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RESUMO

O transporte rodoviário desempenha um papel de grnade importäncia em nossa so-
ciedade e no entanto impõe diversas questões para a vida humana, desde poluição até
acidentes de trânsito. Acidentes de carro correspondem à maior causa de morte de jovens
de 5 a 29 anos. Além disso, dados mostram que a principal causa de acidentes são erros
humanos. Nesse contexto, o desenvolvimento de sistemas avançados de assistência ao con-
dutor e além disso véıculos autônomos surgem como uma posśıvel solução para mitigar
esse problema. Nosso trabalho apresenta uma revisão do estado da arte na pesquisa de
véıculos autônomos e oferece uma implementação de diferentes algoritmos utilizados na
percepção e controle de véıculos autônomos em um modelo virtual e em um protótipo
f́ısico. O projeto foi constrúıdo utilizando ROS 2, que possibilita o desenvolvimento de
software modular e escalável. Por fim, uma discussão acerca dos resultados e uma con-
clusão sobre o projeto são apresentadas

Palavras-Chave – Véıculos autônomos, Sistemas avançados de aux́ılio ao motorista,
Robotic Operating System, Percepção, Controle.



ABSTRACT

Road transportation plays a major role in our society, yet imposes several problems for
human life, such as pollution and traffic accidents. Car crashes correspond to the largest
cause of death among young people from 5 up to 29 years. Beyond that, data shows that
the vast majority of the vehicle accidents are caused by human error. In this context,
the development of advanced driver-assistance systems and moreover autonomous vehicles
arises as a possible solution to tackle this problem. This work presents an overview of
the state of the art of research in the field of autonomous vehicles (AVs) and provides
an implementation of different algorithms used in perception and control in the context
of AVs in a virtual model and a physical prototype. The project is built using the soft-
ware framework ROS 2, that enables the development of modular and scalable software.
Finally, a discussion about the obtained results and a conclusion about the project are
provided.

Keywords – Autonomous vehicles, Advanced driver-assistance systems, Robotic Oper-
ating System, Perception, Control
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The only way to discover the limits of
the possible is to go beyond them into
the impossible
- Arthur C. Clarke



1 INTRODUCTION

1.1 Motivation

Road transportation of people and goods is one of the main backbones of modern

society. Despite its importance, road transport poses major negative externalities to our

society, in the form of pollution, accidents and human casualties (2–4). The incidence

of premature deaths resulting from pollution inhalation from traffic congestion in the

US is estimated to be over 20 billion USB in 2010 (5). Road accidents are the leading

cause of deaths of young people in the age between 5 and 29 years and the 8th leading

cause of deaths across all ages, surpassing diseases like HIV/AIDS and tuberculosis (6,

7). According to a study conducted by the US agency National Highway Traffic Safety

Administration (NHTSA) (8), more than 90% of car accidents in the US are caused by

human error.

In pursue of a more precise driving system than a human-based one, autonomous

vehicles (AVs) research has shown positive results in reducing traffic in urban areas (9)

and increase energy usage efficiency (10), in addition to its capability to free people from

the mental and physical burden of long travels. In this context, the present work aims

to provide an implementation of autonomous vehicle in a scale model with the software

framework ROS 2, leveraging its abstraction capabilities in order to provide a solution

that could be applied to a real scale vehicle.

1.2 Autonomous vehicles

The idea of autonomous vehicles (AVs) dates back the 1920s (11, 12), with diffusion

of the concept in television as early as 1958 (13). It was only in the 1980s that the

idea came closer to reality, with major accomplishments in the scope of the european

PROMETHEUS research project (14,15), with a major demonstration in 1994, when the

project’s AV developed in the Universität der Bundeswehr München, VaMP (acronym



from german Versuchsfahrzeug für autonome Mobilität und Rechnersehen), drove 1,600

km, of which 95% autonomously (15,16). In the same period, Carnegie Mellon University

Navigation Lab (CMU NAVLAB) made remarkable advance in the area and in 1995 made

a similar demonstration with a 5,000 km drive across the US, of which 98% autonomously

(17).

The next important historical marks of AVs development are the competitions held by

the US agency DARPA (Defense Advanced Research Projects Agency), that in 2004 and

2005 organized the DARPA Grand Challenges (18) and in 2007 organized the DARPA

Urban Challenge (19). In the 2004 and 2005 DARPA Grand Challenge, the objective

was to navigate through a 150-mile off-road course as fast as possible without any human

intervention (20), in contrast to previous works that had minimal (but no zero) interven-

tions. No team was able to complete the course in the first edition in 2004 and in the

second edition held in 2005, 5 of 23 teams reached the finish line (20). In the 2007 DARPA

Urban Challenge, the objective was to navigate inside a simulated urban environment and

6 of 11 teams succeeded, as major demonstration that AVs could inside cities (21).

To classify different degrees of autonomy, the US National Highway Traffic Safety

Administration (NHTSA) created a 4-level taxonomic classification in 2013 (22) and the

Society of Automotive Engineers International (SAE) created a 5-level taxonomic clas-

sification in 2014, later revised with an extra classification corresponding to level 0 as

complete absence of autonomy (23) as detailed in Figure 1. The electric cars company

Tesla claims that its model S reached level 2.5 of autonomy, while new Audi A-8 reached

level 3, turning Audi the first automaker to offer a vehicle with such high level of autonomy

(24).



Figure 1: SAE J 3016 levels of driving automation. Source (25)
All rights reserved to SAE International



1.3 Robot Operating System (ROS)

The Robot Operating System (ROS) is a project developed by Willow Garage Organi-

zation, as an open source initiative to enable code reuse among different robotics projects.

It’s based in a distributed and centralized peer-to-peer structure, where several processes,

called ”nodes”, communicate with each other with well defined interfaces and with the

intermediation of a master node called rosmaster (26).

The second generation of ROS, ROS 2, was redesigned from scratch in order to solve

some core issues that ROS was not designed to solve, such as security and real-time

capabilities and support for large scale embedded systems. ROS 2 is based on the Data

Distribution Service (DDS), an open source standard already used in critical infrastructure

such as military, spacecraft and financial systems (27). This change leverages an already

existing and adopted interprocess communication standard and removes the burden of

maintaining such standard from ROS 2 core development team (28).

It is possible to highlight some of ROS 2 main features:

Client libraries a common client library implemented in C language rclc is introduced,

in such a way that client libraries for different languages (e.g. C++, Python, Rust)

can be extended from C low-level implementation (28, 29). In contrast, ROS 1

client libraries are implemented from scratch, which lead to inconsistent behaviors

and naming conventions across different client libraries and the burden of solving a

same bug in multiple libraries (29,30).

Middleware interface ROS 2 defines a common middleware interface called ROS mid-

dleware interface (RMW) that can be extended by any DDS implementation in

such a way that the client libraries are completely independent from the underlying

transport method (31).

Real-time By adopting DDS as transport middleware, ROS 2 aims to provide real-time

performance to allow its adoption by safety-critical systems (32).

Security Another set of desired features from the DDS standard are security capabilities,

such as authentication, access control and cryptography (33,34).

An illustration of ROS 2 structure can be seen in Figure 2.



Figure 2: Illustration of ROS 2 core stack. Source (29)

1.4 Data Distribution Service (DDS)

The Data Distribution Service (DDS) is a standard maintained by the Object Man-

agement Group (OMG), whose purpose is to provide a common application-level interface

that clearly defines the data-distribution service. The standard seeks to unify existing im-

plementations by enumerating and providing formal definitions for the Quality of Service

(QoS) settings that configure the behaviour of the service (27). DDS follows a publish-

subscribe pattern and provides a mechanism for dynamic discovery of both publishers and

subscribers, in such a way that there is no need for a centralized entity to manage the

existing processes as the rosmaster in ROS 1. The decentralized nature of DDS is shown

in Figure 3.

1.4.1 Supported DDS providers

By design, ROS 2 is build in such a way that is possible to use different DDS imple-

mentations provided by several vendors. The eighth release of ROS 2 Humble Hawksbill,

released in May 2022 (36), provides support out-of-the-box for 4 different DDS implemen-



Figure 3: Decentralized structure of DDS standard. Source (35)

tations (37,38).

Fast DDS default DDS implementation utilized by ROS 2 Humble, supported since ROS

2 first release (38). It is provided by eProsima with the open-source license Apache.

Cyclone DDS provided by the Eclipse Foundation with the open-source license Eclipse

Public License v2.0. It first received supported in the ROS 2 fourth release Dashing

and is the successor of the OpenSplice Community Edition, whose support for ROS

2 was dropped in the sixth release Foxy (38,39).

Connext DDS provided by RTI with commercial and research licenses, with full support

since ROS 2 first release (38).

GurumDDS provided by GurumNetworks with commercial licenses, with community

provided support since ROS 2 sixth release Foxy (38).

From the first ROS 2 release, Ardent, until the sixth release, Foxy, the default DDS

implementation was Fast DDS. In order to chose the default DDS implementation for the

seventh release, Galactic, the Technical Steering Committee (TSC) performed a bench-

mark among the supported DDS implementations with Tier 1 support and permissive

open source licenses (40,41) and chose Cyclone DDS as default provider for the G-release

(42). In 2021, the benchmark was performed again (43) and the TSC chose Fast DDS as

default provider for ROS 2 eighth release Humble (36). For the releases after Humble, the



TSC decided to only change the default DDS provider in non Long Time Support (LTS)

releases, in order to ensure more stability to LTS distributions (44).

1.5 ROS 2 benchmarks

Several benchmarks were performed to asses the performance of ROS 2 as middleware

in autonomous systems (45–49). One of the firsts works in the subject, Maruyama et al.

(2016) (45) presents a comparison between ROS 1 and different quality of service (QoS)

settings for ROS 2, which showed different DDS vendors with similar performance as

ROS 1 nodes and nodelets. In the same year, Dabrowski et al. (2016) (46) presented a

similar analysis focusing in lossy networks and characterized the degradation behaviour

of both Connext DDS and Fast DDS upon increased packet loss. Both perform in

a similar way and the authors point that the chosen QoS settings display the greatest

impact in the performance of the system. A common conclusion of both works is the

positive gain of adopting DDS as transport middleware, as it stands as well established

transport method, but highlight the needed effort to understand its QoS options as they

can heavily influence the systems performance.

Pemmaiah et al. (2018) (47) provides an in-depth analysis of the process of building a

test tool to properly assess the system’s performance. It presents relevant parameters that

may affect the measurement, such as chosen QoS policy, different transport mechanisms

and buffer sizes. It also discuss the trade-off between application’s determinism and high-

performance.

Fernandez et al. (2020) (50) explores the impact of the security features available in

the DDS standard in the performance of data exchange. It shows that it is possible to

use cryptography algorithms such as Rivest-Shamir-Adleman (RSA) 2048 bit and Elliptic

Curve Cryptography (ECC) 256 bit to protect encrypted connections in the context of

warfare systems.

Puck et al. (2021) (51) evaluates the real-time capabilities of ROS 2 with the

ros2 tracing (49) tool. It employs a set of industrial PCs (IPCs) running a real-time Linux

kernel (i.e. Preempt-RT) and synchronized via the precision timing protocol (PTP). It

shows that of-the-box settings of ROS 2 are not real-time ready, but upon some modi-

fications it is possible to achieve real-time safe performance for low control frequencies

(under 1kHz).

Kronauer et al. (2021) (48) provides an analysis of multi-node communication chains



and how the number of nodes can affect the performance of data exchange using Fast-

DDS, CycloneDDS and Connext. It shows that latency is highly dependent on hard-

ware and chosen QoS settings, with no DDS provider displaying best performance in all

cases.



2 STATE OF THE ART

The complex task of autonomous drive is usually split in a 3 steps procedure: percep-

tion, planning and control (11,16,52–56) as illustrated by Figure 4.

Figure 4: Typical autonomous vehicle system overview proposed by (11)
V2V refers to Vehicle-to-Vehicle communication

Perception refers to the ability of an autonomous system to collect information and

extract relevant knowledge from the environment (11).

Planning refers on how a robot takes decisions in order to perform a high level mission

(11), such as reaching a desired location or performing a complex task. It is usually

divided in global (or path) planning, behaviour planning and local (or motion) planning

(11, 55, 57–59). Global planning refers to high level planning, such as the route to reach

a desired location, behaviour planning refers to decisions to ensure the vehicle interacts

with the environment in a safe manner (i.e. following traffic laws and streets signals), and

local planning refers to immediate decisions to accomplish the current global goal, such

as when to change lanes (11,59).



Control refers to the ability to transpose desired actions generated by planning algo-

rithms to the real world. According to (11), ”refers to the ability to execute the planned

actions that have been generated by higher level processes”. It is accomplished with tech-

niques such as classic control approaches as PID controllers, modern control approaches

such as Model Predictive Control (MPC) or machine learn based approaches such as

Reinforced Learning (RL) (55).

An example of system implemented following this structure is Autoware.Auto Au-

tonomous valet Parking demo, whose architecture is shown in Figure 5.

Figure 5: Autoware.Auto Autonomous Valet Parking demo software architecture
Available at (60)

2.1 Perception

Perception can be divided primarily in two branches: localization and object detection.

2.1.1 Localization

Many localization approaches heavily rely on LiDAR sensors, described as a ”game

changer” in the field (61), as it is able to create a dynamic, three-dimensional map of the



environment by sending millions of light pulses per second with its rotating axis. However

the data returned by those sensors are not perfect, with problems as point sparsity, missing

points, and unorganized patterns (11).

Simultaneous Localization and Mapping (SLAM) algorithms use probabilistic tools to

synthesize information from LiDAR scans to build and update the map of the unknown

environment, together with the tracking of the agent’s location and orientation.

Analyzing different SLAM approaches, GraphSLAM is currently the most accurate

one (62), outperforming other options, like EKF-SLAM, by up to 15 times when fusing

data from different vehicle sensors (e.g. wheel encoder, IMU) (63), although it has a

higher memory cost.

Due to the high cost of LiDAR sensor, novel SLAM approaches aim to obtain the

same result as LiDAR-based solutions but using stereo (also called RGB-D) cameras. As

these approaches rely on visual information from a set of images, they are also referred as

VSLAM algorithms (61), with main exponents as ORB-SLAM3 (64), OpenVSLAM (65)

and RTAB-Map (66).

2.1.2 Object detection

Being able to detect objects is an essential task in some of autonomous driving objec-

tives. Vehicles, pedestrians and cyclists are key objects for accident prevention and driver

assistance. Some of the principal challenges are related to object occlusion and predic-

tion (67). Likewise, lane line marks and road surfaces are crucial to a reliable urban and

highway traffic, whose detection issues are mainly challenging light conditions, affecting

the road unevenly, and missing land marks (68).

In recent years, deep learning approaches for detection have shown superior per-

formance and reliability compared to conventional learning or feature based methods.

However, most of these implementations result in a higher processing time. Some other

approaches focus on achieving real time performance, e.g. Darknet You Only Look Once

(YOLO) (69–72) and Single Shot Detection (SSD), enabling applications that rely on

dynamic and constant data processing to use object detection as its main perception tool.



2.2 Planning

2.2.1 Global planning

Classical approaches to global planning are based in graph search algorithms over a

directed graph network that represents roads connectivity, such as Dijkstra’s (73) and

A* (74), with good performance in small neighborhoods but poor scalability (11). More

recent approaches rely on optimization methods (55) and reinforced learning (75–77) with

advantage of smaller querying times in comparison to classic path searching algorithms

(78).

2.2.2 Behaviour planning

To perform tasks such as react to sudden environment changes and interact with

other agents in a safe manner, many AVs at the DARPA Urban Challenge implemented

Finite State Machines (FSM) (19, 79–81). More recent approaches use Behavior Trees

(BT) instead of FSMs (58), that show better reactivity, modularity and scalability in

relation to FSMs (82). Some novel approaches perform optimization across a trajectory

space generated by the local planner and select the one with lowest cost in relation to a

given cost function. This cost function may take into account values such as proximity to

obstacles, control effort, acceleration and jerk, in order to maximize safety (by minimizing

distance to obstacles) and comfort (by minimizing acceleration and jerk) (55).

2.2.3 Local planning

The main objective of local planning is to plan the motion of the car in a finite

fixed time horizon in order to make progress along the current route generated by the

global planner (55). Motion planners can be evaluated according to their computational

efficiency and completeness. Computational efficiency refers to the process run time and

its scalability based on the dimensionality of the configuration space. The algorithm is

considered complete if it ceases its execution in finite time either returning a solution or

indicating that no solution exists (83).

Classical local planners can be divided as combinatorial or sampling-based plan-

ners. Some examples of complete combinatorial planners are visibility graphs (pro-

vides shortest path solution) and Voronoi-diagrams (provides highest clearance solution)

(11, 59). The main drawback of these methods is their computational burden, specially



in highly complex environments, which lead to sampling-based methods development

(84–86). Sampling-based methods provide probabilistic completeness, which means that if

sufficient time to check an infinite number of samples is given, the probability of finding a

solution (if one exists) converges to 1. Some prominent works in this area are Probabilistic

RoadMaps (PRM) (86,87) and Rapid-exploring Random Trees (RRT) (84,88).

Other optimization based methods used in local planning are the Dynamic Window

Approach (DWA) (89) and Time Elastic Band (TEB) (90), both utilized by the ROS

Navigation Stack (57,58).

2.3 Control

The control competency of an autonomous system refers to the process of converting

intentions, generated by higher level planners, into actions (11). It’s the lowest abstrac-

tion level in the software stack, since its outputs are directly transformed into hardware

commands.

One traditional form of classic control is the Proportional-Integrative-Derivative Con-

troller (PID), tunned to path following, in order to minimize the lateral, longitudinal,

heading error (91,92), as shown in Figure 6.

Figure 6: Definition of longitudinal error e and heading angle error ψ from (92). The
path local curvature is described by ρ

The mathematical formulation of the classic PID controller follows the time-domain



equation

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

where u(t) is the control effort, e(t) is the control error and Kp, Ki and Kd are the

proportional, integral and derivative controller gains, respectively.

In order the tackle the classic PID controller limitations, such as delayed response

to errors and coupled responses to disturbances, modelling error and measurement noise,

another degree of freedom may be added to the control system by including a feedforward

term to the controller, as shown in Figure 7.

Figure 7: Two degrees of freedom PID controller as illustrated by (11)

2.4 End-to-End

As a complementary approach to the classic perception-planning-control pipeline,

some works try to achieve end-to-end solutions for autonomous driving with use of tech-

niques such as optimization, deep learning or reinforced learning (55) as shown in Figure

8.

As displayed by Betz et.al. (55), most works up to 2019 used an Optimal Control

Policy, implementing it with methods such as Fuzzy Logic and Evolutionary Algorithms.

Most recently, Deep Learning and Reinforcement Learning (RL) dominated the field,

especially when paired with Vision based planning models.

Model based RL is currently the state-of-art, outperforming non-model based methods

while displaying good generalizations on unknown track (93,94).

Some recent approaches to AVs control rely on Model Predictive Control (MPC) to

perform path following, a basic structure of it is illustrated in Figure 9. The MPC has



·

Figure 8: Comparison between classic autonomous driving solutions to partial or
complete end-to-end software pipelines as illustrated by (55)

been developed to integrate the performance of optimal control and robustness of robust

control (11). It solves a Finite Time Optimal Control Problem (FTOCP) to compute an

optimal sequence of inputs {u∗t , . . . , u∗t+N−1} and states {x∗t , . . . , x∗t+N} over a fixed horizon

N in order to minimize a certain cost function (55). The FTOCP is solved at each time

step, so the controller take into account the feedback from the environment as the action is

performed and can take proactive actions as the state of the system is evaluated in future

time steps, enabling the system to adapt to distinct situations. Solving this optimization

problem may be a computational challenge and is addressed through stochastic (95) or

learning based (96) methods.

Some of MPC attractive features are its ability to handle complicated process models

with input constraints and non-linearities (97) and simplicity of designing a multi variable

feedback controller (11).

Figure 9: Basic Structure of Model Predictive Control as shown in (11)



3 METHODOLOGY

3.1 Scope of the project

The main focus of this work is the project and development of an autonomous driving

system to be implemented in a simulated environment and then in a scale prototype. The

system should be able to perform maneuvers in a controlled and static environment (e.g.

valet parking) and should be able to provide active assistance to the driver in order to

prevent collisions. In the scale defined by SAE J3016 (shown in Figure 1), the system

should fulfill the requirements for level 2 autonomous driving.

The system was first developed inside the CARLA simulator (98) using a virtual model

of a Tesla Model 3, with a custom set of sensors defined to best suit our autonomous

driving system. The definition of the dynamic properties of the model are beyond the

scope of this work, so an existing one is used in the project.

In the next phase of the project, the system was implemented in a 10:1 scale model

using a similar set of sensors as the simulated model. The model was built from parts

commercially available and some needed mechanical adaptations were made in order to

embed the selected sensors and control hardware in the model.



3.2 Definitions

From the ISO 26262-1 (99), the following definitions are used in the text:

Fault “Abnormal condition that can cause an element or an item to fail”

Failure “Termination of an intended behaviour of an element or an item due to a fault

manifestation”

Fault Tolerance “Ability to deliver a specified functionality in the presence of one or

more specified faults”

Harm “Physical injury or damage to the health of persons”

Hazard “Potential source of harm caused by malfunctioning behaviour of the item”

Risk “Combination of the probability of occurrence of harm and the severity of that

harm”

Functional safety “Absence of unreasonable risk due to hazards caused by malfunc-

tioning behaviour of electrical or electronic systems”

3.3 Methodology of the project

In accordance with the presented state of the art, the project is divided in 3 sub-

systems: sensing, planning and control. Each subsystem is composed by one or more

processes that exchange information with each other in real time. In order to achieve

consistent fault tolerance, a redundant system is desirable when possible, so the vehicle

can still work if one of its elements fail.

The project follows a hybrid approach mixing simulation and real world tests. The

development starts inside a fully virtual environment and, once the system is capable

of performing its tasks in the simulation, it is then tested in the real scale model. The

virtual environment is still used as auxiliary tools along the entire project. This approach

is illustrated in Figure 10.

The performance of the system was evaluated in a set of repeatable tasks in simple

scenarios. The Carla simulator provides a common set of evaluation scenarios, in such

a way that is possible to compare the results of our system in comparison with different

benchmarks.



Figure 10: Simulation and real world approach as proposed by Nvidia, taken from (100)

3.4 Software structure

The work follows the structure of a ROS 2 project, which is composed by a series of

packages, each one with a single responsibility. The project follows the organization stan-

dard defined by REP-144 (101) and the best practices guidelines from the ROS community

(102).

The minimal unit of a ROS 2 package is called node, that communicate with each

other using ROS 2 messages (28). The structure of the communication follows the depen-

dency inversion principle, where high-level and low-level processes depend on an abstract

interface between them instead of the implementation itself (103). In our project, the

abstract interfaces are described by the used ROS 2 messages.



4 REQUIREMENTS

4.1 Functional requirements

The system should fulfill the requirements for level 2 of autonomous driving (i.e.

steering and brake/acceleration assistance) in SAE J3016 standard (23), as depicted in

Figure 1. The desired features are:

Maneuver assistance The system should provide assistance to the car driver to perform

simple maneuvers in controlled environments (i.e. parking lot).

Navigation with landmarks The system be able to localize itself in respect to minia-

turized traffic cones. The traffic cones should follow a 10:1 scale in respect to the

Brazilian standard NBR 15071 (104).

Collision avoidance The system should prevent commands that may cause a collision

with the landmarks or any other object in the surroundings.

4.2 Non functional requirements

Modularity As described in the previous chapter, AV control is a highly complex task.

In order to tackle this complexity, a modular architecture design is desirable. From

(105) “A complex system can be managed by dividing it up into smaller pieces and

looking at each one separately. When the complexity of one of the elements crosses a

certain threshold, that complexity can be isolated by defining a separate abstraction

that has a simple interface. The abstraction hides the complexity of the element;

the interface indicates how the element interacts with the larger system”



5 DEVELOPMENT

5.1 Virtual model

In accordance with state of the art approaches shown in, a virtual model was built in

order to validate the developed software in early stages of development and ease the test

of high level features. The model was build inside the CARLA simulator and is based

upon the already available Tesla Model 3(106) virtual model, with a custom set of sensors

in order to match the sensors used in the physical scale model. The main sensors used in

the vehicle are a set of 4 stereo cameras, positioned in all sides of the car as illustrated in

Figure 11.

Figure 11: Illustration of cameras disposition in the virtual CARLA model

The interface with the model is done through the CARLA ROS bridge package (107)

with custom ROS topics defined by the CARLA interface. At each simulation tick, the

control system receives data generated by the sensors, computes the control action and

then sends it to the simulator.



5.2 Hardware prototype

In addition to the virtual model, a physical 1:10 scale prototype was also built in order

to validate the system’s performance in real world conditions, shown in Figure 12. It is

divided in 3 sub-systems, mechanical power train in the bottom level, electrical power

train in the middle level and finally sensing and processing in the top level, as shown in

Figure 13.

Figure 12: Physical prototype built by the authors

Figure 13: Red sensing and processing sub-system, green electrical power train and
blue mechanical power train

The mechanical power train is composed by a Maxon EC-4 pole 30mm 24V brushless

motor (108) connected to a gear transmission system with a differential gear train to



the rear wheels, allowing then to rotate in different speeds if needed. The mechanical

structure was built over the R2-G SNRC 10:1 electric touring car kit, shown in Figure

14. The original kit has 4 wheel traction, but as only the rear wheels have a differential

transmission, it was decided to disconnect the transmission to the front wheels in order

to prevent slip and thus improve controllability.



Figure 14: Exploded view of the R2-G RC car chassis provided by the manufacturer. Available at http://sn-rc.com/en/mcart.jsp



The electrical power train is composed by a VESC-based electronic speed controller

and 2 3-cell 2000mAh LiPo batteries. The VESC (Vedder electronic speed controller)

project is an open source project created by Benjamin Vedder with focus to provide a

free and open source solution to control electrical motors in the context of robots, e-bikes,

electric skateboards and others (109). One of the batteries powers the VESC and the

other is responsible to power the sensing and processing sub-system.

The sensing and processing sub-system is composed by one Jetson Xavier NX as main

processing unit, 3 ELP 1MP 120FOV USB stereo cameras and 1 IMX218-83 CSI stereo

camera. This camera setup was chosen due to the limitation of number of USB ports in

the Jetson Board, in such a way that one of the cameras takes advantage of the Camera

Serial Interface (CSI) hardware available in the board. The Jetson Xavier NX platform

provides a 384-core GPU and a 6-core CPU, capable of up to 21 Tera Operations per

Second, and so it is an ideal embedded platform for image processing.

In addition to the scale car, a set of miniaturized traffic cones was manufactured with

a fused material deposition (FDM) 3D printer, the results are displayed in Figure 15. In

accordance with a 10:1 scaled version of the NBR 15071, the traffic cones have a square

base of 50mm and height of 70mm.

5.3 Perception

5.3.1 Camera calibration

The images provided by real cameras are subjected by a set of distortions due to

imperfections in the manufacturing process. An in-depth analysis of camera image dis-

tortions and their causes may be found in (110) and (111). In the present work two main

sources of distortion are considered, radial and tangential.

The radial distortion corresponds to the displacement of pixels near the edges of the

image and it is responsible for the barrel and the pincushion distortion. The distortion is

zero in the center of the image and it increases with the radial distance r. This relation

may be described by the Taylor polynomial in respect to the radial distance r. For typical

web cameras, a third order polynomial is sufficient to model this distortion (112)



Figure 15: Traffic cones used in the project

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
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ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

The tangential distortion occurs due to a misalignment between the camera lens and

its optical sensor, in such a way that the image is skewed and its center is displaced. It

may be modeled by the relation (113)

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy]



Therefore, a camera distortion may be characterized by the set of 5 coefficients

[k1 k2 p1 p2 k3]. The calibration of all cameras were performed using a 6x8 chessboard

pattern printed in a A4 paper sheet and fixed in a solid frame, as shown in Figure 27.

Figure 16: Calibration of a stereo camera with a 6x8 chessboard pattern

5.3.2 Top view camera

In the context of computer vision, planar homography is defined as a projective map-

ping from one plane to another. A direct example of planar homography is the mapping

of a planar surface in space to the planar surface of the image. It is possible to express

this relation in terms of matrix multiplication with use of homogeneous coordinates, each

given point in a plane with coordinates [x y 1] may be mapped to a new point in a different

plane with coordinates [u v 1] through the equation


x

y

1

 =


h11 h12 h13

h21 h22 h23
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

u

v

1


Where the H is the 3x3 homography matrix. With a set of 4 points correspondence

between the two planes it is possible to fully describe the homography relation. When

more than 4 corresponding points are available,

5.3.3 Scene recognition

A system with 4 stereo cameras is proposed, one on each side of the car, similar as

the one utilized by Tesla’s cars (114). There are several options to use the data provided

by this set of cameras, such as directly feed a Visual Simultaneous Localization and

Mapping (VSLAM) algorithm in order to navigate in the environment. It is also possible



to take advantage of the known position of the cameras and infer the depth of the objects

surrounding the car and get the similar data as a LiDAR sensor would provide. At last,

it is even possible to directly feed a deep neural network (DNN) model directly to provide

the position of the vehicle in relation to a known map.

The CARLA simulator was used to test the different approaches and an example of

scene reconstruction is shown in Figures 17 and 18.

Figure 17: Point cloud inferred from 8 cameras in the Carla simulator

Figure 18: Detail with all 8 cameras in the virtual car

The images generated by the simulation are matched to infer the depth of each point

in the image by computing its horizontal displacement in each image. The geometrical



principle is illustrated in Figure 20. To speed up computations, the image processing and

matching is done via GPU processing, in such a way the system is capable of performing

real-time computation.

Figure 19: Geometrical principle of depth inference from stereo cameras, as illustrated
by (115). The baseline is denoted by b and the focal distance is denoted by f

5.3.4 YOLO

The images obtained from the proposed camera system can be used to feed a deep

neural network for object detection. As an autonomous vehicle relies on fast response

times to function properly, a YOLO based solution was chosen. Its most recent official

version is currently YOLOv7, which outperforms its previous versions in lower parameter

density, faster inference times and higher precision (116).

Figure 20: Inference time and AP comparison between YOLOv7 and other previous
versions (116)



5.3.4.1 Structure

YOLOv7 has a few released variations, some aim for to improve its precision, while

others focus on improving its performance. The relevant one to this project is the

YOLOv7-tiny, which reduces the network size, number of parameters and changes its

activation function to LeakyReLU, reducing significantly image processing time, at the

cost of lower overall accuracy.

For comparison, both versions were trained for 50 epochs and tested in a validation

computer, using a NVidia GTX 1050 and a 480 x 640 image as the network input. Overall,

YOLOv7-tiny processed the images approximately x4 faster than its counter part, however

with a slightly lower precision.

Therefore, even though YOLOv7 displays better performance, as the detection net-

work will need to process four images at a time, the processing time gain is more valuable

for a real time perception system.

Besides that, there was also an attempt to use the YOLOv7-tiny in a different frame-

work than Pytorch: NCNN. It is a high-performance neural network inference framework

made in C++ and optimized for the mobile and edge platforms, such as the Jetson Xavier

NX used in the hardware prototype. To use it, the weights file must be converted from

a .pt file to .onnx and then to both a .bin and .param files. However, when testing it

on the Jetson Xavier board, it performed similarly to the original Pytorch version. So,

as there was an increased maintenance cost due to the added conversions and no gain in

performance, this attempt was put aside.

5.3.4.2 Dataset

The dataset used to train the neural network is a combination of FSOCO dataset,

which consists of images manually labeled by the Formula Student Driverless community

(117), and an authored dataset, built with pictures containing cones, taken around USP

main campus, and labeled manually using the LabelImg software (118). An example of

each dataset is displayed in Figures 21 and 22.To join both datasets, the Roboflow site

was used 1.

The cones in the FSOCO dataset are grouped into 5 distinct classes: ’yellow cone’,

’blue cone’, ’orange cone’, ’large orange cone’ and ’unknown cone’, as illustrated in Figure

23, with the two former being the vast majority of it. To contour the problem of over

1The site is available at the address https://roboflow.com/



Figure 21: Example of an image from the FSOCO dataset

Figure 22: Example of an image from the autoral dataset

and under representation, displayed by the Figure 23, all objects where unified into the

’cone’ label. This is not prejudicial in this project as the information to distinct between

cone types is not relevant. The cones are being used as a generic marker or obstacle, so

it is only necessary to know if it’s a cone. Additionally, the ’unknown cone’ label was

removed, as it mostly contained small cones, which lost resolution when the images were

resized for training.

Finally, before exporting the dataset, some techniques of data augmentation were

applied to it, as it has shown to improve the overall precision of deep learning methods,

while also reducing the overfit present in smaller datasets (119). An example of an image

with data augmentation is displayed in Figure 24 and the characteristics of the resulting

dataset are displayed in Figure 25.



Figure 23: Distributions of classes in the cone dataset, generated by Roboflow’s
healthcheck feature

Figure 24: Example of data augmentation result, using brightness and rotation variation

Figure 25: Final cone dataset characteristics

5.4 Control

5.4.1 Sliding modes control

5.4.1.1 Lateral control

In order to follow the desired path generated by the higher level routine, a sliding

mode controller was implemented. The implemented control law is a modification from



the proposed in (120):

δ = −γ sign (ψ − ψd) + vψ̇d (5.1)

Where

γ = v

(
a11
v
|β|+ a12

v2
|ψ̇|+ |β|a0

|v̇|
|v|

)
+
γ0
2

(5.2)

δ is the control action (signal sent to the steering actuator), ψ is the heading angle of

the vehicle, ψd is the desired heading angle, v is the velocity of the vehicle, γ0 is an adjust

parameter, a11 and a12 are constants dependent on the vehicle geometry, β is the vehicle

sideship angle.

To prevent chattering, the function sign (ψ − ψd) is changed to sat
(
ψ−ψd

Φ

)
, where Φ

defines a boundary layer around the sliding mode. Thus, the final form of the control law

is

δ = −γ sat

(
ψ − ψd

Φ

)
+ vψ̇d (5.3)

5.4.1.2 Longitudinal control

The longitudinal control of the vehicle is performed by a PID controller, whose desired

velocity is described by the equation

vd = γpρ+ λ (5.4)

where γp and λ are adjust parameters and ρ is the distance to the followed point



6 RESULTS

6.1 Perception

To properly select the YOLOv7 structure, the average detection time for a 640x480

image was analysed, whose results are shown in Table 1.

YOLOv7 YOLOv7-tiny
(Pytorch)

YOLOv7-tiny
(NCNN)

GeForce GTX 1050Ti 83 ms 21 ms -

Jetson Xavier NX - 36 ms 52 ms

Table 1: YOLOv7 average detection time with different hardware

The cone detection network was trained in YOLOv7-tiny, up to 500 epochs. Resulting

in weights with more than 90% prediction, as displayed in Table 2.

Prediction Recall mAP@.5 mAP@.95

0.904 0.533 0.579 0.331

Table 2: YOLOv7-tiny performance metrics

This training resulted in a very sturdy cone detection system. However, false positives

are also present, with detection confidences up to 45%. This can be resolved by increasing

the detection confidence threshold.

In order to assist the driver while performing maneuvers with the car, an assistance

system was developed in order to provide a third person view from above of the vehicle.

This system was achieved using a homography transform as described in 5.3.2.

Four points A,B,C,D were chosen forming a square in the floor and their coordinates

in the image plane were determined using the projection matrix of each camera, derived



Figure 26: Results of the cone detection network

Figure 27: Top view virtual camera assistance with a homography transform

in the calibration process. Those points define the frame of the top view image. Finally,

the homography matrix is numerically found with the Levenberg–Marquardt optimization

algorithm (121,122).



6.1.1 Localization

Once the detection of the landmarks is made, the perception system localizes the traffic

cones in space in relation to itself. Transformation is made based in two assumptions: the

surroundings of the vehicle are flat and the landmarks have a known height. With both

assumptions, the Y coordinate in the camera frame of the center of all landmarks is equal

to half of its height. It is then possible to use this information to simplify the projection

matrix of the camera and find the X and Z coordinates in the camera frame using the

(x, y) coordinates of the center of the cone in the image frame.

In other words, the perspective projection performs the following transformation be-

tween (X, Y, Z) camera frame coordinates and (x, y) image frame coordinates.

x = −f X
Z

y = −f Y
Z

where f is the focal distance of the camera, measured in pixels. As the Y coordinate

of the traffic cones is known, it is possible to find X and Z as follows:

X = Y
x

y
Z = −Y f

y

The position of the cone in respect to the camera is then transformed to the external

fixed tf2 referential /odom as defined by REP 105 (123). Given the assumption that the

cones are static, the vehicle performs its localization in the world while moving in respect

to the location of the cones. The result of the localization system may be seen in Figure

28 and 29.

In addition, the vehicle is capable of localizing itself even if the cones are temporary

hidden, thanks to the estimation of its position, based on its velocity and steer angle,

using an odometry system.



Figure 28: Graphical representation of the inferred position of the cones in respect to
the camera reference frame

Figure 29: Photo of the real position of the detected cones

6.2 Control

6.2.1 Sliding modes control

The tests were performed in a fixed route inside CARLA map Town02. The path is

followed from point A to point B, as shown in Figure 30. It contains 3 curves to the left,

3 curves to the right and 7 straight lines.

6.2.1.1 System performance

The validation was performed with a look ahead distance L of 2.0m and the variable

estimations â11 = 2, â12 = 0.2, â0 = 1, Φ = 0.4 and γ0 = 2, defined using the car geometric

and physic true parameters, as shown in Figure 31. The six disturbances correspond to

each one of the curves displayed in the red path of the Figure 30, with the first 3 to the



Figure 30: Illustration of CARLA map Town02 as provided by (98)

right, thus a positive value for the control action δ, and the latter 3 to the left, thus a

negative value for the control action δ.

For the control of longitudinal speed, the parameter lambda was set to zero and γp

was chosen in such a way that the maximum speed of the vehicle would be equal to

5m/s (18km/h).

Figure 31: System performance for L = 2.0m, â11 = 2, â12 = 0.2, â0 = 1, Φ = 0.4 and
γ0 = 2



6.2.1.2 Look ahead distance

The optimal look ahead distance was found to be L = 2.0m. A comparison of L =

1.0m, L = 2.0m and L = 5.0m is shown in Figure 32.

Figure 32: Comparison of different look ahead distances

6.2.1.3 Boundary layer

The effect of the boundary layer can be seen in Figure 33, setting Φ = 0.2 and then

Φ = 0.4. It is possible to see that the boundary layer successfully prevents chattering

without significantly compromise the performance of the system.

6.3 Discussion

The developed system was able to perceive the surrounding environment and detect

the standardized landmarks in order to localize itself. The position estimate of the land-

marks was performed using previous knowledge about its dimensions and the intrinsic

parameters of the cameras in order to perform a inverse perspective projection. It was

not possible to use the desired stereo configuration due to the challenge of setting all

calibration parameters of the stereo matching algorithm, whose poor results made it im-

possible to use in the project. A possible fix may be the use of a fourth order radial

distortion model for the cameras calibration instead of the third order used in this work.



Figure 33: Illustration of the effect of a boundary layer with Φ = 0.2 and Φ = 0.4

In addition to the perception system, the top view camera also provides assistance

to the driver when performing maneuvers in constrained environments. The proper cal-

ibration of all cameras was key in order to achieve good performance of this tool. The

landmark detection using YOLOv7 proof to be robust and suitable to the task of ob-

ject recognition in embedded devices. Its tiny version offered a good balance between

performance and computational cost.

The implemented control algorithm was able to stabilize the system and guide a

virtual vehicle through a desired pattern. Due to time constrains, it was not possible to

validate it in the physical model, only in the simulated one. A possible following work for

this project would be porting the implemented controller in the physical model.

The use of the modular framework ROS 2 makes the developed code for this work

loosely coupled and easily extensible, in such a way that it is possible to robust existing

libraries run alongside our code, such as the ROS Navigation Stack 2.



7 FINAL REMARKS

7.1 Conclusion

Road transportation plays a major role in our society at the same time that imposes

a series of issues to human life, from pollution to traffic accidents. Car crashes alone

correspond to the largest cause of death of young people from 5 to 29 years (6) and

despite the complexity involved in the working principles of a automobile, human error is

still the major cause of car accidents (8). In this context, the research and development

of advanced driving assisting systems (ADS) arises as a possible solution to this problem.

This work presented a review of the state-of-the-art in the field of autonomous vehi-

cles. A simulation model was prepared for initial testing and validation, then a physical

prototype was built in order to test the system in real world conditions. The system was

capable of detecting miniaturized traffic cones and localizing itself in respect to the traffic

cones. A control system was also developed and tested in the simulation environment.

The system was built using the modular framework ROS 2, that enabled the devel-

opment of modular code and the use of consolidated open source libraries from the field

of robotics

7.2 Going further

The work done in this project may be expanded with further use of the built physical

prototype. The use of robust planning systems, such as ROS Navigation Stack 2(58) or

Autoware.AI may extend the capabilities of the platform into performing more complex

tasks. Our project was unable to take advantage of the stereo configuration of the camera,

so the depth measurement was restricted to objects with known geometry. The proper

calibration of the stereo fusion algorithm may provide a more robust depth inferring

system and so improve the systems performance.



The addition of different sensors, such as a inertial measurement unit (IMU) and a

Lidar may provide a deeper understanding of the surroundings of the model and improve

its perception. Different control techniques such as model predictive control (MPC),

dynamic window approach (DWA) (89) and time elastic band (TEB) (124) could be

tested in order to find the one that delivers the best performance.

7.3 Open source contributions

The presented work was built upon several free and open source projects and some

improvements could be made to some of them during the development period. By the

time of writing, seven different projects received contributions in the form of pull requests

in GitHub in the context of this project. It is a small return given to the community in

recognition of the meaningful work and assistance provided.
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66 M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term online
operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

67 W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic feature detection:
A new perspective for pedestrian detection,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 5187–5196.

68 L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “Lidar–camera fusion for
road detection using fully convolutional neural networks,” Robotics and Autonomous
Systems, vol. 111, pp. 125–131, 2019.

69 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

70 J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

71 ——, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767,
2018.

72 A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

73 E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

74 P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.



75 P. Thombre, “Multi-objective path finding using reinforcement learning,” 2018.

76 G. Khekare, P. Verma, U. Dhanre, S. Raut, and S. Sheikh, “The optimal path
finding algorithm based on reinforcement learning,” International Journal of Software
Science and Computational Intelligence (IJSSCI), vol. 12, no. 4, pp. 1–18, 2020.

77 J. Yu, Y. Su, and Y. Liao, “The path planning of mobile robot by neural networks
and hierarchical reinforcement learning,” Frontiers in Neurorobotics, p. 63, 2020.

78 H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck, “Route planning in transportation networks,” in
Algorithm engineering. Springer, 2016, pp. 19–80.

79 A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong,
A. Wicks, T. Alberi, D. Anderson et al., “Odin: Team victortango’s entry in the darpa
urban challenge,” Journal of field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

80 J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza,
J. Derenick, J. Spletzer, and B. Satterfield, “Little ben: The ben franklin racing team’s
entry in the 2007 darpa urban challenge,” Journal of Field Robotics, vol. 25, no. 9, pp.
598–614, 2008.

81 C. R. Baker and J. M. Dolan, “Traffic interaction in the urban challenge: Putting
boss on its best behavior,” in 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2008, pp. 1752–1758.
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