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da Universidade de São Paulo in order to

obtain the Bachelor’s Degree in Computer

Engineering.

São Paulo
2022



ISABELLA DE MELO SOUSA

PREDICTION OF SOCIOECONOMIC
INDICATORS IN VALE DO RIBEIRA USING

DEEP LEARNING AND SATELLITE IMAGERY

Work presented to the Escola Politécnica
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RESUMO

Medidas-chave dos indicadores socioeconômicos são essenciais para a tomada de de-
cisões poĺıticas informadas, mas devido aos altos custos e dificuldades operacionais dos
esforços tradicionais de coleta de dados, a obtenção de dados socioeconômicos confiáveis
continua sendo um desafio, principalmente nos páıses em desenvolvimento. Este tra-
balho apresenta uma metodologia de aprendizado profundo para estimar indicadores so-
cioeconômicos utilizando imagens de satélite. O modelo de rede neural desenvolvido foi
treinado na região brasileira de São Paulo e Paraná com o objetivo de analisar o indi-
cador socioeconômico de renda na região do Vale do Ribeira. O modelo resultou em um
R-quadrado de 0,4016 e teve um desempenho significativamente melhor do que o modelo
treinado apenas com as bandas RGB.

Palavras-Chave – aprendizagem profunda, imagens de satélite, indicadores socioeconômicos.



ABSTRACT

Key measures of socioeconomic indicators are essential for making informed policy
decisions, but due to the high costs and operational difficulties of traditional data col-
lection efforts, obtaining reliable socioeconomic data remains a challenge, particularly in
developing countries. This work presents a deep learning methodology to estimate so-
cioeconomic indicators using satellite imagery. The neural network model developed was
trained at the Brazilian region of São Paulo and Paraná with the goal of analyzing the
socioeconomic indicator of income in the Vale do Ribeira region. The model yielded a
R-squared of 0.4016 and performed significantly better than the model trained only on
RGB bands.

Keywords – deep learning, satellite imagery, socioeconomic indicators
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1 INTRODUCTION

1.1 Motivation

Data on key measures of socioeconomic development can be a powerful tool to assist

government policies decisions. However, reliable data on such measures at the local level

is still lacking in many parts of the world, especially in developing countries. This mainly

occurs due to the difficulties of scaling up traditional data collection efforts, such as

government surveys, which can be expensive, time-consuming, and overlook hard-to-reach

areas.

In the Brazilian scenario, the main census institute is known as Instituto Brasileiro de

Geografia e Estat́ıstica (IBGE) and the data collection is done usually at 10-year intervals.

This periodicity produces a data gap that prejudices the interpretability of the collection

results, since they may not reflect the Brazilian reality in real-time. In this context, the

use of machine learning to analyze satellite imagery can help provide valuable information

for the socioeconomic monitoring in Brazil.

The motivation for employing the association of these two technologies comes from

the recent research of Yeh et al. (2020) [1], that applies deep neural network techniques

to estimate socioeconomic criteria in African countries using satellite images of their

territories. This type of methodology is very promising due to the low consumption of

resources and the great availability of satellite imagery, allowing the coverage of larger

and more remote areas and making the process automated and more efficient, without

the necessity of on-site collection.

1.2 Objectives

This work aims to develop a deep learning method that uses satellite imagery to

estimate the socioeconomic indicator of income in the Brazilian municipalities of São

Paulo and Paraná, focusing on the study of the Vale do Ribeira region.
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Furthermore, this research is being developed as part of the PARSEC project [2] and

it aims to share the results with the group, in which one of its goals is to promote adequate

monitoring of the environmental situation in the various biomes in Brazil and to analyze

the socioeconomic influence of protected areas on the cities that surround them.



PART II

THEORETICAL FOUNDATION AND

STATE-OF-THE-ART
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2 THEORETICAL FOUNDATION AND

STATE-OF-THE-ART

2.1 Deep Learning

Artificial Neural Networks are a computational model that shares some properties

with the animal brain in which many simple units are working in parallel with no cen-

tralized control unit. The weights between the units are the primary means of long-term

information storage in neural networks. Updating the weights is the primary way the

neural network learns new information. (PATTERSON; GIBSON, 2017) [3].

The behavior of neural networks is shaped by its network architecture, which can be

essentially defined by the following: number of neurons, number of layers and types of

connections between layers. [3]

The most well-known and simplest-to-understand neural network is the feedforward

multilayer neural network. It has an input layer, one or many hidden layers, and a single

output layer. Each layer can have a different number of neurons and each layer is fully

connected to the adjacent layer. The connections between the neurons in the layers form

an acyclic graph, as illustrated in Figure 1. [3]
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Figure 1: Multilayer neural network topology.

Source: Patterson and Gibson, (2017) [3].

Deep Learning refers to the use of Artificial Neural Networks with three or more

layers [4]. Note that additional hidden layers can help optimize and refine the accuracy

of the model, but on the other hand they increase its complexity and computational cost.

2.1.1 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is an a Deep Learning technique in which

the goal is to learn higher-order features in the data via convolutions.

According to Patterson and Gibson (2017) [3], although there are several variations

in the architecture of a convolutional neural network, in general it is based on the pattern

of layers shown in Figure 2, consisting essentially of three major groups:

1. Input layer: accepts three-dimensional input generally in the form spatially of the

size (width × height) of the image and has a depth representing the color channels

(generally three for RGB color channels);

2. Feature-extraction (learning) layers: find a number of features in the images and

progressively construct higher-order features;

3. Classification layers: consists in one or more fully connected layers to take the

higher-order features and produce class probabilities or scores.
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Figure 2: High-level general CNN architecture.

Source: Patterson and Gibson, (2017) [3].

2.2 Regression

2.2.1 Linear Regression

Linear regression is a linear approach for modelling the relationship between a vari-

able of interest and one or more explanatory variables (also known as dependent and

independent variables). If there is just one explanatory variable, the method is known as

simple linear regression; if there are more, it is known as multiple linear regression.

The multiple linear regression model has the form:

yi = ŷi + ϵi (2.1)

And

ŷi = β0 +

p∑
j=1

β0xij, i = 1, 2, ..., n (2.2)

Where:

• yi represents the ith observed response value;

• ŷi represents the ith response value that is predicted;

• β0, β1, ..., βp represents the coefficients to be estimated (also known as weights);
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• xij represents the independent variable;

• n represents the size of the sample;

• p represents the number of independent variables.

To estimate the regression coefficients, a common approach is the linear least squares

function, that consists in minimizing the residual sum of squares (RSS), that can be

defined as:

RSS =
n∑

i=1

ϵi. (2.3)

Where ϵi = yi − ŷi represents the ith residual, which is the difference between ith

observed response value and the ith response value that is predicted by the linear model.

In this methodology, the model is not penalized for its choice of weights. This means

that for some features the model may place weights that are too large, leading to overfit-

ting.

2.2.2 Ridge Regression

The Ridge Regression solves a regression model where the loss function is the linear

least squares function and regularization is given by the l2-norm. It avoids overfitting

because it shrinks the regression coefficients by imposing a penalty on their size and it is

also very useful to deal with multicolinearity between the independent variables.

The ridge coefficients minimize a penalized residual sum of squares, given by:

RSS + λ

p∑
j=1

β2
j (2.4)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the

larger the value of λ, the greater the amount of shrinkage. [5].

2.3 Evaluation Metrics

In order to evaluate the performance of a statistical learning method on a given data

set, it is necessary to measure how well its predictions actually match the observed data.

This section presents some metrics used in this project.
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2.3.1 Mean Squared Error (MSE)

The Mean Squared Error (MSE) its one of the most common measures when fitting

a regression model. It assesses the average squared difference between the observed and

predicted values. When a model has no error, the MSE equals zero. As model error

increases, its value increases.

The MSE value is calculated by the expression:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.5)

Where:

• yi represents the ith observed response value;

• ŷi represents the ith response value that is predicted;

• n represents the size of the sample.

2.3.2 Coefficient of Determination (R2)

The coefficient of determination is used to identify the strength of the model, it

captures how well the predictions match the observations, or how much of the variation

in the observed data is explained by the predictions. Usually the R² varies between 0 and

1, being expressed as a percentage (the closer to 1, the better).

According to James et al. (2013) [6], the R2 can be calculated by the following

equation:

R2(y, ŷ) = 1− RSS

TSS
(2.6)

With

TSS =
n∑

i=1

(yi − ȳi)
2 (2.7)

And

ȳi =
1

n

n∑
i=1

yi (2.8)

Where:
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• yi represents the ith observed response value;

• ŷi represents the ith response value that is predicted;

• RSS represents residual sum of squares defined by Equation 2.3;

• TSS represents the total sum of squares;

• ȳi represents the arithmetic mean of all values of the response variable in the sample;

• n represents the size of the sample.

2.3.3 Person Correlation Coefficient (r)

The Pearson correlation coefficient is the most common way of measuring a linear

correlation. It is a number between –1 and 1 that measures the strength and direction of

the relationship between two variables.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.9)

Where:

• xi, yi are the individual sample points indexed with i;

• x̄ = 1
n

∑n
i=1 xi (sample mean) and analogously for ȳ;

• n represents the size of the sample.

2.3.4 Spearman’s Rank Correlation (rank)

The Spearman rank correlation coefficient is a nonparametric measure of the mono-

tonicity of the relationship between two datasets. [7]

rank =

∑n
i=1(R(xi)−R(x̄))(R(yi)−R(ȳ))√∑n

i=1(R(xi)−R(x̄))2
√∑n

i=1(R(yi)−R(ȳ))2
(2.10)

Where:

• R(x) and R(y) are the ranks of the x and y variables;

• R(x) and R(y) are the mean ranks;

• n represents the size of the sample.
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2.4 Cross-Validation

Cross-validation is a technique used to evaluate the capacity of generalization of a

prediction model. In this project, two Cross-Validation techniques are adopted: k-Fold

Cross-Validation and Leave-one-group-out Cross-validation.

2.4.1 k-fold Cross-Validation

This approach involves dividing the set of observations into k groups, or folds, of

approximately equal size. The first fold is treated as a validation set, and the method

is fit on the remaining k - 1 folds. The mean squared error, MSE, is then computed on

the observations in the held-out fold. This procedure is repeated k times; each time, a

different group of observations is treated as a validation set. At the end, you can estimate

the model error by averaging the errors of all the validations performed. (JAMES et al.,

2013 [6]).

Figure 3: A schematic display of 5-fold CV. A set of n observations is randomly split

into five non-overlapping groups. Each of these fifths acts as a validation set (shown in

beige), and the remainder as a training set (shown in blue). The test error is estimated

by averaging the five resulting MSE estimates.

Source: JAMES et al., 2013 [6].

Note that in some approaches, besides the segregation of the data set into training and

validation subsets, it is proposed the separation of a holdout subset (test). In such method,

the test subset provides a final estimate of the machine learning model’s performance after

it has been trained and validated.
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Figure 4: Separation of the sample into training, validation and test subsets.

Source: HASTIE, TIBSHIRANI e FRIEDMAN (2009) [5].

2.4.2 Leave-one-group-out Cross-Validation

This approach provides train/test indices to split data such that each training set is

comprised of all samples except ones belonging to one specific group.

Compared to the 5-Fold Cross Validation, it validates the machine learning model

more times resulting in more precise metrics. However, it is more computationally expen-

sive and time consuming.

2.5 Literature Review

2.5.1 Yeh, C. et al. Using publicly available satellite imagery
and deep learning to understand economic well-being in
Africa (2020)

In this article, public satellite imagery was used to train a combined deep learning

model to estimate socioeconomic conditions over space and time in several regions of

sub-Saharan Africa.

For this purpose, two ResNet-18 [8] models were trained separately on multispectral

daytime imagery from 30m/pixel Landsat and <1 km/pixel nighttime lights imagery.

Then, the final layers of the separate models were concatenated in a final fully connected

layer and a ridge regression was used to fine-tune the model.

To gather the dataset, the authors assembled data on asset wealth using the Demo-

graphic and Health Surveys (DHS) [9] conducted between the years 2009 and 2016, as well

as an independent smaller set of household level panel data, the Living Standards Mea-

surement Surveys (LSMS) [10]. With this, the authors were able to establish the villages

of the African countries as ‘clusters’. Then, Landsat surface reflectance and nightlights

images centered on each cluster location were obtained with 30m/pixel resolution, span-

ning 6.72km on each side.

The model was able to explain on average 70% (R² = 0.7) of the variation in ground-
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based wealth measurements, with the results never below 50% (R² = 0.5). For the pre-

dictive performance over time, the authors used different approaches, with the most pre-

dictive one yielding an R² = 0.35.

Note that for the adaptation of the model to the Brazilian scenario, the studies were

focused on replicating only the performance over space, since the dataset used is not of

multiple years.

2.5.2 Triñanes et al. Application of a deep learning algorithm
for predicting socioeconomic data through satellite images
in the Vale do Ribeira (2020)

This article adapted the article of Jean et al. (2016) [11] to predict socioeconomic

data for the Brazilian scenario, using the Vale do Ribeira region as a case study. In

this approach, a VGG11 [12] model is fine-tuned to estimate nighttime light intensity at

various locations given the corresponding daytime satellite images. After extracting the

features of the daytime satellite imagery by discarding the nighttime light classification

layer, those features are used to train ridge regression models that can estimate cluster-

level expenditures or assets.

The socioeconomic data was calculated using the IBGE census of 2010 and the

methodology of Abreu et al. (2011) [13]. In this model, 10km x 10km clusters were

generated around the center point of each sector. For each cluster at least 10 satellite

images were obtained.

Even though the methodology that is used in Triñanes et al. (2020) [14] and the one

that is developed in this report are different, part of the socioeconomic data studied is

the same (income dimension of the Human Development Index, as explained in section

6.1.3), therefore, the performance of the model developed by Triñanes et al. can be used

as a benchmark for comparison.

2.5.3 Megumi Tsuru, Samuel Vieira Ducca, Vitor Dias Souza.
Online Platform for inference of indicator data (2021).

This research uses machine learning methods for the analysis of satellite images with

the goal of predicting environmental, social, and economic indicators. It adapted the

article of Jean et al. (2016) [11] to develop and train a neural network in four estates of

the brazilian northwest, focusing on the Caatinga biome.
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In this work, the highest value obtained for the coefficient of determination of the

socioeconomic variable GDP per capita (i.e income) was R2 = 0.349.

2.5.4 SOUSA, I. A deep learning approach to predict socioeco-
nomic indicators in Vale do Ribeira from satellite imagery
(2022)

This research, written by myself, adapted the article of Yeh et al. (2020) [1] to predict

socioeconomic data for the Brazilian scenario, using the Vale do Ribeira region as a case

study.

In this first approach, the data collection methodology consisted in obtaining the

images centered on the census sectors of the Vale do Ribeira’s municipalities, where a

census sector is defined as a group of approximately 300 households within a defined

area. Therefore, similar to Triñanes et al. (2020) [14], since IBGE publish its data at the

municipality level, it was necessary to adapt the income indicator to the right granularity

of the model.

The model yielded a low performance of R2 = 0.289, attributed to the considerably

small size of the dataset (only 880 images or 4.4% of the dataset used in the original study

of Yeh et al.) and to the possibility of overlapping between the images.

This present research has the goal of continuing the work previous developed by

attempting to improve the results obtained. In order to do so, a careful analysis of

the Vale do Ribeira region is conducted, resulting in a new methodology for the data

acquisition, as better explained in section 6.1.2. The overall deep learning methodology

in both studies is the same, differing in the details of the execution, such as training

with different number of epochs and learning rates, and of course in the results analysis.

In addition, the scripts used to develop the model were adapted to work with the most

current version of the technologies used in the environment of execution, as outlined in

section 3.2.
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3 TECHNOLOGIES USED

3.1 Satellite Imagery Acquisition

The Google Earth Engine API was used for the collection of the satellite imagery.

Google Earth Engine (GEE) [15] is a cloud-based geospatial analysis platform that enables

users to visualize and analyze satellite images of our planet. Its public data archive

includes more than forty years of historical imagery and scientific datasets, being free for

academic and research uses. Two types of dataset were obtained:

• Landsat Surface Reflectance, whose dataset was made available on the platform by

the U.S. Geological Survey (USGS);

• Nighttime lights, whose dataset was made available on the platform by Defense

Meteorological Satellite Program - Operational Linescan System (DMSP-OLS).

3.2 Data Processing and Visualization

3.2.1 Computational Platform

The computational platform used to develop the project was the Google Colaboratory

(Colab), a Jupyter notebook based runtime environment which allows you to run code

entirely on the cloud.

Running a stable python version, it facilitates the process of managing different li-

braries. Furthermore, it provides the allocation of graphics processing units (GPUs) to

its notebooks. In this manner, it presents itself as a suitable environment for running

machine learning models, avoiding an extensive environment setup in the local machine.

Nevertheless, the free version of Colab has its limitations, only allowing a 12GB of

RAM to be allocated for execution. For this project, the Colab Pro version was used since

the memory RAM necessary for running the training of the model was approximately
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23GB.

3.2.2 Programming Language and Main Libraries

The project was developed in python, a programming language widely used by the

academic and professional environment for the collection, processing, and analysis of data.

Being a high-level language and providing open-source libraries, it is an effective tool for

building the data pipelines necessary for developing machine learning models.

Among the main python libraries used in the project for data processing and visual-

ization, the following can be highlighted:

• Pandas: a library for data manipulation, processing and analysis. In particular, it

provides structures and operations for manipulating tabular data;

• Geopandas: an extension of the datatypes used by pandas to allow spatial operations

on geometric types;

• Tensorflow: an open source library for machine learning. It is optimized for proto-

typing and implementing deep learning models, being able to perform calculations

using tensors (n-dimensional vectors) with strong acceleration through GPUs;

• Scikit-learn: an open source machine learning library that includes several classifi-

cation, regression, and clustering algorithms;

• Numpy: an open source library designed to perform operations on multidimen-

sional arrays and matrices. It supplies a large collection of high-level mathematical

functions to operate on these data structures;

• Matplotlib: a comprehensive library for fast processing and high-quality graphics

generation, used in data visualization and graphical plotting.

Note that the scripts developed by Yeh et al. (2020) [1] were done using tensorflow

1.15 and python 3.7. In this work, the scripts were adapted to the most recent version of

tensorflow (2.9.2) and python (3.8) used in Colab.
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4 CASE STUDY: VALE DO RIBEIRA

Vale do Ribeira (VR) was chosen as a case study due to its data availability and its

ecological and economic importance. It is located in the southern region of Brazil, encom-

passing the states of Paraná and São Paulo. With 28,306 km², it has 30 municipalities

and it is the largest continuous area of preserved Atlantic Forest in Brazil, being declared

as a Natural Heritage of Humanity by UNESCO (United Nations Educational, Scientific

and Cultural Organization) in 1999. Finally, even though it has a high economic develop-

ment, this area is considered economically poor and has the lowest human development

index in the state of São Paulo [16], being very interesting to study.

Figure 5: Vale do Ribeira and its municipalities.

Source: Machicao et al. [17]

However, due to the data image collection methodology proposed in this project, the
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number of images obtained considering only this region was very small, as explained in

section 6.1.2. Therefore, the other cities of São Paulo (SP) and Paraná (PR) were also

included in the training of the model, totalizing 1044 municipalities.



PART V

METHODOLOGY
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5 OVERALL WORKFLOW

The workflow used in this project to replicate the work of Yeh et al. [1] was divided

in four steps:

1. Data Acquisition and Aggregation: overlay of a grid over the region of interest,

with blocks of approximately 45km² in area. For each block, an average income

indicator was calculated as the weighted average of the income of the municipalities,

provided by the IBGE census of 2010, and their respective areas contained in the

block. Multispectral daytime imagery (MS) and nighttime lights imagery (NL) were

obtained through the Google Earth Engine API.

2. Feature extraction: pretrained ResNet-18 networks models were modified to adapt

multi-band satellite imagery and used to extract the feature vectors of the images.

The loss function used was mean squared error (MSE). The training followed a

5-fold cross-validation.

3. Feature Concatenation and Ridge Regression: concatenation of the feature vectors

and refinement of the model using a ridge regression. The loss function used was

MSE. The training followed a leave-one-group-out cross-validation.

4. Results analysis, in which performance metrics such as the coefficient of determina-

tion (R2) were calculated and graphs were drawn to better analyze the results.
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Figure 6: Workflow diagram.

Source: Author’s Compilation.
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6 DATA ACQUISITION AND AGGREGATION

6.1 Data Acquisition

As mentioned in section 2.5.4, in the preliminary study done in the paper SOUSA,

I et al. (2022) [18], the data collection methodology consisted of obtaining the images

centered on the census sectors of the municipalities of Vale do Ribeira. This approach

resulted in a low performance of R2 = 0.289, attributed to the considerably small size of

the dataset and the possibility of overlap between the images.

6.1.1 Analysis of the Vale do Ribeira Region

This section aims to describe the data analysis done in the Vale do Ribeira region in

order to better analyze whether there is superposition between the images.

The calculations were done using the geometric information of the territories and its

rural/urban classification, provided by the IBGE in its official website. With that, the

area of each census sector was calculated and the distribution of the census tract areas

was obtained.

Figure 7: Boxplot of census areas by urban or rural types.

Source: Author’s Compilation.

https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?edicao=26589&t=acesso-ao-produto
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It is possible to visualize that there is a major discrepancy between the size of the

urban areas when compared to the size of the rural areas. Due to the proximity of the

urban tracts and the area of 45 km² covered by one image in the model’s methodology

(images resolution of 30m/pixel and CNN with input 224x224 pixels - as explained in

section 6.1.4), the clusters selected in the model will probably be composed of multiple

urban tracts. This implies that the same sector can be present in several images, harming

the interpretability of the results. This overlap between images can be exemplified in

Figure 8 and can also happen with less intensity for rural areas.

Figure 8: Cluster boundaries of the municipality of Apiai, SP.

Source: Author’s Compilation.

6.1.2 Grid with tiles of 45km²

To overcome the problem of overlapping between images, a new methodology for the

imagery collection is proposed. The idea is to overlay of a grid over the region of interest,

with blocks of approximately 45km² in area. To adapt the socioeconomic indicator of

income (see section 6.1.3) to the new methodology, for each block an average income

indicator was calculated as the weighted average of the income of the municipalities and

their respective areas contained in the block.

With this, the total number of images for the Vale do Ribeira region was approximately

of 500 images, which is very low. Therefore, to increase the number of the images,

the other municipalities of SP and PR were also included in the training of the model,

totalizing 9748 images.
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Note that Albers Equal-Area Conic was chosen as the reference map projection for

the grid. The Albers Equal-Area Conic projection parameters follow the cartographic

standards defined by IBGE, with SIRGAS-2000, the official planimetric datum of Brazil,

as the reference geodetic system. It is recommended for equal-area mapping, being best

suited for land masses extending in an east-to-west orientation at mid-latitudes [19]. In

this way, the blocks were automatically generated with the same corresponding sizes,

always defined by Albers Equal-Area Conic plane coordinates.

6.1.3 Socioeconomic Indicators

The socioeconomic proxies utilized in the model were obtained using data gathered

from IBGE from the 2010 census, the latest census available.

The IBGE and Atlas Brazil [20] publish a municipal Human Development Index (HDI)

every decade based on the census data and other surveys. The HDI is a statistical index

composed of income, longevity, and education indicators. It was developed and compiled

by the United Nations to measure the various levels of social and economic development

of countries. In this work, we focus only on the income indicator of this index at the

municipal level, which can be found here.

Note that since the number of images gathered only depends of the spacial extend

of the area of interest, there is no longer the need of developing the model at the census

sectors level. Instead, the municipality level is used, eliminating the necessity to adapt

the indicators to a different granularity than the one provided by IBGE.

6.1.4 Satellite Imagery

The satellite imagery chosen was multispectral daytime imagery from 30m/pixel Land-

sat and <1 km/pixel nighttime lights imagery. The motivation for choosing nighttime

lights imagery was that earlier studies demonstrated that they can serve as an indicator

of economic activities at night [21] and, when this indicator is compared across regions and

over time, it can be used to measure economic performance. Regarding the choice of day-

time imagery, earlier works demonstrated that high-resolution (<1 m/pixel) imagery from

private-sector providers can be used to measure spatial variation in local economic out-

comes in several developing and middle-income countries. Nevertheless, high-resolution

imagery remains very expensive nowadays, so the idea is to focus on more coarser public

imagery that can be found for free.

https://www.undp.org/pt/brazil/idhm-munic%C3%ADpios-2010


38

The methodology adopted by Yeh et al. (2020) [1] focuses on obtaining the Landsat

surface reflectance and nightlights images centered on each cluster location. The same is

done in this project, in which the clusters are the cells of the grid that was overlayed in

the regions of SP and PR.

Figure 9: Grid zoomed to the Vale do Ribeira region.

Source: Author’s Compilation.

Following the methodology of Yeh et al. (2020) [1], it was obtained a 3-year median

composite for the Landsat surface reflectance. This composite was created by taking the

median of each cloud free pixel available during the period of 3 years, which in this case

is 2009 to 2011, since the Brazilian census survey was done in 2010. As the author’s

describe in their original paper, the motivation for using three-year composites was two-

fold. First, multi-year median compositing has seen success in similar applications as a

method to gather clear satellite imagery. Second, the outcome we are trying to predict

tends to evolve slowly over time, and we similarly wanted the inputs to not be distorted

by seasonal or short-run variation.

The Landsat surface reflectance imagery was captured by the Landsat 5 and Landsat

7 satellites, with seven bands which we refer to as the multispectral (MS) bands: RED,

GREEN, BLUE, NIR (Near Infrared), SWIR1 (Shortwave Infrared 1), SWIR2 (Shortwave

Infrared 2), and TEMP1 (Thermal), all with a spatial resolution of 30 m/pixel. Those are

all the surface reflectance bands available for both the satellites in question. See Table 1
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for a description of the bands mentioned.

Name Units Wavelength Description

B1 0.45-0.52 µm Band 1 (blue) surface reflectance

B2 0.52-0.60 µm Band 2 (green) surface reflectance

B3 0.63-0.69 µm Band 3 (red) surface reflectance

B4 0.77-0.90 µm Band 4 (near infrared) surface reflectance

B5 1.55-1.75 µm Band 5 (shortwave infrared 1) surface reflectance

B6 Kelvin 10.40-12.50 µm Band 6 surface temperature.

B7 2.08-2.35 µm Band 7 (shortwave infrared 2) surface reflectance

Table 1: Description of Landsat 5 and 7 surface reflectance bands.

Note that in the paper of Yeh et al., Landsat 8 was also used since images taken from

these satellites have been available since 2013 and in the original study the surveys were

from several years (2009 to 2017).

For comparability, it was also created 3-year median composites for the nightlights

imagery (NL). Only DMSP imagery was used, since the first year of availability of the

VIIRS dataset at GEE is 2014. The main difference here is that the authors used DMSP

and VIIRS because no single satellite captured nightlights for all that period. Note that

the nightlight imagery is much more coarse than the daytime imagery we acquired, with

a resolution of 927.67 meters. The images are resized using nearest-neighbor resampling

to cover the same spatial area as the Landsat images, this is done by default by GEE

during reprojection.

Finally, both MS and NL images were processed in and exported from GEE in 255 ×

255 tiles, with a 30m/pixel resolution, then at the training stage center-cropped to 224 ×

224 (the input size of the convolutional neural network architecture), spanning 6.72 km

on each side (30 m Landsat pixel size × 224px). Note that the reason why 255 x 255 tiles

are used is to have the flexibility of using ‘random crops’ as a form of data augmentation.

6.2 Data Aggregation

The files were exported as TFRecords, a simple format for storing a sequence of binary

records, including all the bands (MS + NL) but as well other relevant data such as the

values of the socioeconomic data labels. Inspecting those records, I was able to obtain
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the Figure 10, in which it is possible to see the bands plotted for the cell number 2916,

centered at the coordinates (26.314129◦ S, 51.276913◦ W). Note that each band highlights

different aspects of the image, being useful to identify different features. The red, blue and

green (RGB) all together create a true color band combination. The goal of displaying

that combination in the figure was to create a visual map of the area that is intuitive to

the human eye.

Figure 10: Bands plotted for block number 2916, centered at the coordinates (26.314129◦

S, 51.276913◦ W). The color map refers to the normalized pixel values.

Source: Author’s Compilation.
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7 DEEP LEARNING METHODOLOGY

The goal of this project is to train a convolutional neural network (CNN) to predict

socioeconomic indicators using a combined model that incorporates both multispectral

daytime imagery and nighttime lights in a deep learning model trained end-to-end. For

this purpose, pretrained ResNet-18 models were modified and trained separately on the

Landsat bands and nightlights bands. Then, their feature vectors were fed to the fully

connected layer of the Resnet-18 and a ridge regression was done on top for fine-tuning.

7.1 Feature Extraction

7.1.1 ResNet-18 Modifications

Residual Network (ResNet) is a convolution neural network that was introduced in

2015 by Kaiming He et Al. [8], being the winner of the ILSVRC Imagenet 2015 competition

and becoming quite popular for image recognition and classification tasks because of its

ability to solve the vanishing gradient problem.

As in the original article, the CNN models were trained using the ResNet-18 architec-

ture with preactivation [8]. Since the ResNet, as most existing CNN models, is designed

to work with 3-channel RGB images, the first convolutional layer was modified to accom-

modate multi-band satellite imagery. This is actually simple to visualize: basically when

using C channels, where C is the number of channels, the filters of the first convolutional

layer will have depth of C instead of 3, which means that instead of [F, F, 3, 64], the

dimensions of the weights become [F, F, C, 64], where F is the filter size of the first

convolution layer.

As in the original paper, the weight of the layers were initialized with the pre-trained

value of ImageNet [22] with exception of the first and last layers. In the first layer, the

weights for the RGB bands are also initialized as the pre-trained values but the weights for

the non-RGB bands are initialized as the average of the weights from the RGB channels
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and normalized by a factor of 3/C. For the final layer, the weights are initialized randomly

from a standard normal distribution truncated at ±2. Finally, for the models trained

only on the nightlights bands, the first layer weights were initialized randomly using He’s

initialization [8] (Gaussian with same overall mean and standard deviation as the RGB

channels).

Furthermore, the fully connected layer of the CNN is adapted to do a regression

instead of a classification. See Figure 11 for an overall representation of the ResNet18

modified.

Figure 11: ResNet18 with preactivation adapted to accept as input multi-band satellite

imagery with C channels and to do a regression instead of a classification.

Source: Author’s Compilation
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7.1.2 Training

For each of the input band combinations (MS, NL), five separate models were trained

using a 5-fold cross-validation procedure. To do so, the data was divided into 5 folds of

roughly equal size (same number of clusters). See Table 2 to visualize the folds used for

the training. Each model was then trained on 3-folds, validated on a 4th, and tested on

a 5th. See Table 3 to visualize the splits used in the cross-validation procedure. Note

that to keep the same algorithm used in the experiment of Yeh et al.(2020) [1], where the

clusters were aggregated by countries, the cells were divided into 30 groups.

Fold Groups clusters

A group1, group6, group11, group16, group21, group26 1944

B group2, group7, group12, group17, group22, group27 1944

C group3, group8, group13, group18, group23, group28 1944

D group4, group9, group14, group19, group24, group29 1944

E group5, group10, group15, group20, group25, group30 1972

Table 2: Folds used for training.

Model Train Val Test

1 C, D, E B A

2 A, D, E C B

3 A, B, E D C

4 A, B, C E D

5 B, C, D A E

Table 3: Split of the 5 folds used for all cross-validated training.

The ResNet-18 models were trained with the Adam optimizer and MSE loss function.

The batch size is 64 and the learning rate is decayed by a factor of 0.96 after each epoch.

To improve the performance and ability of the model to generalize, data augmentation -

random flips and random brightness/contrast on the MS images - and shuffling techniques

were used.

The MS models were trained with 150 epochs and a learning rate of 10−4 and the NL

models were trained with 200 epochs and a learning rate of 10−5. Note that the validation
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loss is being used as a metric for early stopping: a checkpoint of the model was saved

every time a lowest MSE was achieved.

See the figures below for an illustration of the final training and validation loss of each

model of the MS and NL bands, respectively.

Figure 12: Training and validation curves for MS models. The red lines represent the

checkpoints where the model obtained the lowest MSE.

Author’s Compilation.
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Figure 13: Training and validation curves for NL models. The red lines represent the

checkpoints where the model obtained the lowest MSE.

Author’s Compilation.

7.2 Features Concatenation

After training the MS and NL models, their feature maps were extracted and saved as

a compressed numpy .npz file. The feature maps contain the pertinent features to classify

the images and, after being flattened, they serve as input for the fully connected layers.

In the case of the ResNet18, the feature map of each image has a dimension of 1x1x512.

To form the combined MS + NL models, the MS and NL feature vectors are concatenated

resulting in feature vectors of dimension 1024.

7.3 Ridge Regression

Once the combined feature vectors were obtained, the last fully connected layer of the

models was fine-tuned using ridge regression with leave-one-group-out cross-validation.

The L2 norm regularization parameter alpha of the regression is chosen during the

cross-validation procedure: the best alpha is the one that yields the lowest mean squared
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error between fourteen values with order of magnitude ranging from 10−2 to 109.

Figure 14: Example of leave-one-group-out cross-validation for the concatenated model

MS+NL. In this case, lowest MSE = 0.001 and best alpha = 16

Author’s Compilation.
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8 RESULTS

To analyze the results, the principal metric chosen was the coefficient of determination

(R²). As mentioned in the section 2.4, this coefficient is used to identify the strength of

the model, it captures how well the predictions match the observations, or how much of

the variation in the observed data is explained by the predictions. Usually the R² varies

between 0 and 1, being expressed as a percentage (the closer to 1, the better). This

metric is very used to measure the performance of a regression method due to its facility

of interpretation, being usually more informative than error metrics that have arbitrary

ranges, such as MSE.

To evaluate the performance in the same manner as Yeh et al. (2020) [1], the squared

Pearson correlation coefficient (r²), the Spearman’s rank correlation coefficient (rank) and

the MSE were also used. The r² is powerful to find patterns and relationships in data and

the closer to 1, the higher the correlation between the variables. While the squared Pear-

son’s correlation (r²) assesses linear relationships, Spearman’s rank correlation assesses

monotonic relationships (whether linear or not).

Furthermore, heatmaps with the values of the real and estimated data were made to

provide a visual aid of the results.

8.1 Model

The coefficient of determination between the observed and predicted values was R² =

0.4016. Compared to the article of reference of Yeh et al. (2020) [1], where the authors

obtained the best case as R2 = 0.70, the result is not ideal. Nevertheless, from the plot

produced it is possible to visualize that the real and predicted values are proportional.

Furthermore, the value obtained is higher than the one found by Triñanes et al. (2020) [14]

(R² = 0.35) and than the values found by Tsuru et al. (2021) [23] for the GDP per capita

of the states of Alagoas, Paraiba, Rio Grande do Norte and Sergipe.
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In addition, compared to the preliminary results obtained in my previous study [18],

the performance improved significantly and, with the new data collection methodology,

the problem of overlapping between the images has been solved. Therefore, it can be

concluded that the algorithm is very promising in the task of predicting socioeconomic

indicators from satellite images for the municipalities of SP and PR.

Figure 15: Regression plot for the combined MS+NL model. The dotted line corresponds

to the line of best fit.

Source: Author’s Compilation.

For comparison, I also ran the ridge regression for the separated MS and NL models,

and redid the whole training procedure considering just the RGB bands. See the metrics

results in the Figure below.

Figure 16: Final metrics results.

Source: Author’s Compilation.
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From this, it is possible to draw some conclusions:

• The combined model MS + NL outperformed the other models in all metrics, proving

itself as the best model for this task;

• The CNN trained on the RGB bands performed poorly compared to the combined

MS + NL model, which is expected and confirms the relevance of using multispectral

daytime imagery and nightlight imagery when predicting socioeconomic data.

Furthermore, for complementing the analysis, the correlation matrix for the results

between the models were drawn.

Figure 17: Correlation results for the income predictions of all models a) comparison of

r² metric and b) comparison of rank metric

Source: Author’s compilation.

This allows us to make the following conclusions:

• There is a high correlation between the MS and the RGB models, but the MS

outperformed the RGB, which again is expected since the MS model includes more

bands than the RGB one;

• Even though the NL and RGB models have a similiar perfomance, the correlation

between then is low (r2 = 0.29), suggesting that they are good in predicting different

features.
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8.2 Results after calculating the income for each mu-

nicipality

In this section the regression results are analyzed considering the actual values as the

income indexes provided by IBGE and the predicted ones as the indexes calculated using

weighted average and the values obtained by the model.

8.2.1 São Paulo and Paraná

8.2.1.1 Performance

Figure 18: Regression plot after calculating the income for each municipality. The dotted

line corresponds to the line of best fit.

Source: Author’s Compilation.

The coefficient of determination for the municipalities of SP and PR is R2 = 0.394.

This result is very similar to the one obtained for the model without any recalculations,

which leads to the conclusion the methodology adopted for the calculation of the grid’s

cells average income is well-suited for this project.
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8.2.1.2 Visual Analysis

Figure 19: Heatmaps for a) Real HDI Income indicator and b) Predicted HDI Income

indicator.

Source: Author’s compilation.

To complement this visual analysis, the difference between the real income score y

and the predicted ŷ value, defined as d = ∥y − ŷ∥, was also calculated and plotted in the

heatmap. From this figure it is possible to visualize that the majority of the municipalities

yield a small difference between the real and estimated values, for instance 87,55% of them

obtained d equal or lowest to 0.05.

Figure 20: Differences between the real and predicted labels for the municipalities of SP

and PR.

Source: Author’s Compilation.
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8.2.2 Vale do Ribeira

8.2.2.1 Performance

Figure 21: Regression plot for the municipalities of Vale do Ribeira. The dotted line

corresponds to the line of best fit.

Source: Author’s Compilation.

The coefficient of determination for the municipalities of Vale do Ribeira is R2 = 0.267.

This result is significantly smaller than the one obtained considering all the municipali-

ties. This is expected and can be justified due to the small number of samples: only 30

municipalities are part of the Vale do Ribeira region.
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8.2.2.2 Visual Analysis

Figure 22: Heatmaps for a) Real HDI Income indicator for VR and b) Predicted HDI

Income indicator for VR.

Source: Author’s compilation.

To complement this visual analysis, the difference between the real income score y

and the predicted ŷ value, defined as d = ∥y − ŷ∥, was also calculated and plotted in the

heatmap. From this figure it is possible to visualize that the majority of the municipalities

yield a small difference between the real and estimated values, for instance 73,33% of them

obtained d equal or lowest to 0.05.

Figure 23: Differences between the real and predicted labels for the municipalities from

VR.

Source: Author’s Compilation.



PART VI

CONCLUSION
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9 CONCLUSION

In this report, public satellite imagery was used to train a combined CNN model

to estimate socioeconomic data over space in the states of São Paulo and Paraná, with

the goal of particularly analyzing the Vale do Ribeira region due to its economic and

environmental importance.

With an R2 of 0.4016, the model yields a low performance when compared to the one

of Yeh et al. (2020) [1], which attempts to replicate (R2 = 0.70) . Nevertheless, it is

still promising since the actual and predicted values are clearly proportional. Moreover,

when compared to the best results of other studies that have analyzed socioeconomic data

using machine learning and satellite imagery in Brazil, it presented a higher R2 value by

approximately 0.05. Finally, it successfully satisfies the goal of improving the performance

of R2 = 0.289 obtained in my preliminary study (SOUSA, I et al., 2022) [18].

In conclusion, although not accurate enough to replace field survey data, the model

performed well and can be used to help analyze the socioeconomic situation of the Brazil-

ian territory in years when official government survey data are not published, supporting

the planning and evaluation of public policies. Furthermore, it is a step towards under-

standing how convolutional neural networks, daytime and nighttime multispectral imagery

can be used in the task of forecasting socioeconomic data, and thus a stimulus for the

development of future work in the field of predicting data through satellite imagery.
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