for categorical features;

• PyTorch: an open-source framework optimized for prototyping and implementing

deep learning models. Representing matrices, tensors are the basic unit of PyTorch

and their computation can be accelerated in GPU-enabled environments.

19

3.1.1 Optuna

Most machine learning models have dozens of parameters that can be optimized in

order to improve its performance. In several occasions in this project it will be necessary

to tune model’s hyperparameters and when the number of parameters is large enough,

making a grid search impossible, the optuna [5] library will be used for this purpose.

Optuna [6] is one of the optimization libraries that use sequential model based op-

timization (SMBO). Conventional optimization approaches like grid search and random

search do not make use of the information available regarding the previously explored

hyperparameter search space. Unlike those techniques, SMBO use the historical explo-

ration information to make a more informed decision regarding the direction in which the

optimizer should explore next in the search space. Such a mechanism gives SMBO an

edge over the conventional approaches in terms of convergence speed.

3.1.2 Computational Platform

The computational platform used to develop the project was the Google Colabora-

tory, an open-source machine learning environment that combines, in an interactive way,

executable python code with rich text and charts, the well-known notebooks. Running a

stable python version, it also helps the process of managing the different libraries used.

In addition, Google Colaboratory provides the allocation of GPUs to its notebooks. The

GPUs coupled with PyTorch accelerate the training of deep learning models compared to

a CPU-only environments.

On the other hand, because it is a free platform, Colab allocates the resources dy-

namically [7], not allowing the user to customize his environment, and does not guarantee

the constancy of resources over time, so two runs of the same process may vary in terms

of execution time.

3.2 Dataset

The dataset is composed by 80 million of credit card transactions labeled as fraudulent

or not. Also, it is very imbalanced as less than 1% of the transactions are fraudulent.

The Table 1 shows the dataset properties.

20

#samples 80M

#variables 142

#numerical variables 134

#categorical variables 8

imbalance rate 0.43%

Table 1: Dataset properties

The computational resource used did not support using all 80 million samples to train

and validate the models. So, based on Figure 2, four datasets were generated from the

original one.

Figure 2: Dataset split configuration

Source: Author’s compilation.

• Imbalanced Train Data: used to train the models as the data is in the real world,

imbalanced;

• Balanced Train Data: used to train the models in a fully balanced way;

• Validation Data: used to validate the models, i.e, check overfitting/underfitting

and tuning the hyperparameters;

• Test Data: used to test the models. After training and validation, all the metrics

will be calculated using this dataset.

21

It is important to mention that both the validation and testing data are imbalanced,

as they need to represent the behavior of the real data.

Little effort was required to preprocess the data because the dataset was already

optimized, i.e, there were no missing values and all variables shared the same universe of

measurement units. Thus, preprocessing was based on just encoding the numerical and

categorical features before training the models.

For the numerical features, four encoders from the scikit-learn library were considered:

1. None: x

2. Standard: x−xmean

xstd deviation

3. MinMax: x−xmin

xmax−xmin

4. Robust: x−xmedian

xIQR
, which suffers less influence from outliers

For the categorical features, three encoders from the category encoders library [8]

were considered: Target, CatBoost and MEstimate. It was decided to focus on target

encoding (catboost and mestimate being derived from it) for two reasons. First, one hot

encoding wasn’t an option because the number of features would have been huge since

the categorical features took too many different values. We also considered using a label

encoding, but after a quick test we decided to put this option aside as it wasn’t showing

great results.

3.3 Evaluation Metrics

In order to evaluate and compare different models when predicting the credit card

frauds, it’s necessary to establish a evaluation metric to rank these models. Considering

the dataset properties from Table 1, we are dealing with an Imbalanced Binary Classifi-

cation problem because it’s needed to classify the input data into two possibilities, fraud

or non fraud, being the frauds representing 0.43% of total data. Thus, the first metric

that came in mind is the confusion matrix that in this case it is a 2x2 matrix representing

all classified instances of the test dataset.

22

Predict 0 Predict 1

Actual 0 True Negative False Positive

Actual 1 False Negative True Positive

Table 2: Confusion matrix

Translating the true/false and positive/negative nomenclature to the project, it gives:

• True Negative: the transaction is not a fraud and it was classified as non fraud;

• False Positive: the transaction is not a fraud, but it was classified as a fraud;

• False Negative: the transaction is a fraud, but it was classified as non fraud;

• True Positive: the transaction is a fraud and it was classified as a fraud;

Based on the confusion matrix, a straight to go metric would be the accuracy that

is defined as TN+TP
TN+FP+FN+TP

. However, for imbalanced problems, it does not represent a

good metric, why?

Considering the test dataset, from 300K transactions it has 1370 frauds. Now imagine

a poorly performing model that predicts every transaction as not fraudulent, so you would

have the following confusion matrix:

Predict 0 Predict 1
Actual 0 298630 0
Actual 1 1370 0

And the accuracy will be 298630+0
298630+0+1370+0

= 0.995, a really good score. It happens be-

cause the accuracy gives equal priority predicting both classes, the positive and negative.

Other metrics based on the confusion matrix that most rely on the minority class are

the precision and the recall, that are defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Defined as the harmonic mean between the precision and the recall, the F1 score [9]

is a better metric when dealing with imbalanced problems.

F1Score = 2× Precision×Recall

Precision+Recall

PART IV

EXPERIMENTS

24

4 EXPERIMENTS

In this section, based in [3] and [4], for each considered model, it follows a brief

introduction of it and a step by step description of the experiments and decisions that were

made. The goal is to find the most performing model for this dataset and also compare

GBDT and DL structures. For GBDT, XGBoost and LightGBM will be implemented

and for DL, it was chosen MLP and ResNet as classical models and FT-T and XBNet

(more later) as suitable models for tabular data.

4.1 Code Structure

The code was developed in a modular way in order to reuse as many functions as

possible. For each type of model architecture studied, GBDT and DL, packages were

created to facilitate the reuse and improve code understanding. The Figure 3 shows the

hierarchical structure of the written code.

Figure 3: The code structure

Source: Author’s compilation.

• src/data: contain all datasets, the original, train, validation and test ones;

25

• src/util: contain the utility functions used for all models. The generator.py,

loader.py and preprocess.py files are reponsible for, respectively, generating, loading

and preprocessing the training, validating and testing datasets. And the metrics.py

file contain the functions to evaluate the models, calculating metrics like the confu-

sion matrix and the F1 score;

• src/ML: contain the scripts to execute one training process of a GBDT or DL

model. It’s the core files of the project;

• src/ML/GBDT: contain the model.py file that select from the XGBoost or Light-

GBM model;

• src/ML/DL: contain all the files related for training a neural network model. For

example, in the model.py file it’s possible to select from MLP, ResNet, FT-T or

XBNet, while the loader.py prepares the data using tensors, PyTorch’s basic unit;

• src: contain the root files GBDT.py and DL.py that configures the optuna hyper-

parameter tuning. It essentially has a dictionary with all possible parameters to be

set manually and call the train script located in src/ML until the tuning is finished.

4.2 Gradient Boosted Decision Trees

GBDT is a machine learning technique for optimizing the predictive value of a model

through successive steps in the learning process. Like other boosting methods, gradient

boosting combines weak learners (decision trees) into a single strong learner in an iterative

fashion. At each iteration, each sample passes through the decision nodes of the newly

formed tree until it reaches a given lead. The result of each tree is used to get the GBDT

prediction.

It was decided to use two GBDT algorithms, XGBoost and LightGBM (that have

python libraries with the same name). This kind of algorithms are known to perform

well on tabular data for classifications problems, so it is a great baseline to compare

performances.

4.2.1 Preprocessing

Using model’s default parameters, it was considered all the 12 combinations of data

preprocessing (4 numerical encoders and 3 categorical encoders) and a grid search was

26

scheduled for both models. The results among the 12 combinations did not change at

all, showing that GBDT models do not suffer from these feature encoding. Thus, the

combination no numerical encoder and mestimate encoder was selected. The Tables

3 and 4 summarizes the evaluation of the models on the test data, respectively, using

imbalanced and balanced training data.

Model TN FP FN TP F1 Score
XGBoost 298525 105 1097 273 31.24
LightGBM 297905 725 1074 296 24.76

Table 3: GBDT preprocessing results using imbalanced training data

Model TN FP FN TP F1 Score
XGBoost 255294 43336 179 1191 5.19
LightGBM 252562 46068 182 1188 4.89

Table 4: GBDT preprocessing results using balanced training data

At this point, training the models using balanced data was discarded since the results

were much worse than imbalanced training for the context of credit card fraud prediction.

Section 5, about results and discussion, will further discuss this project decision. Thus,

for the next experiments only imbalanced training data will be considered.

4.2.2 Hyperparameter Tuning

For the hyperparameter tuning, just the best GBDT model from Table 3 was selected,

the XGBoost. Based on [3] and community best practices for tuning XGBoost hyperpa-

rameters, 50 trials were scheduled in optuna using a predefined search space. The Table

5 shows the best set of hyperparameters.

Hyperparameter Value

n estimators 355

max depth 11

alpha 4.36× 10−3

lambda 1.89× 10−5

min child weight 14.33

gamma 9.95× 10−1

learning rate 4.51× 10−2

scale pos weight 2
√

#positives
#negatives

≈ 30

Table 5: Best hyperparameter configuration set for XGBoost

27

In addition, a early stopping rounds equal to 20 was set to prevent overfitting and

reduce the training time.

The Table 6 shows the results of the tuned model on the test data.

Model TN FP FN TP F1 Score
XGBoost 297987 643 846 524 41.31

Table 6: XGBoost result after hyperparameter tuning

4.3 Multilayer Perceptron

MLP is a deep learning model that combines several neuron units, the perceptron,

into layers. This composition allied with activation functions make MLP learn and extract

non-linear data relationship.

Figure 4: Perceptron

Source: Author’s compilation.

Figure 5: Multilayer Perceptron

Source: Author’s compilation.

As showed in Figure 5, the MLP have three types of layers. The input layer where

the input feature are placed. Then there are the hidden layers that can be one, two or

more. Each node in the hidden layer is a single perceptron (Figure 4) that make the

multiplication of each entry, sum up the result and then apply an activation function,

having a single output. Finally the output layer is a special perceptron with, in general,

an activation function that the result can be interpreted as a probability in classification

problems.

The training process is based in two steps. First, a feedforward is conducted where

the input goes from the input layer to the output layer, then a predefined cost function

28

is calculated taking in consideration the prediction and the real value. After that it

is possible to perform the backpropagation step where the loss function derivatives is

calculated and a gradient descent is performed to update the weights of all nodes. After

some iterations the MLP learn the main patterns of a dataset.

Being the simplest NN architecture, this model was developed from scratch using

PyTorch, a python framework to implement NN models. The goal of this section is to

have a simple DL model to be a baseline for the next ones and, considering paper [4], to

see if the regularization cocktail proposed outperform GBDT and a non regularized MLP.

As a initial point, considering [4] default parameters and inspecting the problem, it

was decided to start with the parameters expressed in Table 7.

Parameter Value

Epoch 100

Batch Size 512

Number of nodes 512

Learning Rate 10−4

Categorical Encoder MEstimate

Numerical Encoder Standard

Table 7: MLP parameters

4.3.1 Number of Layers

The first step was optimizing the number of hidden layers and for that, a grid search

was schedule considering {1, 3, 5, 7, 9} hidden layers. The Figure 6 shows, for each number

of hidden layers, the loss function curve over the epochs. It’s possible to notice that just

after 5 hidden layers that the loss function stop to be caotic and start to converge. Thus,

7 hidden layers was selected to continue the experiment because it converges faster than

5 and it is not as complex as having 9 hidden layers.

29

Figure 6: Loss function over the epochs for each number of hidden layer considered in the
tuning

Source: Author’s compilation.

4.3.2 Learning Rate

The same kind of search was done with the learning rate in the set {10−1, 10−2, 10−3,

10−4, 10−5} and analyzing the F1 score over the epochs in Figure 7, it was decided that

10−4 is the best choice since the curve fits better.

30

Figure 7: F1 score over the epochs for each learning rate considered in the tuning

Source: Author’s compilation.

Model TN FP FN TP F1 Score

MLP 298614 16 1293 77 10.53

Table 8: MLP result after tuning the number of hidden layers and learning rate

4.3.3 Preprocessing

As a next step, the preprocessing type was decided to be changed and like it was

done with GBDT, all the 12 combinations were considered. As result, fixing the numer-

ical encoder, none of the categorical encoder showed improvement from each other, so

mestimate transformation remained. However, fixing the categorical encoder, the robust

transformation was clearly better than others. The Table 9 show that just changing the

numerical encoder from standard to robust, increased model’s performance by 10%.

Model TN FP FN TP F1 Score
MLP 298614 16 1293 77 10.53
MLP 298535 95 1201 169 20.67

Table 9: MLP - Partial Results II

31

4.3.4 Regularization Cocktail

Now, based on [3], the regularization cocktail was implemented. However, due to the

lack of available documentation, 5 out of 13 regularizers were implemented and instead

of the proposed hyperparameter search space, the optuna library was used to do the

tuning. With the five regularization techniques, 25 trials were scheduled in optuna using

the values suggested by [3].

Regularizer Active Value

Batch Normalization False - -

Stochastic Weight Averaging False - -

Lookahead Optimizer True
Step Size = .5

Steps = 5

Weight Decay False - -

Dropout False - -

Table 10: Best set of regularizers parameters

Model TN FP FN TP F1 Score

MLP 298535 95 1201 169 20.67

R-MLP 298520 110 1199 171 20.71

Table 11: Results of the non regularized (MLP) and regularized (R-MLP) MLP versions

From Table 10, just one out five regularizers was selected to be active and Table

11 show that the regularized version could not improve model’s performance. Section 5,

about results and discussion, will further discuss about why regularizers could not increase

the model’s performance.

4.3.5 Loss Function

Considering the non regularized MLP, as another method to improve its performance,

the loss function will be modified. Until now the binary cross entropy (BCE) 4.1, that gives

the same weight to both positive and negative classes, was used. Two other loss functions

will be analyzed, the positive weight binary cross entropy (PWBCE) and the focal loss

(FL), which aim to change the penalty of the minority class in order to compensate the

imbalancing.

32

Considering y as the true value and ŷ as the prediction probability, it follows:

Binary Cross Entropy

BCE(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ) (4.1)

Positive Weight Binary Cross Entropy

PWBCE(y, ŷ) = −pylog(ŷ)− (1− y)log(1− ŷ) (4.2)

The PWBCE is a variant of the BCE that adds a weight, p, to the minority class.

According to the documentation [10], p = # negative
positive

, however, for highly imbalanced prob-

lems, community best practices suggests p = β
√

negative
positive

. To tune the β parameter, it

was considered the values {0.5, 1, 2, 3} and a grid search was performed.

Focal Loss [11]

FL(y, ŷ) = −yα(1− ŷ)γlog(ŷ)− (1− y)(1− α)ŷγlog(1− ŷ) (4.3)

As another variant of the BCE, FL adds more flexibility to the calculation of the loss

function, since it has two parameters, α and γ. According to [11], values of α = 0.25 and

γ = 2 are recommended, however we will tune them using a two-step grid search. First,

we set γ = 2 and varied α in {0.6, 0.7, 0.8, 0.9, 0.99}, then with αbest value, it was varied

γ in {0, 1, 2, 3, 4}.

Loss TN FP FN TP F1 Score
BCE 298535 95 1201 169 20.67

PWBCE(β = 0.5) 297250 1380 994 376 24.06
FL(α = 0.9, γ = 0) 296524 2106 899 471 23.87

Table 12: MLP results for each loss function

From Table 12, that shows the best result for each loss function, the PWBCE with

β = 0.5 could improve the standard BCE from 20.67% to 24.06%

4.4 Residual Network

ResNet models are major contributors to the use of very deep neural networks es-

pecially convolutional neural networks (CNN), by introducing the concept of residual

33

learning and devised an efficient method for the training.

As mentioned in [4], being a simple NN model, the ResNet-like architecture achieved

good performances, outperforming GBDT in some datasets. Thus, using paper’s library,

the proposed ResNet model was adapted to our dataset.

The training parameters setting is equal to the ones used for the MLP in the previous

section. The Table 13 shows them.

Hyperparameter Value

Epoch 100

Batch Size 512

Learning Rate 10−4

Categorical Encoder MEstimate

Numerical Encoder Robust

Table 13: The ResNet training parameters

Using optuna, 25 trials were scheduled over the predefined configuration set recom-

mended by [4]. Table 14 shows the set of hyperparameters for the best trial achieved.

Hyperparameter Value

Layers 14

Layer size 566

Hidden factor 1.10

Hidden dropout 0.19

Residual dropout 0.39

Activation ReGLU

Normalization LayerNorm

Table 14: ResNet model best trial’s hyperparameter set

The model’s performance on the test data is summarized in the Table 15.

Model TN FP FN TP F1 Score

ResNet 298535 95 1197 173 21.12

Table 15: ResNet result

34

4.5 Feature Tokenizer - Transformer

FT-T [4] is a simple adaptation of the transformer architecture [12] for tabular do-

mains. Figure 8 shows the main components of the FT-Transformer. In short, this model

converts all features (categorical and numerical) into embeddings and applies several rans-

former layers to the embeddings. Therefore, each transformer layer operates on the feature

level of the object and the final representation of the [CLS] token is used for prediction.

As a downside, FT-T requires more resources (hardware and time) to train and do

not scale easily if the number of features is large.

Figure 8: FT-T architecture

Source: FT-T paper [4].

Using [4]’s library and recommendations, the FTT was implemented using default

parameters. It took more than 3 hours to be trained and Table 16 shows its result of the

single run on test data.

Model TN FP FN TP F1 Score
FTT 298625 5 1277 93 12.67

Table 16: FTT result

4.6 eXtremely Boosted Network

As the last model, XBNet [13] [14] is a MLP that the weights update step, besides

the standard gradient descent, is also supported by the feature importance of concurrent

trained XGBoost models.

[13] compared XBNet with XGBoost and showed that the proposed model beat its

adversary in 4 of 7 dataset. A downside is that XBNet is time and resource consuming

since it need to train a gradient boosted decision tree in every hidden layer.

35

Figure 9: XBNet architecture

Source: Author’s compilation based in XBNet paper [13].

Based on [13]’s library, the XBNet model was adapted to our dataset using the same

configurations from the non regularized MLP already presented. Taking around 8 hours

to train, the Table 17 summarize the result of the only run that was made.

Model TN FP FN TP F1 Score

XBNet 298421 209 1287 83 9.90

Table 17: XBNet result

PART V

RESULTS & DISCUSSION

37

5 RESULTS & DISCUSSION

5.1 Imbalanced vs Balanced Training

Before tuning the XGBoost, LightGBM and MLP models, it was checked whether it

was better to train them using imbalanced or balanced data. The Tables 18 and 19 show,

respectively, the result considering imbalanced and balanced training for each model.

Model TN FP FN TP F1 Score

XGBoost 298525 105 1097 273 31.24

LightGBM 297905 725 1074 296 24.76

MLP 298535 95 1201 169 20.67

Table 18: Imbalanced training result

Model TN FP FN TP F1 Score

XGBoost 255294 43336 179 1191 5.19

LightGBM 252562 46068 182 1188 4.89

MLP 231081 67549 287 1083 3.10

Table 19: Balanced training result

The discussion of this comparison depends on the domain where the imbalanced

dataset is applied. The F1 score shows the imbalanced training as superior, but look-

ing carefully at the confusion matrix it’s possible to see that, focusing in the best model,

the XGBoost, it could classify correctly 1191
1191+179

= 86.9% of all fraudulent payments, in

counterpart the number of non fraudulent payments classified incorrectly increase from

105 to 43336.

In the domain of credit card fraud detection the number of frauds that are detected

is, obviously, important but not sacrificing the good transactions is almost equally im-

portant. In this case, it’s possible to interpret that in one hand the system could prevent

38

86.9% of frauds, but in the other hand others 43336 transactions were badly classified as

fraud, blocking client’s transactions mistakenly, it means that the true positives do not

compensates the false positives.

Thus, because of that interpretation, the equally balanced training do not represents

a good approach for the business domain of credit card fraud detection.

5.2 Unregularized vs Regularized MLP

As seen previously in Section 4.3.4, the MLP regularizers tuning just activate one

regularization technique, the lookahead optimizer, but none considerable improvement

was observed.

In fact, the regularization techniques are used to control model overfitting [15] [16] [17]

and regarding the loss and F1 score curves of the unregularized MLP in Figures 10 and

11, it’s possible to see that there is no sign of overfitting. That is why the regularization

could not improve the results.

Figure 10: MLP loss curve

Source: Author’s compilation.

Figure 11: MLP score curve

Source: Author’s compilation.

39

5.3 GBDT Supremacy

Model TN FP FN TP F1 Score Train Time

XGBoost 297987 643 846 524 41.31 10min 3s

LightGBM 297905 725 1074 296 24.76 6.6s

MLP 297250 1380 994 376 24.06 25min

ResNet 298535 95 1197 173 21.12 57min 13s

FTT 298625 5 1277 93 12.67 3h 13s

XBNet 298421 209 1287 83 9.90 8h

Table 20: Model’s result. t- means a tuned model

From Table 20 that summarizes all model’s best result, it’s unquestionable that GBDT

is a better choice than DL, especially with XGBoost that achieved a F1 score of 41.31%

in comparison to MLP (the best DL model) that scored a F1 of 24.06%.

In addition, the GBDT took less time to be trained than the DL models. Without

any tuning, the LightGBM performed better than the MLP and only took 6.6 seconds to

be trained.

Another advantage is the implementation: the GBDT models came with well-defined

libraries with the same name, xgboost and lightgbm, and having the scikit-learn code

style, they are easy to implement. With some lines of code, it’s possible to train a GBDT

model. In counterpart, despite of DL models having libraries like pytorch that provides

more flexibility when designing and implementing a model, it’s not straightforward as

GBDT.

5.4 Deep learning models

It’s clear that classical models, the MLP and ResNet, performed better than the

tabular data designed DL models, FTT and XBNet. The MLP and ResNet had similar

performances, 24.06% and 21.12% of F1 score respectively and reasonable training time

with 25 and 57 minutes respectively, what makes the hyperparameter tuning possible.

The tabular data designed models were placed as the worst models, with a score of

12.67% for the FT-T and 9.90% for the XBNet. One big issue is that they took hours to

be trained, so both were executed just one time, the FT-T with paper’s parameters and

the XBNet with the MLP training configuration.

PART VI

CONCLUSION

41

6 CONCLUSION

First of all, this project showed how important it is to analyze and adapt the training

parameters of the models to the dataset used, for example, in the MLP, simply changing

numerical variable encoder from standard to robust had a gain of 10% in F1 score. Fur-

thermore, when optimizing the XGBoost and MLP models, it evinced that adapting the

loss function is a crucial factor to compensate the data imbalance.

In addition, when comparing GBDT with NN, the results showed that DL, whether

classical or adapted to tabular data, could not defeat GBDT for the imbalanced tabular

data used. Thus, GBDT remains the state-of-art for this type of data.

Another important factor is that the best model, XGBoost, after the optimization

and tuning runs, improved its performance considerably, going from 31.24% to 41.31%

of F1 score, proving to be a significant model for card fraud detection, as it managed to

keep false positives low and increase its true positives. However, it can’t be said that it

detects most frauds (recall of 38.25%), so to put this system in production one can take

into consideration the mutual action of this proposed model with the already established

rule-based models installed in the banking institution, increasing the redundancy in fraud

detection.

Finally, as next steps, it remains improving the XGBoost performance by considering

some techniques that were outside the scope of this project:

• Feature Selection: the dataset contains 142 variables, however are all of them rel-

evant to the problem? Irrelevant variables lead to redundant and noisy data which,

besides increasing training time, reduces model performance. More specifically for

XGBoost, the models contain a piece of information called feature importance, which

measures the degree of how relevant each feature is to the model. Thus, the less

important features could be remove based on a pre-established threshold;

• Data Oversampling: the project showed that fully balanced data is not a good

practice for the fraud detection domain, however what if an imbalance of 1%, 2%,

42

5% or 10% is considered instead of the actual 0.5%? Decreasing the data imbalance

together with adapted cost functions could increase the model’s performance.

43

REFERENCES

[1] “Visa, mastercard, unionpay transaction volume worldwide 2014-
2020.” [Online]. Available: https://www.statista.com/statistics/261327/
number-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/

[2] “Credit card fraud.” [Online]. Available: https://nilsonreport.com/upload/
content promo/NilsonReport Issue1209.pdf

[3] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka, “Well-tuned simple nets excel
on tabular datasets,” 2021.

[4] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning
models for tabular data,” 2021.

[5] “Optuna.” [Online]. Available: https://optuna.org/

[6] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” 2019. [Online]. Available:
https://arxiv.org/abs/1907.10902

[7] “Google colaboratory.” [Online]. Available: https://research.google.com/
colaboratory/faq.html

[8] “Target encoding.” [Online]. Available: https://contrib.scikit-learn.org/category
encoders/targetencoder.html

[9] “Good f1 score.” [Online]. Available: https://stephenallwright.com/good-f1-score/

[10] “Bce documentation in pytorch.” [Online]. Available: https://pytorch.org/docs/
stable/generated/torch.nn.BCEWithLogitsLoss.html

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object
detection,” 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available:
https://arxiv.org/abs/1706.03762

[13] T. Sarkar, “Xbnet : An extremely boosted neural network,” 2021.

[14] ——, “Library xbnet for tabular data which helps you to create a custom extremely
boosted neural network,” https://www.codeocean.com/, 6 2021.

[15] “Regularization in deep learning — l1, l2, and
dropout.” [Online]. Available: https://towardsdatascience.com/
regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036

https://www.statista.com/statistics/261327/number-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/
https://www.statista.com/statistics/261327/number-of-per-card-credit-card-transactions-worldwide-by-brand-as-of-2011/
https://nilsonreport.com/upload/content_promo/NilsonReport_Issue1209.pdf
https://nilsonreport.com/upload/content_promo/NilsonReport_Issue1209.pdf
https://optuna.org/
https://arxiv.org/abs/1907.10902
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html
https://stephenallwright.com/good-f1-score/
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://arxiv.org/abs/1706.03762
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036

44

[16] “Regularization techniques for training deep neural networks.” [Online]. Available:
https://theaisummer.com/regularization/

[17] “An overview of regularization techniques in deep learning (with python
code).” [Online]. Available: https://www.analyticsvidhya.com/blog/2018/04/
fundamentals-deep-learning-regularization-techniques/

[18] G. Somepalli, M. Goldblum, A. Schwarzschild, and C. B. Bruss, “Saint: Improved
neural networks for tabular data via row attention and contrastive pre-training,”
2021.

[19] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02515

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[21] S. Sun and M. Iyyer, “Revisiting simple neural probabilistic language models,”
2021. [Online]. Available: https://arxiv.org/abs/2104.03474

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” 2018. [Online]. Available:
https://arxiv.org/abs/1810.04805

[23] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao, “Learning
deep transformer models for machine translation,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.01787

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[25] L. Liu, X. Liu, J. Gao, W. Chen, and J. Han, “Understanding the difficulty of
training transformers,” 2020. [Online]. Available: https://arxiv.org/abs/2004.08249

[26] X. S. Huang, F. Perez, J. Ba, and M. Volkovs, “Improving transformer optimization
through better initialization,” pp. 4475–4483, 13–18 Jul 2020. [Online]. Available:
https://proceedings.mlr.press/v119/huang20f.html

[27] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,”
2020. [Online]. Available: https://arxiv.org/abs/2009.06732

[28] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and
I. Guyon, “Bayesian optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020,”
2021. [Online]. Available: https://arxiv.org/abs/2104.10201

[29] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2017.
[Online]. Available: https://arxiv.org/abs/1711.05101

[30] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M.

https://theaisummer.com/regularization/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2104.03474
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1906.01787
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2004.08249
https://proceedings.mlr.press/v119/huang20f.html
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/1711.05101

45

Rush, “Huggingface’s transformers: State-of-the-art natural language processing,”
2019. [Online]. Available: https://arxiv.org/abs/1910.03771

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” 2015. [Online]. Available:
https://arxiv.org/abs/1502.01852

[32] “Rtdl python library.” [Online]. Available: https://yura52.github.io/rtdl/stable/
index.html

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1502.01852
https://yura52.github.io/rtdl/stable/index.html
https://yura52.github.io/rtdl/stable/index.html

46

APPENDIX A – HYPERPARAMETER

TUNING

CONFIGURATION SET

A.1 XGBoost

Hyperparameter Distribution

n estimators Integer(50, 500)

max depth Integer(1, 12)

alpha LogUniform(10−8, 1)

lambda LogUniform(10−8, 1)

min child weight Float(0.1, 20.0)

gamma LogUniform(10−8, 1)

learning rate LogUniform(10−5, 1)

scale pos weight {7.5, 15, 30, 45}

Table 21: XGBoost hyperparameter tuning configuration set

A.2 MLP

Regularizer Active Distribution

Batch Normalization [True, False] - -

Stochastic Weight Averaging [True, False] - -

Lookahead Optimizer [True, False]
Step Size = Float(0.5, 0.8, 0.1)

Steps = Integer(5, 10, 1)

Weight Decay [True, False] LogUniform(10−5, 10−1)

Dropout [True, False] Float(0.1, 0.5)

Table 22: Regularized MLP hyperparameter tuning configuration set

47

A.3 ResNet

Hyperparameter Distribution

Layers Integer(1, 16)

Layer size Integer(64, 1024)

Hidden factor Float(1.0, 4.0)

Hidden dropout Float(0.1, 0.5)

Residual dropout Float(0.1, 0.5)

Activation {Swish, ReGLU}
Normalization {LayerNorm, BatchNorm}

Table 23: ResNet hyperparameter tuning configuration set

48

APPENDIX B – HOW DOES TARGET

ENCODING WORKS?

To answer this question, let’s take an example. Consider the following dataset:

Color Target

0 RED 0

1 RED 0

2 RED 1

3 BLUE 0

4 BLUE 1

5 BLUE 1

6 GREEN 1

7 GREEN 1

8 GREEN 1

Table 24: Example dataset to learn how Target Encoder works

To encode the categorical variable Color, the target encoder strategy considers, for

each unique categorical value, the count of samples having target = 1 over the total

number of samples, e.g:

∀x ∈ CategoricalV ariables, TE(x) =
count(x, target = 1)

count(x)
(B.1)

For RED color, 1
3
= 0.333. For BLUE color, 2

3
= 0.666 and for GREEN, 3

3
= 1.0.

Thus, the encoded data will be:

49

Color Target

0 0.33 0

1 0.33 0

2 0.33 1

3 0.66 0

4 0.66 1

5 0.66 1

6 1.0 1

7 1.0 1

8 1.0 1

Table 25: The encoded example dataset

The real implementation of the encoders considered in this project, i.e, target, cat-

boost and mestimate, is based in the previous explanation, but they introduce smoothie

factors or others strategies to change a bit the pure target encoding behavior. For more

information, see the reference [8].

