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ABSTRACT

Offshore platform oil extraction opens up new promising possibilities of extending
the life span and usage of the scarce resource. With the new technology new problems
of platform surveillance and security arise. The mooring systems give stability to the
floating offshore platforms against environmental conditions, stabilizing the platform with
mooring lines attached to the seabed. This work focuses on a novel approach using Neural
Networks to predict the platform motion in different environmental conditions. Based on
the predictions, different classifiers are then developed to detect mooring line failure in real
time. The project helps in reducing the costs of maintenance and increases the security
of the platforms.

Keywords – Neural networks, RNN, LSTM, offshore platform, mooring line, FPSO.



LIST OF FIGURES

1 Offshore risks of incidents (extracted from [1]). . . . . . . . . . . . . . . . . 18

2 Proposed general architecture: mooring line failure detection is based on

the short-term prediction of platform motion. . . . . . . . . . . . . . . . . 21

3 Pipeline of the motion prediction approach to detect platform line failures. 25

4 Integrated proposed architecture consisting of three models. The predictor

for predicting future platform motion, the comparator for calculating the

difference between prediction and simulation and the classifier for identify-

ing mooring line failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 The basic input and output structure of the neural network predicting the

platform motion based on the past simulated platform motion . . . . . . . 26

6 The basic input and output structure of the comparator calculating differ-

ent error scores based on the difference between simulation and prediction . 27

7 The basic input and output structure of the classifier identifying mooring

line failures based on different error scores calculated by the comparator . . 28

8 The figure shows the predictor module as part of the modular system structure 29

9 Generation of training and test data: Initially real data of environmen-

tal conditions are analyzed and sampled, feeding the simulator that then

generates motion data for the specified platform. . . . . . . . . . . . . . . . 30

10 Histograms showing the distribution of environmental variables recorded by

a meteorological station located in the Campos Basin, RJ, with velocities

split into its x and y components. The data are considered to follow a

normal distribution, represented by a black line drawn on each histogram. . 32

11 Histogram of random selected cases used for training the predictors. . . . . 35

12 Scaled closest real life cases that are selected for training. . . . . . . . . . . 36

13 Training unit of a data window of 500 time steps, with 400 time steps being

input (in blue) and 100 time steps being output (in orange). . . . . . . . . 37



14 Single Platform Motion Prediction of a predictor. Top: simulated platform

motion. Middle: a test unit input (in blue) and a a test unit output (in

orange). Bottom: the prediction (in orange) of a trained predictor for the

test unit input (in blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

15 Prediction Windows: the top graph shows a test with input from 0s to 400s

(in blue) and output from 400s to 500s (in orange); the process is repeated

in the subsequent graphs, with input from 100s to 500s and output from

500s to 600s and input from 200s to 600s, with output from 600 to 700s.

The graph below shows the concatenation of the 3 predictions (from 400S

to 700s) in orange, superimposed on the simulated curve (in blue). . . . . . 39

16 Illustration of the histograms of the selected 6000 files for the MLP network

(orange) against the histogram of all original 18000 files (blue). . . . . . . . 40

17 Example of the MLP training curve of 5000 training environmental con-

ditions (blue) and 1000 environmental conditions for validation (orange).

The vertical axis represents the error and the horizontal axis represents the

number of epochs. The error score decreases with an increasing number of

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

18 The MLP model has as input 600 seconds of time series of the features sway,

surge, heave, roll, pitch, and yaw of the platform motion, and outputs 100

seconds of prediction of the three features sway, surge, and yaw. . . . . . . 43

19 The fully connected Multi-Layer Perceptron (MLP) architecture used, with

3600 input nodes, 300 output nodes, and three hidden layers with 7200,

3600, and 1800 nodes, respectively. . . . . . . . . . . . . . . . . . . . . . . 44

20 MLP prediction on a calm environmental condition with all mooring lines

intact. Local x represents surge, local y represents sway, and sin(Z) repre-

sents yaw motion of the platform. The orange line is the MLP prediction

and the blue line is the simulated platform motion. . . . . . . . . . . . . . 45

21 A zoomed version of the MLP prediction on a calm environmental condi-

tion. Local x represents surge, local y represents sway, and sin(Z) represents

yaw motion of the platform. The orange line is the MLP prediction and

the blue line is the simulated platform motion. . . . . . . . . . . . . . . . . 46



22 Illustration of MLP prediction on a mild environmental condition. Local x

represents surge, local y represents sway, and sin(Z) represents yaw motion

of the platform. The orange line is the MLP prediction and the blue line

is the simulated platform motion. . . . . . . . . . . . . . . . . . . . . . . . 47

23 A zoomed illustration of MLP prediction with a mild environmental condi-

tion. Local x represents surge, local y represents sway, and sin(Z) represents

yaw motion of the platform. The orange line is the MLP prediction and

the blue line is the simulated platform motion. . . . . . . . . . . . . . . . . 47

24 Illustration of MLP prediction on a stormy environmental condition with

all mooring lines intact. Local x represents surge, local y represents sway,

and sin(Z) represents yaw motion of the platform. The orange line is the

MLP prediction and the blue line is the simulated platform motion. . . . . 48

25 A zoomed illustration of MLP prediction on a stormy environmental con-

dition with all mooring lines intact. Local x represents surge, local y repre-

sents sway, and sin(Z) represents yaw motion of the platform. The orange

line is the MLP prediction and the blue line is the simulated platform motion. 48

26 Illustration of mooring line failure of L1 at approximately time step 5000.

Local x represents surge, local y represents sway, and sin(Z) represents yaw

motion of the platform. The orange line is the MLP prediction and the

blue line is the simulated platform motion. . . . . . . . . . . . . . . . . . . 49

27 A zoomed illustration of Mooring line failure of line one. Local x represents

surge, local y represents sway, and sin(Z) represents yaw motion of the

platform. The orange line is the MLP prediction and the blue line is the

simulated platform motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

28 An illustration of mooring line failure of L9. Local x represents surge,

local y represents sway, and sin(Z) represents yaw motion of the platform.

The orange line is the MLP prediction and the blue line is the simulated

platform motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

29 Illustration of mooring line failure of L12 and L18 at approximately time

step 5000. Local x represents surge, local y represents sway, and sin(Z) rep-

resents yaw motion of the platform. The orange line is the MLP prediction

and the blue line is the simulated platform motion. . . . . . . . . . . . . . 50



30 Illustration of the selected files histograms (orange) against the histogram

of all 18000 files (blue) for the Long Short Term Memory (LSTM) network. 52

31 Illustration of the used LSTM architecture. In brackets are the number

of training units, due to its variable size(depending on the number of se-

lected environmental conditions) it is marked with ”?”, the second number

represents the number of input steps and the last number the number of

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

32 Training Curve of the first 700 epochs of the presented LSTM network

using 1000 training environmental conditions (blue) and 200 validation

environmental conditions (orange). The vertical axis represents the mean

error and the horizontal axis represents the number of epochs. The error

decreases steadily with number of epochs. . . . . . . . . . . . . . . . . . . 54

33 The LSTM model using the last 1000 seconds of the features surge, sway

and yaw to predict 400 seconds of these three features. . . . . . . . . . . . 55

34 Illustration of LSTM prediction of platform motion under a single environ-

mental condition with all mooring lines intact. The simulated data are in

blue and the predicted in green. Local x means surge, local y sway, and

sin(Z) yaw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

35 Illustration of LSTM prediction on a single environmental condition with

all mooring lines intact. The simulated data are in blue and the predicted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

36 Zoomed illustration of the LSTM prediction on a single environmental con-

dition with all mooring lines intact. The simulated data are in blue and

the predicted in green, with the topmost graph representing the Local x

position(surge), the middle graph local y position (sway), and the bottom

graph the sin(Z) angle (yaw). . . . . . . . . . . . . . . . . . . . . . . . . . 57

37 Zoomed illustration of LSTM prediction on a single environmental condi-

tion with all mooring lines intact and rapid motion. The simulated data

are in blue and the predicted in green, with the topmost graph representing

the Local x position(surge), the middle graph local y position (sway), and

the bottom graph the sin(Z) angle (yaw). . . . . . . . . . . . . . . . . . . . 58



38 Illustration of LSTM prediction on a single environmental condition with

a Mooring Line failure of Line 1 at 3500 seconds. The topmost graph rep-

resenting the Local x (surge), the middle graph representing local y(sway),

and the graph at the bottom representing sin(Z)(yaw). . . . . . . . . . . . 59

39 Zoomed illustration of LSTM prediction on a single environmental condi-

tion with a Line failure of Mooring Line 1 at 3500 seconds. The topmost

graph representing the Local x (surge), the middle graph representing local

y(sway), and the graph at the bottom representing sin(Z)(yaw). . . . . . . 59

40 Illustration of different Mooring Line failures in different environmental

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

41 Figure showing the comparator module as part of the modular system

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

42 In this plot are the actual motion (simulated data here, in blue), the pre-

dicted values (in green) and the difference between them (in red). . . . . . 64

43 Prediction step by step. Each graph shows two 50s predictions concate-

nated in a 100s error window, and the respective difference (in green) be-

tween the predictions (in red) and the actual data (dashed in blue). The 50

second stride between one graph and another can be seen as time difference

between the graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

44 Error Calculation. Top: predicted (orange) and actual (blue) motion val-

ues. Bottom: RMSE (green) median (orange) and mean(blue) error scores

for each error window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

45 RMSE error score of features; surge, sway and yaw indexes for all environ-

mental conditions in the test set. The red circles represent cases without

mooring line failure and the blue circles represent cases with a mooring

line failures. The x axis represents the error score for surge, the y axis

represents sway and the z axis represents the error score for the yaw feature 69

46 Mean error score of features; surge, sway and yaw of indexes for all envi-

ronmental conditions. The red circles represent cases without mooring line

failure, and the blue circles represent cases with mooring line failure. The

x axis represents the error score for surge, the y axis represents sway and

the z axis represents the error score for the yaw feature . . . . . . . . . . . 70



47 Median error score of features; surge, sway and yaw of indexes for all envi-

ronmental conditions. The red circles represent cases without mooring line

failure, and the blue circles represent cases with mooring line failure. The

x axis represents the error score for surge, the y axis represents sway and

the z axis represents the error score for the yaw feature . . . . . . . . . . . 71

48 Scatter plot of RMSE error score of features; The red circles represent cases

without mooring line failures, and the blue circles represent cases with a

mooring line failure. The x axis represents the error score for surge, the y

axis represents sway and the z axis represents the error score for the yaw

feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

49 Scatter plot of Mean error score of features. The red circles represent cases

without mooring line failure, and the blue circles represent cases with a

mooring line failure.The x axis represents the error score for surge, the y

axis represents sway and the z axis represents the error score for the yaw

feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

50 Scatter plot of Median error score of features; surge, sway and yaw of

indexes for all environmental conditions. The red circles represent cases

without mooring line failure, and the blue circles represent cases with a

mooring line failure.The x axis represents the error score for surge, the y

axis represents sway and the z axis represents the error score for the yaw

feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

51 Figure showing the classifier module as part of the modular system structure 78

52 Types of classifiers used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

53 K-nearest neighbour (KNN) classifier prediction on mooring line status

using MLP predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

54 Decision Tree (DT) classifier prediction on mooring line status using MLP

predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

55 Support Vector Classifier (SVC) prediction on mooring line status using

MLP predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

56 K-nearest neighbour (KNN) prediction on mooring line status using LSTM

predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



57 Decision Tree (DT) classifier prediction on mooring line status using LSTM

predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

58 Support vector classifier (SVC) prediction on mooring line status using

LSTM predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

59 A single unit of a perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . 101

60 Sigmoid function plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

61 ReLU function plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

62 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

63 Basic RNN unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

64 A recurrent neural network (RNN) . . . . . . . . . . . . . . . . . . . . . . 108

65 long short term memory (LSTM) diagram . . . . . . . . . . . . . . . . . . 109

66 Cell state of a LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

67 Forget gate of a LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 111

68 Update gate of a LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . 112

69 Output gate of a LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . 112

70 Decision Tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

71 Binary linear Support Vector Machine. There are two classes of training

observations, presented in black and gray. The hyper-plane is presented

as a solid line separating the classes. Observations on the dotted lines

(unfilled circles) are the support vectors. . . . . . . . . . . . . . . . . . . . 117

72 Dynasim Interface source: User manual- Dynasim . . . . . . . . . . . . . 119

73 platform Co-ordinate System Source: User manual- Dynasim . . . . . . . 120

74 The main repository and a new branch [2]. . . . . . . . . . . . . . . . . . . 126

75 The pull request concept on the feature branch git workflow [2]. . . . . . . . 126

76 Containerized applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 127



LIST OF TABLES

1 Example of environmental conditions measurements . . . . . . . . . . . . . 31

2 Necessary conditions with velocities split into its x and y components . . . 31

3 Environmental condition measurements scaled between 0 and 1 . . . . . . . 33

4 Randomly created scenarios that follow the normal distribution . . . . . . 33

5 Randomly created scenarios that follow the normal distribution, scaled

between 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Found real life scenarios that match the random scenario . . . . . . . . . . 34

7 Mean values and standard deviations of the variables of all cases and se-

lected cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Different MLP architecture compositions with 3600 input and 300 output

nodes, and their respective error score. . . . . . . . . . . . . . . . . . . . . 43

9 3 environmental conditions selected. . . . . . . . . . . . . . . . . . . . . . 44

10 Analyzed environmental conditions . . . . . . . . . . . . . . . . . . . . . . 56

11 RMSE MLP error scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12 Median MLP error scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13 Mean MLP error scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14 LSTM: RMSE Error scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

15 LSTM: Mean error scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

16 LSTM: Median error scores . . . . . . . . . . . . . . . . . . . . . . . . . . 73

17 All simulated platform motions from Dynasim. Dates indicate which peri-

ods of actual environmental conditions were used to generate the simulated

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

18 Balanced simulated platform motions . . . . . . . . . . . . . . . . . . . . . 80

19 Example of Training data for the binary classification . . . . . . . . . . . . 81

20 Example of Test data for the binary classification . . . . . . . . . . . . . . 81



21 K-nearest neighbour (KNN) classifier metrics . . . . . . . . . . . . . . . . 82

22 Environmental condition of the 10 platform motions, the K-nearest neigh-

bour (KNN) classifier classified wrongly. . . . . . . . . . . . . . . . . . . . 84

23 Decision Tree (DT) classifier metrics . . . . . . . . . . . . . . . . . . . . . 84

24 Environmental condition of the 8 platform motions the decision tree (DT)

classifier classified wrongly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

25 Support vector classifier (SVC) metrics . . . . . . . . . . . . . . . . . . . 87

26 Environmental condition of the 28 platform motions the Support Vector

Classifier (SVC) classified wrongly. . . . . . . . . . . . . . . . . . . . . . . 88

27 Error rating of K-nearest neighbour (KNN) classifier based on LSTM pre-

dictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

28 Environmental condition of the 9 platform motions the K-nearest neighbour

(KNN) classifier classified wrongly . . . . . . . . . . . . . . . . . . . . . . . 90

29 Error rating of Decision Tree (DT) classifier based on LSTM predictor. . . 91

30 Environmental conditions of the 9 platform motions the Decision Tree (DT)

classified wrongly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

31 Error rating of support vector classifier (SVC) based on LSTM predictor . 92

32 Environmental condition of the 12 platform motions the support vector

classifier (SVC) classified wrongly. . . . . . . . . . . . . . . . . . . . . . . . 94

33 Confusion Matrix for two classes . . . . . . . . . . . . . . . . . . . . . . . . 117

34 platform dimension and setup . . . . . . . . . . . . . . . . . . . . . . . . . 121

35 Unscaled Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

36 Scaled Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



CONTENTS

1 Introduction 17

1.1 Detecting Mooring Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Organization of the monography . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Literature Review 22

3 Proposal 24

3.1 Motion Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Predictor 29

4.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Environmental condition selection . . . . . . . . . . . . . . . . . . . 30

4.1.2 Training set creation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Testing set creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 MLP Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Environmental condition selection . . . . . . . . . . . . . . . . . . . 40

4.2.2 MLP Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 MLP Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 LSTM Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Environmental condition selection . . . . . . . . . . . . . . . . . . . 51

4.3.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



4.3.3 LSTM Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 LSTM Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Comparator 63

5.1 Error Score Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Scatter plot visualization . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 MLP Error Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 LSTM error Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Classifier 78

6.1 Training set balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 MLP classifier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 K-nearest neighbour (KNN) classifier result . . . . . . . . . . . . . 82

6.2.2 Decision Tree classifier result . . . . . . . . . . . . . . . . . . . . . 83

6.2.3 Support Vector Classifier (SVC) result . . . . . . . . . . . . . . . . 86

6.3 LSTM classifier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 K-nearest neighbour classifier results . . . . . . . . . . . . . . . . . 89

6.3.2 Decision Tree classifier results . . . . . . . . . . . . . . . . . . . . 90

6.3.3 Support Vector Classifier (SVC) results . . . . . . . . . . . . . . . 92

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusion 97

Appendices 99

A Appendix 100

A.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



A.1.1 Neural Network Principles . . . . . . . . . . . . . . . . . . . . . . . 101

A.1.2 Multi- Layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . 104

A.1.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 107

A.1.4 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . 109

Cell state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.5 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

K-nearest neighbor (KNN) classifier . . . . . . . . . . . . . . . . . . 113

Decision tree (DT) classifier . . . . . . . . . . . . . . . . . . . . . . 113

Support Vector Classifier (SVC) . . . . . . . . . . . . . . . . . . . . 115

A.1.6 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Dynasim simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.2 Platform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2.3 Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . 121

Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.4 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Standardization of Measurements . . . . . . . . . . . . . . . . . . . . . . . 123

A.4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4.1.1 Branch Workflow . . . . . . . . . . . . . . . . . . . . . . . 125

A.4.1.2 Continuous integration . . . . . . . . . . . . . . . . . . . . 126

A.4.2 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.4.3 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.4.3.1 Python and libraries . . . . . . . . . . . . . . . . . . . . . 128



A.4.3.2 Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.4.4 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References 130



17

1 INTRODUCTION

Demand for alternative energy sources increased in the early 20th century as the world

shifted from coal energy to hydrocarbon energy (crude oil). To accommodate this increas-

ing demand the oil industries began finding ways to increase the production of crude oil

both onshore and offshore. The discovery of large oil fields offshore presented the industry

the challenge to safely and efficiently explore and extract the resources found. Floating

platforms proved to be a viable solution [3]. Over the years various floating platforms

have been developed, among them mobile offshore drilling units (MODU), floating pro-

duction storage and offloading (FPSO) units, semi-submersibles platforms and tension

leg platforms (TLP) [4]. These platforms differ in size, application, load holding capacity

and water depth rating. The need of positioning these platforms in the desired location

proved to be the most critical challenge. This marked the advent of mooring systems [3].

Mooring systems are used to provide stability to floating platforms against environ-

mental conditions such as waves, currents and winds by anchoring the platform to the sea

bed at the desired location.

Early mooring systems were composed of ropes, chains and anchors. Over the years,

mooring systems have evolved due to advancement in technologies and better materi-

als, however it still follows the basic concept of the early mooring system composition.

Mooring systems are one of the key components to ensure safety for the staff and the

various operations carried out on the platforms, like drilling, production, and offloading.

As these platforms venture into deeper water depth, the need for increased monitoring of

the platform and its mooring system structure and integrity becomes critical. In Figure

1 the correlation between the risk of mooring system failure and water depth is repre-

sented graphically. It can be seen that the incident probability increases linearly with an

increasing water depth.

There are two types of mooring systems: disconnectable mooring systems and perma-

nently connected mooring systems [5]. Disconnectable mooring systems are used in regions

with cyclic loading environments, i.e. regions that experience repeated fluctuations of the
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Figure 1: Offshore risks of incidents (extracted from [1]).

sea states: wind, wave and current. They are used to facilitate easy disconnection of

the platform in the event of extreme weather conditions such as cyclones or other emer-

gencies. These repeated sea state fluctuations increase the stress and strain exerted on

offshore structural components and increase the probability of a component failure. The

disconnectable mooring system usually consists of a turret with a detachable buoy (DTM

buoy) which can be detached from a floating production unit (FPU) turret component

and reattached when needed [6]. A turret is a device built directly into platforms for

weather-vanning and anchoring the platform at a particular location. Weather-vanning

refers to the ability of a platform to rotate freely in the direction of the environment

disturbance [7].

Permanently connected mooring systems are used in regions where sea state fluctu-

ations do not occur frequently. The stresses and strains caused by the sea states on the

structural component of platforms are decreased. Most permanently connected FPSOs

have a spread mooring configuration made up of four or more mooring lines [8].

Studies described in [9] and [10] have shown around 45% of mooring failures are either

single line failures or multiple line failures which can be attributed to corrosion and fatigue.

In some cases of single mooring line failure, additional mooring lines can be damaged due

to increased load, stress and tension experienced by the remaining lines, since single line

failure inadvertently increases the degradation rate of the mooring lines [9]. A report
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in [11] indicated that 50% of the offshore platforms in the North Sea cannot monitor

their mooring system in real-time, 33% of the platforms cannot measure offset from the

no-load equilibrium, and 78% of the platforms lack a system that alerts in the event of a

line failure. Therefore, when a mooring system gets compromised it can go unnoticed for

a long period of time.

The company Petrobras has 40 proprietary platforms installed, which encompass 590

mooring lines. In the failure history, it was reported that the majority of failures (87%)

occurs after 10 years of platform operation. This lifetime limit may increase, as the newer

units have better designs that consider more fatigue factors and therefore extend the

lines life expectancy. Most failures occur at the top of the line, where traction is greater,

conditions are more severe, and corrosion is more pronounced.

Furthermore, failure of a mooring system can result in damage or loss of property,

environmental pollution, personnel endangerment and depending on the severity of failure,

in some cases oil production shutdown.

1.1 Detecting Mooring Failure

To address the occurrence of mooring failure, regular inspection of mooring systems is

carried out using technologies like inclinometers, micro-remote operated vehicles (ROV),

load shackles, visual inspections, positioning systems, and integrated monitoring systems.

Inclinometers are fitted on mooring lines to measure the mooring line angles. In

a calm sea state mooring angles are measured and compared against mooring angles

after turbulent weather has passed. Significant changes between the two measured angles

indicate the possibility of a failure in a mooring line [12].

Load shackle with load cells are connectors used to link mooring lines. Theses load

shackles monitor mooring line tension in real-time with the use of load cells [13]. There

are different types of load shackles, for example wireless and traditional load shackles.

Wireless load shackles require battery replacement at fixed intervals which serve as the

energy source in deep waters. Both traditional and wireless shackles are affected by

marine growth on mooring lines which occur naturally. Marine growth affects the tension

measurement of the mooring line monitored by the load cell. Removal of marine growth

is expensive and time consuming.

Micro-ROVs are also deployed to check the Mooring Lines when the inclinometer

reading shows an offset. The use of micro-ROVs to inspect anchor lines helps eliminating
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the need for full-size, expensive ROVs, or even offshore divers. The portability of the

micro-ROVs makes it possible to store them on the platform or send them by helicopter,

if needed.

These fault monitoring methods by ROVs or divers in which inspections are carried

out at a fixed time interval have the disadvantage of not addressing the problem of real-

time monitoring [14]. Failures of mooring components can occur after the inspection has

been conducted, increasing the chance of detecting mooring system failures late.

Position monitoring of a platform can be achieved by using orbital satellites such

as global position system (GPS). The platform is continuously monitored because the

navigation system on board of the platform coupled with a computer is in constant com-

munication with GPS satellites. The navigation systems periodically send the longitudinal

and horizontal coordinates of the platform. Platforms drifting away from the perimeter

of the watch circle most likely suffered mooring line failure [12].

Methods based on the installation of sensors on the lines – such as inclinometers and

load shackles – are expensive and inefficient and require maintenance.

Recent improvements in technology present a solution for real-time monitoring and

mooring system failure detection . Machine learning, a subgroup of artificial intelligence

in which models are trained on a data driven approach without explicit instruction be-

ing provided, is a good alternative to be used for monitoring and mooring line failure

detection. Data from sensors and inclinometers reading from the FPSO, GPS data, and

weather data can be used to to implement machine learning algorithms for monitoring

and detecting mooring line failures.

1.2 Objectives

Our proposal in this monography is to use an architecture as shown in Figure 2,

with a predictor module that estimates the future platform motion based on the previous

motion data of the platform. This predictor is a neural network trained with data that

indicates motions without line breakage. The idea is that the predictor makes the future

prediction of the motion considering the absence of failures, and that the sensors measure

the actual motion performed by the platform. If there is a significant difference between

the predicted and the measured value, this is notified by the status of the mooring line,

which then indicates a line failure. We present here the development and comparison

of two ML models based on neural networks for the predictor module, a Multi-layer
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Figure 2: Proposed general architecture: mooring line failure detection is based on the
short-term prediction of platform motion.

Perceptron (MLP) model and a Long Short Term Memory (LSTM) model, both capable

of identifying when a mooring system of a platform is compromised.

1.3 Organization of the monography

This monography is structured as follows: Section 2 introduces related work. Section

3 explains in detail our proposal, while Section 4 details the predictor and its performance,

Section 5 describes the comparator module and its results, and Section 6 describes the

classifier and its performance in the experiments. Finally, Section 7 presents our conclu-

sions and highlights future work.
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2 LITERATURE REVIEW

Researchers in diverse domains are increasingly adopting machine learning (ML) tech-

niques. The same approaches can also be adopted in the domain of mooring failure detec-

tion. In the following, we highlight articles which used ML techniques to monitor mooring

system states.

Different input features can be used to classify Mooring Line system states. Frequency

spectrum and autocorrelation functions can be extracted from the motion time series of

the platform to determine mooring states shown by Tang [15]. The authors used an SVM

algorithm to classify the status of a soft yoke single point mooring tower system. The

SVM input was based on frequency spectrum and autocorrelation functions to determine

failure of the mooring system. In conclusion the authors showed that frequency spectrum

as well as autocorrelation functions were good indicators for mooring failure detection.

Prislin [16] proposed a novel concept with regards to the integrity of the mooring sys-

tem. They implemented a system named Position Response Learning System (PRLS) that

at its core uses multilayered perceptron. The PRLS system used Dynamic Global Position

System (DGPS), meta-ocean data (waves, current, and wind), and inertial motion of the

vessel (six degrees of freedom, 6DOF, see appendix A.2 for more information) as input fea-

tures. The proposed system was able to provide two forms of output: classification-based

output and regression-based output.

A MLP network in combination with kriging methods was used by Gumley [17] to

predict when changes in mooring state occur. The models used meta-ocean data and

GPS data as input to their models. The result showed both methods performed well in

detecting changes in the mooring state. The output information for both methods was

binary classification. Sidarta [18] also used a MLP model to detect mooring line failure

by training the model to distinguish the normal drift period from damaged drift readings

of the moored platform. The MLP was trained on simulated data from an in-house

numerical simulation software named MLTSIM. Inputs to the MLP were GPS readings of

the platform and the total mass of the FPSO platform. Furthermore, in their paper [19],
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an MLP model was used to predict mooring line tension. 60-second time series of platform

movements with one-second intervals were used as input features for the MLP to forecast

30 seconds of the platform mooring line tension.

A convolutional network (CNN) implemented by Jaiswal [20] could identify the hor-

izontal position features of the platform and associate them with the mooring system

states in different environmental conditions. Positional Data and obtained vessel motion

were encoded in a single labeled image using a proprietary algorithm and were used as

input to the CNN model. The image contains the statistics of the horizontal position

parameters of the vessel and root mean square (RMS) values of the 6-DOF acceleration.

The Output of the model was the status of the mooring lines.

Sireta [21] developed two machine learning models; a MLP and LSTM model, capable

of detecting occurrences of mooring system failure. Two approaches were adopted to

investigate which approach gave the best prediction results. These approaches were cross-

correlation and auto-correlation. For the cross-correlation approach one degree of platform

motion was used to predict the next time step of the same degree .i.e sway. For the auto-

correlation approach 5 degrees of freedom (5 DOF) of the platform motion .i.e. surge,

yaw, pitch, roll and heave out of the 6 DOF were used as input to predict sway motion of

the platform, the remaining one degree (1 DOF) in this paper. Both models were trained

using numerically simulated data and the trained model was given cases in which one

mooring line breakage was presented for the prediction. RMSE error values between that

of a failed mooring system and intact mooring system were monitored. Results of the

work concluded both models were good at detecting mooring failure.

Machine learning algorithms used in the offshore sector include multilayer perceptron

(MLP), convolutional neural network (CNN), support vector machine (SVM) and long

short term memory (LSTM). Since most ML studies in the literature used MLP [16–18,

22], this project investigates its limitations and capabilities. Considering the time series

nature of the problem, a type of network widely used in other areas are the recurrent

neural networks, more specifically LSTM networks, which are also investigated here (see

Appendix A.1.4 for details). MLP as well as LSTM networks were implemented and

analyzed in the present project, evaluating their efficiency and effectiveness in detecting

mooring line failure.
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3 PROPOSAL

As it was outlined in the introduction, mooring systems are a safety critical compo-

nent of floating structures, since a system failure can lead to platform drifting and, in

extreme cases lead to oil spillage. This section proposes a solution which makes it pos-

sible to monitor mooring systems and detect failure without the necessity of preventive

inspections.

The study is based on the assumption that there exists a regular motion pattern,

that can be used to identify mooring line failures, which results in abnormalities within

this pattern. The regular motion pattern makes it possible to predict future platform

motions based on previous motions. Abnormalities can then be identified by calculating

the difference between predicted and simulated motions.

The study presented in this monography is intended as a proof of concept using

simulated data for binary mooring line failure identification. In some other phase of the

project to be developed in the future by other researchers, the classification module will

ideally be able to identify the fault line based on the actual readings of the GPS sensors

and of the inertial measurement unit (IMU) of the platform.

Figure 3 shows the necessary steps for the approach, that also form the outline of the

project. The first step is the selection of environmental conditions best representing the

entirety of all measured conditions. These conditions are then simulated by the Dynasim

simulator (see Appendix A.2) creating platform motions based on the environmental con-

dition and the platform model. By using these simulations predictor models can then be

developed to predict the platform motions using past platform motions as input. Based

on the difference between simulated and predicted motions error scores can be calculated

representing the disparity between them. Finally binary classifiers can be trained using

the error scores as basis to identify mooring line failure occurrences.

The system can therefore be separated into 3 modules as illustrated in figure 4. A

combination of Dynamic Global Position System (DGPS) and IMU measurements (surge,
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Figure 3: Pipeline of the motion prediction approach to detect platform line failures.

sway, heave, roll, pitch, and yaw) gives 6 degrees of freedom (6DoF) of the platform

motion and will be used as inputs to the proposed system. The system output is a binary

identification of mooring line failures.

Figure 4: Integrated proposed architecture consisting of three models. The predictor for
predicting future platform motion, the comparator for calculating the difference between
prediction and simulation and the classifier for identifying mooring line failure

The three modules are:

1. Predictor: A neural network predicting the platform motion based on the past

simulated platform motion. The system is presented in the chapter 4.

2. Comparator: A module to calculate error scores based on the difference between

the prediction and recorded data as measure of disparity . The module is presented

in chapter 5.

3. Classifier: Module for mooring line failure identification based on the calculated

error scores of the comparator. The module is presented in chapter 6.

The following section emphasize on the individual modules.
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3.1 Motion Predictor

Two neural networks are developed, a feed-forward multi-layer perceptron network

(MLP) and a long short term memory recurrent network (LSTM), for simplicity here we

refer to both models as predictors. These predictors are used to predict the platform

motion by using the last two to six minutes of previous platform motion. The basic

principle can be seen in figure 5.

Figure 5: The basic input and output structure of the neural network predicting the
platform motion based on the past simulated platform motion

Platform motions are simulated using the Dynasim software to train the predictors,

MLP and LSTM, to predict platform motions based on past platform motions.

In order to train the predictors, training sets must be created, that match the real life

scenario as close as possible. To create these training sets the data needs to be prepared.

Environmental cases that best reflect the real life scenario must be selected for simulation

and adequate time frames of prediction times and input times must be chosen.

In order to achieve the objectives, the following steps are carried out in this project:

1. Obtaining real data on environmental conditions to guide the generation of simu-

lated data for training and testing the proposal;

2. Collecting synthetic data for training and testing of the developed ML solutions.

Data are generated by using real environmental condition readings and a model of a

FPSO as inputs to a hydro-dynamical numerical simulator (Dynasim) whose output

are platform motions in relation to different environmental conditions. Long term

simulation is executed. Line breaking events are executed at known time moments

to generate test data for the ML-based solutions.

3. Development of the 2 ML-based solutions to analyze the breakage detection of the
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mooring system;

4. Training and validation of the 2 solutions, using data generated by the simulator

under normal conditions (without breaking lines).

3.2 Comparator

The comparator compares the predicted motion with the simulated motion and cal-

culates error scores based on the difference. For system reliability the error scores should

not rely on single predictions but on multiple predictions over a longer period of time, to

verify that the difference is due to a Line failure and not faulty sensor data. Therefore the

Comparator creates error windows which consist of two consecutive predictions. For each

error window the comparator calculates the Root mean square error, the mean error and

the median error, to further reduce the influence of outliers or faulty sensor data. The 3

different error scores are then fed to the classifier. Figure 6 shows the inputs and outputs

of the comparator.

Figure 6: The basic input and output structure of the comparator calculating different
error scores based on the difference between simulation and prediction

3.3 Classifier

Based on the different error scores calculated by the Comparator different classifier

models are developed. The classifiers take the different error scores as input for Mooring

Line Failure identification. The identification in this first phase of the project is binary
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identification of line failures. In the last part of the chapter the different classifiers are

compared against each other to identify the best suited classifier. Figure 7 shows the

implemented classifier with its input and output.

Figure 7: The basic input and output structure of the classifier identifying mooring line
failures based on different error scores calculated by the comparator
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4 PREDICTOR

As described in the proposal the predictor module is the first of the three main modules

of the system. It predicts short term platform motion based on previous recorded platform

motion. The predictor is the first module of the data pipeline as it can be seen in figure

8. The prediction is done using two different Machine Learning algorithms, MLP and

LSTM. The necessary Data preparation for training the models is discussed in section

4.1. After the data is prepared the implemented MLP structure is presented in section

4.2 and the implemented LSTM structure is presented in section 4.3, showing the network

structure as well as the prediction results. The last part of this chapter compares the two

implemented models based on their results.

Figure 8: The figure shows the predictor module as part of the modular system structure

4.1 Data preparation

This section outlines the necessary steps to prepare the data for training the predic-

tors. Section 4.1.1 describes the important step of choosing the right data for training

since poorly chosen data can lead to slow learning rates. Then Section 4.1.2 explains

the creation of training sets, which prepares data arrays that can be understood by the

predictors.

The general pipeline for this phase of data preparation is shown in Figure 9. En-

vironmental Data was initially collected in the region of interest and an analysis of the



30

data distribution was carried out. Then, a subset of the data was sampled and fed to the

Dynasim simulator, generating the platform motion based on the environmental condition

and the platform structure without failures in the mooring lines. Testing data with and

without mooring line failures was then created for all available cases. Whenever pertinent,

the data was standardized for values between 0 and 1.

Figure 9: Generation of training and test data: Initially real data of environmental con-
ditions are analyzed and sampled, feeding the simulator that then generates motion data
for the specified platform.

4.1.1 Environmental condition selection

Environmental conditions have been recorded by a weather station located in Campos

Basin (Bacia de Campos) of Rio de Janeiro (RJ), Brazil from 2003 until 2009 in intervals

of 3 hours and have been exported in a text file, totaling 18000 different environmental

conditions. A data extract of these environmental conditions can be seen in Table 1. Four

different dimensions were captured: wave, swell, wind and current. Wave and Swell are

characterized by their height (hs), peak to peak time (tp), and direction (dir). Index 1

is used for short frequency waves (hs1, tp1, dir1) and index 2 indicates long frequency

waves also known as swell (hs2, tp2, dir2). Wind and current are characterized by their

speed (vel) and direction (dir). As can be seen in Table 1 there exist many measurement

points with missing measurements.

To resolve the missing data , non existent swells are considered to be 0 since it is

likely that they were too weak to be measured. If other characteristics are unknown, the
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Table 1: Example of environmental conditions measurements

data hora hs1 tp1 dir1 hs2 tp2 dir2 hstotal vento vel vento dir corr vel corr dir

01/01/03 00:00 1.11 5.30 30.0 0.94 10.53 127.3 1.45 6.94 24.0 NaN NaN
01/01/03 03:00 1.15 5.45 30.8 0.87 10.30 145.1 1.44 7.53 20.6 NaN NaN
01/01/03 06:00 1.22 5.29 31.0 0.83 9.93 150.6 1.48 8.13 17.7 NaN NaN
01/01/03 09:00 1.23 5.05 26.6 0.87 9.72 134.4 1.51 8.07 10.6 NaN NaN
01/01/03 12:00 1.17 5.00 18.5 0.94 9.57 112.6 1.50 8.02 3.5 NaN NaN

... ... ... ... ... ... ... ... ... ... ... ... ...
31/12/09 12:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
31/12/09 18:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
31/12/09 21:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
01/01/09 00:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

environmental condition is discarded from the further analysis.

In order to avoid angles to indicate directions, the speed was divided into its x-

component and y-component. The x-component is calculated by

x = v ∗ cos(φ), (4.1)

and the y-component by

y = v ∗ sin(φ), (4.2)

where v is the velocity and φ is its direction. For the wave and the swell, their angles

are multiplied by the height. The result can be seen in Table 2 and in the histograms of

Figure 10.

Table 2: Necessary conditions with velocities split into its x and y components

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

7.10 3.74 0.91 1.47 -0.60 -0.09 -4.21 -3.49 -0.10 0.05

7.61 5.62 1.59 -0.55 -0.30 -1.04 -7.46 -0.18 0.13 0.02

7.62 7.94 -1.10 -1.31 1.14 0.44 -3.37 8.89 -0.14 -0.02

8.23 9.44 2.12 -0.58 -0.94 0.80 -0.83 10.52 -0.15 -0.01

... ... ... ... ... ... ... ... ... ...

7.17 8.55 -2.45 0.51 0.25 0.56 11.99 3.87 0.55 0.08

7.46 8.07 -0.45 -2.52 -0.81 0.27 11.24 1.94 0.45 -0.31

7.35 0.00 0.81 -2.41 0.00 0.00 -7.02 -7.41 0.10 -0.53

Finally, data are then scaled so that their values are in the range between 0 and 1.

For each variable, the minimum and maximum values are calculated and the data are
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Figure 10: Histograms showing the distribution of environmental variables recorded by
a meteorological station located in the Campos Basin, RJ, with velocities split into its x
and y components. The data are considered to follow a normal distribution, represented
by a black line drawn on each histogram.

then standardized by:

Xout = Xin −Min/(Max−Min), (4.3)

where Min is the minimum value, Max is the maximum value, Xin is the original value,

and Xout is the scaled value. Further details on this data standardization technique can

be found in the Appendix A.3. The result can be seen in Table 3.

Using the resulting data-set, a subset of environmental conditions was drawn using

the normal distribution as a probability density function. For each feature one value was

drawn from this density function. The randomly picked values are then put together to

form a random scenario. This procedure was repeated the number of times necessary to

create a subset of all environmental conditions with a similar normal distribution. An

example can be seen in Table 4.
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Table 3: Environmental condition measurements scaled between 0 and 1

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

0.19 0.16 0.53 0.62 0.42 0.46 0.40 0.41 0.44 0.56
0.22 0.24 0.59 0.43 0.47 0.29 0.30 0.52 0.56 0.54
0.22 0.34 0.34 0.36 0.72 0.56 0.43 0.81 0.42 0.52
0.26 0.40 0.64 0.43 0.36 0.62 0.51 0.86 0.41 0.53
0.28 0.44 0.20 0.53 0.71 0.49 0.89 0.58 0.51 0.62
... ... ... ... ... ... ... ... ... ...

0.20 0.36 0.21 0.53 0.57 0.58 0.91 0.65 0.79 0.58
0.21 0.34 0.40 0.24 0.38 0.53 0.89 0.58 0.74 0.35
0.21 0.00 0.52 0.25 0.52 0.48 0.31 0.29 0.55 0.23

Table 4: Randomly created scenarios that follow the normal distribution

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

6.89 9.96 1.99 0.24 0.10 -0.34 6.18 -4.88 0.51 0.65

10.07 4.71 3.43 -1.17 0.40 -0.74 5.67 1.04 -0.08 0.29

14.65 6.50 0.85 -1.27 0.17 -0.58 -5.71 -0.48 -0.13 0.51

5.38 5.80 -0.78 -1.79 1.25 0.35 -11.94 -8.47 0.10 0.11

... ... ... ... ... ... ... ... ... ...

5.69 3.37 0.72 0.52 -0.23 0.53 8.19 -10.03 -0.24 0.45

8.51 8.67 2.77 -1.31 -0.19 0.03 5.14 1.51 0.39 0.04

7.00 8.10 0.88 -0.13 0.46 0.49 6.14 1.30 -0.37 0.09

9.00 5.37 0.61 0.27 -0.47 0.47 -0.99 -5.78 -0.11 -0.68

11.40 3.01 0.82 2.26 -0.25 0.83 -7.51 3.40 -0.00 -0.07

This normal distributed cases are then scaled using the same calculation described

previously (Equation 4.3 as detailed in Appendix A.3). The result can be seen in Table 5

and in histograms in Figure 11.

Based on this randomly created scenarios the closest measured scenarios can be found

by calculating the difference for every feature individually and summing up the absolute

differences. The real life scenario with the smallest resulting difference is considered the

best fit for the randomly generated scenario and is selected. The scaled closest real life

cases are shown in Table 6 and in histograms of Figure 12.



34

Table 5: Randomly created scenarios that follow the normal distribution, scaled between
0 and 1

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

0.18 0.42 0.63 0.51 0.54 0.42 0.73 0.37 0.77 0.90
0.36 0.20 0.76 0.37 0.59 0.35 0.71 0.56 0.45 0.70
... ... ... ... ... ... ... ... ... ...

0.30 0.23 0.50 0.51 0.44 0.56 0.50 0.34 0.43 0.15
0.44 0.13 0.52 0.70 0.48 0.63 0.29 0.63 0.49 0.49

Table 6: Found real life scenarios that match the random scenario

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

0.15 0.32 0.59 0.44 0.61 0.38 0.73 0.31 0.76 0.78

0.35 0.25 0.59 0.45 0.54 0.37 0.73 0.56 0.55 0.65

0.44 0.20 0.48 0.32 0.55 0.33 0.33 0.48 0.42 0.84

0.19 0.33 0.39 0.23 0.65 0.43 0.21 0.25 0.53 0.66

0.31 0.18 0.29 0.46 0.42 0.37 0.51 0.34 0.68 0.15

... ... ... ... ... ... ... ... ... ...

0.20 0.32 0.66 0.53 0.49 0.60 0.80 0.28 0.44 0.76

0.29 0.16 0.57 0.41 0.42 0.48 0.70 0.55 0.71 0.55

0.11 0.32 0.57 0.52 0.61 0.51 0.80 0.56 0.27 0.60

0.25 0.21 0.55 0.60 0.56 0.64 0.48 0.32 0.50 0.20

0.47 0.20 0.55 0.65 0.48 0.65 0.32 0.50 0.49 0.51

The mean values and respective standard deviations of the actual data with the sam-

pled data are then compared to evaluate the data that feed the simulator (Table 7).
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Figure 11: Histogram of random selected cases used for training the predictors.

Table 7: Mean values and standard deviations of the variables of all cases and selected
cases

tp1 tp2 hs1 x hs1 y hs2 x hs2 y vento x vento y corr x corr y

Mean value and standard deviations of each column for all cases

8.65 4.99 -0.01 -0.01 0.00 0.01 -0.01 0.04 0.00 0.00

2.62 4.09 1.41 1.41 0.64 0.64 5.69 5.69 0.28 0.28

Mean value and standard deviations of each column for selected cases

8.29 5.46 0.37 -0.27 0.22 0.08 0.18 -0.40 0.01 0.07

1.84 3.03 1.30 1.26 0.57 0.61 6.58 5.02 0.30 0.31

Table 7 shows that the mean value and the standard deviations of the randomly drawn

scenarios show little difference in comparison to all the cases, meaning that the drawn

subset is a good representation of all measured cases.
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Figure 12: Scaled closest real life cases that are selected for training.

4.1.2 Training set creation

After suitable environmental conditions are sampled that best represent the environ-

mental conditions of the region, the next step is to make the simulated data suitable to

train the predictors. Since the used predictors follow the supervised learning paradigm,

training sets must be created, which consist of a set of input and output data.

For each of the selected environmental conditions (see Figure 11), Dynasim was used

to simulate 3 hours of platform motion. The environmental conditions are indexed by their

line number, which equals the index attributed to the 6 degrees of freedom (DoF) motion

data generated by Dynasim. Firstly parts of the time series are sampled that characterize

the platform motion generated by the simulator for each environmental condition. Each

of these parts is called a data window and corresponds to a training unit. The size of the

data windows is a system parameter and is kept fixed for each predictor. Data windows

are independent of each other and can be drawn from completely random points within

the three-hour data regarding the same environmental condition. Likewise, data windows

are sampled from other selected environmental conditions, and the set of all these training
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units forms a training set for a neural network. Depending on the machine learning (ML)

model to be trained, the size of these data windows as well as the 6DoF motion variables

(here called features) can vary. The Features are sway, surge, yaw, heave, roll, and pitch

(see Appendix A.2 for details).

A training unit is composed of the pair < input−− output >, which is defined by a

partition of the data window. Typical window ranges representing input data are between

200 and 500 time steps, and between 50 and 200 time steps of output data. The size of

the input and output are also system parameters. For training a network, the size of

the input and output data series, and the features used must be kept fixed for a specific

predictor. For example, the training set for a certain network could consist of data from

training units of 500 time steps, each unit divided as follows: The first 400 time steps

of each feature representing the input data, and the last 100 time steps representing the

output data of each feature, as shown in Figure 13. In our case, 1 time step corresponds

to 1 second.

Figure 13: Training unit of a data window of 500 time steps, with 400 time steps being
input (in blue) and 100 time steps being output (in orange).

The process of generating training units consists of sliding the data window on the

time series generated by Dynasim, with strides defined as system parameters. In our

proposal, MLP and LSTM models use different strides (see Section 4.2 and Section 4.3

for details). It is important to note that the data windows can overlap in the sampling

process.

After the simulated data are split into several training units, they are bundled into

so-called batches. In our proposal, 1 batch consists of 32 training units. Section 4.2

and Section 4.3 explain in detail how these batches can then be fed to the predictors for

training.
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4.1.3 Testing set creation

Similarly to the training set creation in section 4.1.2, the testing sets are then prepared.

Figure 14 shows a data window of the simulated platform motion on top. This data

window is then partitioned into a test unit with an input and output, as shown in the

middle graph. The bottom graph shows the prediction of the predictor for this motion

feature (in orange). Afterwards the predicted motion will be compared to the simulated

motion.
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Figure 14: Single Platform Motion Prediction of a predictor. Top: simulated platform
motion. Middle: a test unit input (in blue) and a a test unit output (in orange). Bottom:
the prediction (in orange) of a trained predictor for the test unit input (in blue).

The same procedure is repeated for the whole test set. It is important to note that

the test sets consist of simulated motion data with and without mooring line failure.

The inputs of the testing units are fed to the trained predictor, who predicts the

platform motion based on the seen input. These outputs of the trained predictors, which

are temporal predictions of motion features, are then concatenated with each other as

it can be seen in Figure 15. In this figure, three consecutive predictions are shown.

The simulated as well as the predicted motion are shown. The last graphic shows the

concatenation of the predictions for three test unit inputs. Each test unit is defined by

a prediction window, as shown in Figure 15, having the same dimensions as the data

window. The prediction window stride is a system parameter, which defines the time

range of interest on the simulated data curve that is used for the prediction (the input)

and for the calculation of the error (the output). In the figure, the input consists of 400
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seconds (in blue), the output consists of 100 seconds (in orange), with a stride of 100

seconds (red curve that increases at the beginning of the graph).

0 100 200 300 400 500 600 700 800 900
0.050

0.075

0.100

0.125

0.150

Window 1
X
Y Predicted
Y
Simulated Movement

0 100 200 300 400 500 600 700 800 900
0.050

0.075

0.100

0.125

0.150

Window 2
X
Y Predicted
Y
Simulated Movement

0 100 200 300 400 500 600 700 800 900
0.050

0.075

0.100

0.125

0.150

Window 3
X
Y Predicted
Y
Simulated Movement

0 100 200 300 400 500 600 700
seconds

0.050

0.075

0.100

0.125

0.150

m
et

er

Concatenated windows
Concatenated movement
Concatenated predictions

Figure 15: Prediction Windows: the top graph shows a test with input from 0s to 400s (in
blue) and output from 400s to 500s (in orange); the process is repeated in the subsequent
graphs, with input from 100s to 500s and output from 500s to 600s and input from 200s
to 600s, with output from 600 to 700s. The graph below shows the concatenation of the 3
predictions (from 400S to 700s) in orange, superimposed on the simulated curve (in blue).

The stride of the prediction window is never bigger than the prediction time range,

therefore there exists always a predicted data for every time step.

If the stride is smaller than the prediction time range, there can exists multiple pre-

dictions for one time step. In this case the mean value is calculated between all available

predictions of that time step, resulting in a single prediction for every time step.

4.2 MLP Predictor

In this section, a Multi-layer Perceptron (MLP) neural network (see Appendix A.1.2

for details) is implemented and results of the implemented MLP are provided. The section

is split into different parts representing the consecutive steps necessary for the implemen-

tation of the MLP predictor. Section 4.2.1 describes the environmental conditions, used

for training and validation of the MLP. Next, the system parameters of the data window

like input and output size and stride for the training and validation units are defined.

A description of DoF features used as input and output for the MLP model is provided.

The best model architecture found that was able to predict the platform motion most
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accurately is also provided. Finally, the results achieved with the predictions made by

the MLP model are presented.

4.2.1 Environmental condition selection

A good training data-set is critical to the success of the models ability to learn.

Using the same procedure as explained in section 4.1.1 a subset of 5000 environmental

conditions for training and another 1000 conditions for validation were selected for the

proposed MLP model. Figure 16 shows the histogram of the selected subset and the

histogram of all measured conditions. It can be seen that the file selection reflects the

real-life distribution of measured environmental conditions.

(a) Wind Histogram (b) Swell Histogram

(c) Wave Histogram (d) Current Histogram

Figure 16: Illustration of the histograms of the selected 6000 files for the MLP network
(orange) against the histogram of all original 18000 files (blue).
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4.2.2 MLP Training

A neural network learns by the iterative process of gradient descent whose objective

function is reducing the error between a networks prediction and the actual target value.

The learning process is done using back-propagation algorithm which uses gradient descent

to minimize the networks error. The gradient descent algorithm uses the training data

units to modify the weights and biases of a network [23] (see Appendix A.1.2 for details on

neural network learning process). For example, a training set can consist of 1000 training

units and the gradient descent algorithm can be instructed to used the entire 1000 units

to make a gradient descents step. This is known as batch gradient descent or gradient

descent. Each gradient consists therefore of the entire training set.

An epoch is known as the process of training the model on the entire training set.

If the model is trained for 10 epochs for example, the training set is passed through the

network 10 times and 10 gradient descent steps are done using the entire set.

In cases where there are too much training units in a set which can not be fed in its

entirety into the memory of the system the set can be split into batches, containing a

subset of the training units. This is known as mini-batch gradient descent. For example,

a training set that consists of 1000 training units can be split into 4 batches of 250 units.

The batches are then fed to the network individually, resulting in a gradient step for each

individual batch. In this scenario a single epoch is completed 4 gradient steps. Meaning

that 10 epochs would need 40 gradient steps to complete the training of the network [23].

Apart from the training data, validation data is used by the model to validate the

training progress of the network. To be sure that the validation set and training set are

independent, the validation set uses different environmental conditions than the training

set. The model modifies its weights and biases by comparing the computed output with

the given output, trying to minimize the difference between them. This is continuously

done for each batch until a stop criteria is met, like a maximum number of epochs or a

diminishing accuracy of the validation data, since the model is likely to be over-fitting at

this point (see Appendix A.1.2 for more on over-fitting).

In this project, the MLP training set used was composed of 5000 different environmen-

tal conditions. Each environmental condition consisted of 10, 000 training units, adding up

to 50, 000, 000 training units. A single epoch was completed in 1, 562, 500 gradient descent

steps. The validation data was composed of 1000 environmental conditions. Each environ-

mental condition consisted of 10000 validation units, adding up to a total of 10, 000, 000

validation units. The training process stopped at epoch 3000 when the model started to
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over-fit.

The proposed network predicts 100 seconds based on the last 600 seconds of horizontal

platform motion , i.e., each unit consisted of 700 seconds , with an input of 600s and an

output of 100s.

Figure 17 shows the training curve of the first 400 epochs. The blue line shows

the Mean error, based on the difference between the computed output and the expected

output for the training set. The orange line shows the mean error of the validation set. As

expected the accuracy of the training set is monotonically improving during the first 400

epochs. It can be seen that the accuracy of the validation set is also increasing steadily,

indicating a balanced training set and a good learning process.

Figure 17: Example of the MLP training curve of 5000 training environmental conditions
(blue) and 1000 environmental conditions for validation (orange). The vertical axis rep-
resents the error and the horizontal axis represents the number of epochs. The error score
decreases with an increasing number of epochs.

4.2.3 Model architecture

To find the best MLP model capable of learning the complex motions of the platform,

MLP models with different layer compositions and activation functions were tried. Four

different MLP model compositions are presented in Table 8 and the MLP model with

the best error score, highlighted in bold was considered to be the best. The numbers in

the model architecture column refer to the number of nodes in the layer, each number

representing a layer in the network. The first and last number refers to the number of

nodes in the input and output layer and the numbers in between refer to a hidden layer
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with its corresponding number of nodes.

Table 8: Different MLP architecture compositions with 3600 input and 300 output nodes,
and their respective error score.

Model Architecture Activation Function RMSE Error

3600, 1800, 300 Relu 2.26e -01
3600, 4800, 1200, 300 SGD 5.81e -01
3600, 3600, 1800, 300 Relu 2.61e -01

3600, 7200, 3600, 1800, 300 Relu 1.63e -01

The MLP model selected and implemented in this work can be seen in Table 8 in

bold. The input of the MLP model is composed of the 600-second time series of the 6DoF

platform motion features: sway, surge, heave, roll, pitch, and yaw. The output of the

MLP model predicts 100 seconds of the platform horizontal motions, surge, sway, and

yaw. Figure 18 shows input and output of the MLP model. The implemented model is

Figure 18: The MLP model has as input 600 seconds of time series of the features sway,
surge, heave, roll, pitch, and yaw of the platform motion, and outputs 100 seconds of
prediction of the three features sway, surge, and yaw.

composed of an input layer, 3 hidden layers and an output layer, which are fully connected

to each node in each layer. An illustration of the MLP architecture can be seen in Figure

19. The input layer (input) receives 600 seconds of 6DoF motion features of the platform.

Therefore, the MLP receives 3.600 different data points. The output layer predicts 100

seconds of the platform horizontal motion, surge, sway and yaw, which means the MLP

outputs 300 data points in total. The 3 hidden layers (Figure 19) had 7200, 3600 and

1800 nodes respectively in each layer. The rectified linear activation function, or ReLU for

short (see Appendix A.1), was used in all the layers with the exception of the output layer

which used linear activation function to make the prediction. Adam optimizer algorithm

with a learning rate of 1-e7 was used to optimize the MLP network (see Appendix A.1.2).
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Figure 19: The fully connected Multi-Layer Perceptron (MLP) architecture used, with
3600 input nodes, 300 output nodes, and three hidden layers with 7200, 3600, and 1800
nodes, respectively.

4.2.4 MLP Prediction

After the MLP predictor model was trained, it was then used to predict motions

of different environmental conditions. As explained previously, MLP makes predictions

of 100s. The trained MLP model was then tested on 3 environmental conditions with

calm, mild and rough conditions to gauge the prediction performance of the MLP model.

These 3 environmental conditions in Table 9 were selected based on their wave height,

swell height and wind speed of these environments. As it can be seen the wave height

(hs1), swell height (hs2) and wind speed (vento vel) of these conditions differ. The

environmental condition selected to represent rough condition had a wave height of 2.84

meters, swell height of 0 meter and wind speed of 7.77 meters per second. The selected

environmental condition representing mild condition had a wave height of 1.69 meters,

swell height of 0.42 meters and wind speed of 4.72 meters per second and the selected

rough environmental condition it had a wave height of 1.68 meters, swell height of 0 meter

and wind speed of 7.77 meters per second.

Table 9: 3 environmental conditions selected.

Sea state Index hs1 tp1 dir1 hs2 tp2 dir2 hstotal vento vel vento dir corr vel corr dir

Calm 57 1.69 8.7 100.0 0.42 3.73 30.6 1.74 4.72 17.6 0.34 198.58
Mild 600 1.68 8.48 47.2 1.33 5.4 191.9 2.14 8.21 195.3 0.2 288.84

Rough 8818 2.84 17.04 192.2 0.0 0.0 0.0 2.84 7.77 208.6 0.45 216.93
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Figure 20 shows the MLP prediction of the calm environmental condition. The result

shows the MLP model was able to predict the frequency and amplitude of the platform

motions. Figure 21 shows a zoomed version of the same environmental condition, where

the blue vertical lines indicate the boundaries of a prediction of the MLP model.

Figure 20: MLP prediction on a calm environmental condition with all mooring lines
intact. Local x represents surge, local y represents sway, and sin(Z) represents yaw motion
of the platform. The orange line is the MLP prediction and the blue line is the simulated
platform motion.

Figure 22 shows the MLP prediction ability on mild environmental condition. A

zoomed image of the MLP prediction on mild environmental condition is presented in

Figure 23. The MLP in a mild environmental condition predicts the general oscillation of

the platform motions adequately.

When the trained MLP model is given a stormy environmental condition (for example

environment 8818 from Table 9) to predict, the MLP model is unable to fully predict

the oscillation of the platform’s 3DoF, i.e., surge, sway, and yaw. This indicates that

the networks might need to be trained specifically to predict under these more dramatic

environmental conditions. Figure 24 illustrates the difficulties the MLP model experiences

on this environmental condition. Figure 25 provides a zoomed picture of the rapid motions

the MLP model finds difficult to predict.

The trained MLP network is then used to predict situations showing a mooring line

failure, under the same environmental conditions tested with all mooring lines intact.
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Figure 21: A zoomed version of the MLP prediction on a calm environmental condition.
Local x represents surge, local y represents sway, and sin(Z) represents yaw motion of
the platform. The orange line is the MLP prediction and the blue line is the simulated
platform motion.

Figures 26, 29a and 29b show the MLP network predictions for cases where there is a

mooring line failure in L1, L9, L12 and L18 respectively for a single mild environmental

condition. It can be seen that after the mooring line failure at 4000 seconds an offset in

the platform position occurs and the MLP model is unable to predict the motions of the

platform thereafter. Figure 27 shows how the MLP prediction and the simulated platform

motion deviates after a failure at 4000 seconds of simulation in line one, which is located

at the left side of the platform’s stern .

Figure 27 shows a zoomed image of Figure 26. It shows a change of −9 meters from

initial 15 meter for the surge feature after the failure. Surge measurement oscillates for

three predictions after which it stabilizes. The sway also shows change after a line failure

of 3 meters. After the line failure the MLP model is no longer able to predict the motion.

It can be seen in Figures 28, 29a and 29b that there is an offset between the pre-

dicted and simulated platform motions regardless of the mooring line and environmental

condition.
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Figure 22: Illustration of MLP prediction on a mild environmental condition. Local x
represents surge, local y represents sway, and sin(Z) represents yaw motion of the platform.
The orange line is the MLP prediction and the blue line is the simulated platform motion.

Figure 23: A zoomed illustration of MLP prediction with a mild environmental condition.
Local x represents surge, local y represents sway, and sin(Z) represents yaw motion of
the platform. The orange line is the MLP prediction and the blue line is the simulated
platform motion.
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Figure 24: Illustration of MLP prediction on a stormy environmental condition with
all mooring lines intact. Local x represents surge, local y represents sway, and sin(Z)
represents yaw motion of the platform. The orange line is the MLP prediction and the
blue line is the simulated platform motion.

Figure 25: A zoomed illustration of MLP prediction on a stormy environmental condition
with all mooring lines intact. Local x represents surge, local y represents sway, and sin(Z)
represents yaw motion of the platform. The orange line is the MLP prediction and the
blue line is the simulated platform motion.
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Figure 26: Illustration of mooring line failure of L1 at approximately time step 5000.
Local x represents surge, local y represents sway, and sin(Z) represents yaw motion of
the platform. The orange line is the MLP prediction and the blue line is the simulated
platform motion.

Figure 27: A zoomed illustration of Mooring line failure of line one. Local x represents
surge, local y represents sway, and sin(Z) represents yaw motion of the platform. The
orange line is the MLP prediction and the blue line is the simulated platform motion.
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Figure 28: An illustration of mooring line failure of L9. Local x represents surge, local
y represents sway, and sin(Z) represents yaw motion of the platform. The orange line is
the MLP prediction and the blue line is the simulated platform motion.

(a) Mooring Line failure of L12. (b) Mooring Line failure of L18.

Figure 29: Illustration of mooring line failure of L12 and L18 at approximately time step
5000. Local x represents surge, local y represents sway, and sin(Z) represents yaw motion
of the platform. The orange line is the MLP prediction and the blue line is the simulated
platform motion.
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4.3 LSTM Predictor

This section presents the results found with a trained LSTM network. An overview

of LSTM networks is given in Appendix A.1.4. The chapter is split into different parts

representing the consecutive steps necessary for the implementation of the LSTM predictor

as described in the section 4.1 of this chapter. First the environmental conditions used

for training and validation of the LSTM model are presented. Afterwards the learning

process based on the selected environmental conditions is shown in detail to then give an

overview of the prediction results for different environmental conditions with all mooring

lines intact and with mooring line failures.

4.3.1 Environmental condition selection

After experimentation with different configurations, the best results were achieved

by designing a subset of 1000 environmental conditions for training and another 200

conditions for validation using the procedure explained in chapter 4.1.1. Figure 30 shows

a histogram of the selected subset and the histogram of all measured conditions. It can be

seen that the subset follows the same normal distribution and the same standard deviation

as all recorded conditions.

4.3.2 Model architecture

Different LSTM models were trained based on this subset of cases, and then compared

to each other. The different LSTM models consisted of models with a single LSTM layer

and different models with multiple LSTM Layers. The model with the best performance

is described in the following. The model with the most accurate prediction found was an

encoder-decoder model employing two LSTM layers.

The first LSTM layer is trained on understanding the input sequence. It encodes the

input sequence into a vector with a fixed length which is then interpreted by the decoder.

The decoder creates an output sequence based on the encoded information. The encoder

and decoder share information using the internal vector to exchange encoded information

that is understood by both layers. Therefore the conjunction is referenced in literature

as Encoder-Decoder LSTM. Since it consists of two layers, whereas one is specialized

in understanding the input and one in producing the output, it is commonly used for

sequence to sequence problems [24]. Since the presented platform movement prediction

problem is also a sequence to sequence problem, the given architecture is expected to
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(a) Wind histogram. (b) Swell histogram.

(c) Wave histogram. (d) Current histogram.

Figure 30: Illustration of the selected files histograms (orange) against the histogram of
all 18000 files (blue) for the Long Short Term Memory (LSTM) network.

achieve the most precise predictions.

To employ this structure additional layers are needed that are explained in the follow-

ing. The LSTM model structure implemented is illustrated in Figure 31 and is composed

of an encoder and decoder LSTM layer, a repeat vector layer and two dense layer classes,

that are wrapped in a time distributed class.

The first LSTM Layer consists of 200 units. Each unit of the layer gives a response to

the seen input, which means that the output of this layer is a vector of 200 values. This

layer is considered the encoder and it is trained to understand the input and translating

it into a fixed length vector. In this project the Layer takes a two dimensional Array

consisting of the last 1000 time steps of Surge, Sway and Yaw to decode it into a vector

of 200 values, that carries all the important information for the decoder Layer.

Since the decoder LSTM layer needs a 2 dimensional input, a repeat vector layer

is needed. The repeat vector layer repeats its input n times. In this case the input is

repeated corresponding to the number of output steps. As the output of the predictor

has a length of 400 steps, the encoded vector is repeated 400 times.
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Figure 31: Illustration of the used LSTM architecture. In brackets are the number of
training units, due to its variable size(depending on the number of selected environmental
conditions) it is marked with ”?”, the second number represents the number of input steps
and the last number the number of features

The second LSTM layer can be understood as the decoder of the structure. It consists

also of 200 units. Each unit gives a response based on the encoded message, which in our

case consists of the array of 200 values of the Encoder Layer repeated 400 times. This

layer returns the hidden state for each input time step creating a two dimensional output.

In our case the output as seen in figure 65 consists therefore of an two dimensional array

consisting of the 400 hidden states of the 200 units.

After the internal vector is decoded, it needs to be translated in the needed output

form. This is accomplished by 2 dense layers that reduce the 200 output values to the

desired 3 DoF motion variables representing the horizontal platform motion (surge, sway,

and yaw). Since dense layers work with one-dimensional input, they are wrapped in a

time distributed layer, giving them the ability to understand the two dimensional input

data.

The LSTM receives the last 1000 seconds of the platform horizontal motion – surge,

sway, and yaw – to predicts 400 seconds of the horizontal platform motion.
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All layers presented used ReLU as activation function and a stochastic gradient de-

scent (SGD) optimizer algorithm as optimization function. Further information on the

basic principles can be found in chapter A.1.

The training was based on the Keras Convolution Neural Network Layer (CNN), that

is a Keras LSTM implementation specialized for improved GPU performance, by doing

majority of the calculations in parallel. 1.

4.3.3 LSTM Training

The LSTM network was trained for 1500 epochs. The first 700 epochs are shown

in Figure 32. The blue curve shows the training accuracy and the orange curve shows

the validation accuracy. The Validation was done using 200 environmental conditions.

The Training was only stopped after the validation accuracy did not improve significantly

within 200 epochs. In the project a significant improvement of the validation accuracy

was considered to be an improvement of more than 1 ∗ e−5. Usually the improvement

became insignificant after 1500 epochs, depending on the Learning rate of the optimizer.

Figure 32: Training Curve of the first 700 epochs of the presented LSTM network us-
ing 1000 training environmental conditions (blue) and 200 validation environmental con-
ditions (orange). The vertical axis represents the mean error and the horizontal axis
represents the number of epochs. The error decreases steadily with number of epochs.

The training was done with 1000 separate environmental conditions, with 200 seconds

1https://www.tensorflow.org/api docs/python/tf/compat/v1/keras/layers/CuDNNLSTM
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stride of the data window between consecutive training units (see Section 4.1.2 for details).

The algorithm predicted 400 seconds based on 1000 seconds of horizontal platform motion,

as shown in Figure 33.

Figure 33: The LSTM model using the last 1000 seconds of the features surge, sway and
yaw to predict 400 seconds of these three features.

4.3.4 LSTM Prediction

After the model was trained, different environmental conditions were then used for

testing the models prediction accuracy. Figure 34 shows a prediction of platform motion

without mooring line Failure. It can be seen that the prediction is reasonable close to the

simulated platform motion. The blue lines indicate the boarders of a single prediction. For

better visualization over a longer period of time consecutive predictions were concatenated

in the figures.

Figure 34: Illustration of LSTM prediction of platform motion under a single environ-
mental condition with all mooring lines intact. The simulated data are in blue and the
predicted in green. Local x means surge, local y sway, and sin(Z) yaw.

Different environmental conditions are selected to analyze the models capability to
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predict the platform motion. The selected conditions can be seen in Table 10. The main

difference between the selected conditions can be seen in the swell, wind and waves. It

can be seen that the wave direction was varied between 123 and 190 degrees, with wave

heights between 1,70 meter and 2,8 meter. The wind was varying in height and speed in

correlation to the waves.

Table 10: Analyzed environmental conditions

case hs1 tp1 dir1 hs2 tp2 dir2 hstotal vento vel vento dir corr vel corr dir
17432 2.24 6.74 123.9 0.00 0.00 0.0 2.24 9.34 112.9 0.27 238.37
25856 1.71 9.25 149.3 1.23 6.59 96.7 2.11 7.70 69.0 0.46 190.20
25874 2.84 17.04 192.2 0.00 0.00 0.0 2.84 7.77 208.6 0.45 216.93

The trained predictor is able to accurately predict the slow frequency motions of

the platform, while it is not able to predict the rapid frequency motions. Index 25856

represents a rapid surge and yaw motion, as it can be seen in figure 35.

Figure 35: Illustration of LSTM prediction on a single environmental condition with all
mooring lines intact. The simulated data are in blue and the predicted in green.

A zoomed version, presented in figure 36, shows that the LSTM predictor is predicting

only the slow components of the platform motion accurately but is not able to follow the

high frequency motions.

Figure 37 shows one of the most rapid platform motions found in all of the cases. It

can be seen that the algorithm is predicting the slow most influential components but not

the high frequency components of the platform motion. Since these cases occur rarely,

there were only few selected cases with high frequency motion components in the training

data.
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Figure 36: Zoomed illustration of the LSTM prediction on a single environmental condi-
tion with all mooring lines intact. The simulated data are in blue and the predicted in
green, with the topmost graph representing the Local x position(surge), the middle graph
local y position (sway), and the bottom graph the sin(Z) angle (yaw).

The same analysis was then done with Mooring line failure cases. Figure 38 shows the

same environmental condition that also can be seen in figure 34, with a simulated Mooring

Line failure of L1 after 3500 seconds. The failure is clearly visible as a change in positional

offset. After the failure it can be observed that the predictor has difficulties predicting

the platform motion. In a zoomed version there can be seen a clear difference between

simulation and prediction when the Line failure happens, since the platform changes its

local position after the failure of the Line and the predictor does not predict this change

in position.

Figure 39 shows the two predictions done during the period of Line failure. The

predictor predicts the motion staying close to the predicted position while the simulated

platform position changes 3 meters in surge and sway from its old position. It can be

observed that the predictor has problems predicting the platform motion in the new

location.

The same behaviour can be observed for all different kind of environmental conditions

and all mooring lines. The predictor is not able to follow the platform motion after

a mooring line failure, leading to a permanent offset between predicted and simulated

platform motion. Figure 40 gives an overview over different mooring Line failures in

different environmental conditions. Depending on the Mooring Line failure the seen offset

differs in sign and altitude. It can be seen that the offset is correlated to the orientation
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Figure 37: Zoomed illustration of LSTM prediction on a single environmental condition
with all mooring lines intact and rapid motion. The simulated data are in blue and the
predicted in green, with the topmost graph representing the Local x position(surge), the
middle graph local y position (sway), and the bottom graph the sin(Z) angle (yaw).

of the line to the platform.
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Figure 38: Illustration of LSTM prediction on a single environmental condition with
a Mooring Line failure of Line 1 at 3500 seconds. The topmost graph representing the
Local x (surge), the middle graph representing local y(sway), and the graph at the bottom
representing sin(Z)(yaw).

Figure 39: Zoomed illustration of LSTM prediction on a single environmental condition
with a Line failure of Mooring Line 1 at 3500 seconds. The topmost graph representing
the Local x (surge), the middle graph representing local y(sway), and the graph at the
bottom representing sin(Z)(yaw).
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(a) Mooring Line failure Line 09

(b) Mooring Line failure Line 12

(c) Mooring Line failure Line 18

Figure 40: Illustration of different Mooring Line failures in different environmental con-
ditions
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4.4 Discussion

In this section the results of the MLP and LSTM models implemented are discussed.

In Section 3, the proposal to build two predictor models, MLP and LSTM, was presented

hypothesizing that an irregularity in platform motions can be a good indicator for mooring

line failure. Results of the two predictors presented in Section 4.2 for the MLP model and

Section 4.3 for the LSTM model support the made hypothesis.

It is assumed that the platform motion changes in its intensity as well as in its fre-

quency after a line failure occurs. Since both predictor models were only trained to

respond well to platform motions with all mooring lines intact, the irregular motion after

a line failure can be seen as a difference between the simulated and predicted motions.

As it can be seen for the MLP in Figure 20 and LSTM in Figure 34, both models were

capable of predicting the motions of the platforms. The results showed that the LSTM

model performed better at predicting the platform motions than the MLP predictor, by

being capable to predict more accurately for a longer period of time. This can be seen in

Figures 26, 28, 29 for the MLP network and in Figures 40a, 40b, 40c, 39 for the LSTM

network. An explanation for this may be due to the nature of the LSTM model which

is a recurrent neural network and thus can remember past information, which the MLP

model as a feed-forward network cannot do.

After mooring line breakage the MLP model was unable to predict the platform mo-

tions accurately. The LSTM model also demonstrated difficulty in predicting the platform

motion after mooring line failure but to a lesser extent when compared to the MLP net-

work on the same platform motion. This behaviour can be attributed to the fact that both

models were trained on platform motions with intact mooring lines. So after mooring line

failure, the motions of the platform with a compromised mooring system are unknown to

these trained models.

Both models were also tested on different environmental conditions that had different

sea states. The MLP model predicted the oscillation of the simulated platform in calm

and mild environmental conditions but for a stormy environmental condition, the MLP

could not predict the rapid motions of the platform. The LSTM performed better in all

cases when compared against the MLP model. However, LSTM also found it difficult to

predict the motion of the platform in environmental conditions with rapid oscillations,

predicting only the slow, most influential components of the motion in these conditions.

A possible reason why both models found it difficult to predict the platform motion of
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environmental condition with rapid oscillation could be because the models were trained

with only few environmental conditions of these types in their training dataset. In the

entire environmental condition measurements gotten from the weather station located in

Campos Basin (Bacia de Campos) of Rio de Janeiro (RJ), Brazil, since 2003 (see Section

4.1.1) there were only 100 environmental conditions with wave heights greater than 4

meters, which characteristically lead to motions with faster frequency components .

The LSTM network used fewer platform movement variables as inputs (3 horizontal

platform motion variables) when compared to the MLP network, that used surge, sway,

yaw, roll, pitch and heave as input. However, they both predicted the same 3 platform

motion features (surge, sway and yaw).

The LSTM model was able to handle a larger input (i.e., more time steps at the

input) than the MLP network, and it was also able to forecast a longer output. The

LSTM network used an input of 1000 seconds for surge, sway and yaw, and the MLP

used a smaller input of 600 seconds of all 6 DoF. The forecast time for the LSTM network

(400 seconds) was also four times larger than the 100 second forecast time for the MLP

network. Therefore, the LSTM model can be used for longer platform motion forecasts

than the MLP model.

A comparison of the number of platform motions data used for training and validation

in the training phase shows that MLP used five times the number than the LSTM model.

On the other hand, LSTM takes much longer to be trained. While MLP was trained in

approximately 7 hours, LSTM required approximately 20 hours to be trained.
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5 COMPARATOR

After the predictor is trained, as explained in Section 4.2 and 4.3, it is used to predict

platform motion based on the previous motion. The test units must have the same

dimensions as those defined for the pair < input − output > of the training units (see

Section 4.1.2). The input of a data-set is fed to the trained predictor, which then predicts

the output of the set.

The idea is to provide input data to the predictors and compare the predicted output of

the predictors with the simulated data, measuring the disparity between them. Assuming

that a mooring line failure leads to a significantly greater disparity when compared to

platform motions without mooring line failure, the disparity can then be used to identify

mooring line failures.

Figure 41: Figure showing the comparator module as part of the modular system structure

The comparator is used to calculate error scores reflecting the disparity between sim-

ulation and prediction. To improve the reliability of these error scores, the calculation is

based on multiple predictions. Additionally different error scores are calculated to lower

the influence of outliers and inaccurate measurements. To perform the error index calcu-

lation, error windows are created based on the predictors output. Section 5.1 explains the

error window creation and the error score calculations. In section 5.2 shows the calulated

error indexed for the MLP predictor and section 5.3 shows the error scores of the LSTM

predictor. In the last section of this chapter the found error scores are then discussed

and the two predictors are compared against each other. The comparator is the second
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module of the data pipeline as it can be seen in figure 41.

The next step is then to identify mooring line failure using the calculated error scores.

Since the network was only trained using scenarios without line failures, the difference

between simulated and predicted platform motion is expected to be greater for the cases

with line failure.

5.1 Error Score Calculation

As explained in section 4 the trained predictors are used to predict different testing

units. The tested units are selected so that for each simulated time step at least one

predicted value exists. If multiple values exist for the same time step the mean value

is calculated. After concatenating all predicted platform motions the prediction can be

plotted against the simulated platform motion. The difference between the simulated and

predicted motion is given by

∆ = Ypred − Ysim. (5.1)

Where Ysim is the simulated motion and Ypred is the predicted motion. The result can be

plotted as seen in Figure 42, where the red line is the difference between the prediction

(green) and simulation (blue).
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Figure 42: In this plot are the actual motion (simulated data here, in blue), the predicted
values (in green) and the difference between them (in red).

To calculate the errors, the difference graph is then split into windows, hereafter

referred to as error windows, with the size of two prediction time intervals (which, as
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already mentioned, is a parameter of the system and depends on the predictor used and

the training done). The stride of the error windows is one prediction window. Figure 15

uses a prediction window of 100 seconds resulting in the error window size of 200 seconds

with stride 100 seconds.

Since the error window size is two times longer than the prediction window, the

windows overlap. For example, for a predictor predicting 50 seconds, the error window

would have a size of 100 seconds and its stride would be 50 seconds, as it can be seen in

Figure 43. For visualization purposes the mean value is shown when there are multiple

predicted values for the same time step.
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Figure 43: Prediction step by step. Each graph shows two 50s predictions concatenated
in a 100s error window, and the respective difference (in green) between the predictions
(in red) and the actual data (dashed in blue). The 50 second stride between one graph
and another can be seen as time difference between the graphs.

For each error window the root mean square error, mean and median error were

calculated. The calculation was done using

ME =

∑n
i=0 ∆i

n
, (5.2)

for the mean error (ME),

MedE = Vsorted[(N − 1)/2] (5.3)

for the median error (MedE) where Vsorted represents a sorted array of the ∆ values and

N represents the number of array elements. The RMSE is calculated by

RMSE =

√∑n
i=0 ∆2

i

n
. (5.4)
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with n being the number of time steps in the error window and ∆ the point-to-point

difference between the predicted and the simulated data.

The errors were then plotted against the prediction and simulated platform motion

as it can be seen in Figure 44. The three errors were calculated for each error window.

Figure 44: Error Calculation. Top: predicted (orange) and actual (blue) motion val-
ues. Bottom: RMSE (green) median (orange) and mean(blue) error scores for each error
window.

5.1.1 Scatter plot visualization

Since both predictors predict the horizontal motion, which consists of 3 degrees of

freedom, each error score can be interpreted three dimensional with every feature as a

dimension and can therefore be plotted as a 3D Scatter plot. The error score in surge is

presented on the x axis, the error score in sway on the y axis and the error score in yaw

on the z axis.

The error calculation is then repeated for all the environmental conditions available

and the results are all visualized in a 3D scatter plot, each calculated error score repre-

sented as a point in the 3D scatter plot. The RMSE, Mean and Median errors are then

plotted in three different scatter plots.
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5.2 MLP Error Scores

Section 5.1 gave a detailed description of the steps required for calculating the errors

between our implemented model prediction and the simulated platform motion. This

section presents the error scores for different environmental conditions the MLP model

was tested on, showing the correlation of error score, environmental condition and mooring

line status. Using the error scores of six different environmental conditions with different

mooring line setup, the RMSE, mean and median errors of these conditions are compared.

Table 11 compares the RMSE errors of six different environmental condition. It can

be seen that compared to the surge RMSE of case 57 – which has all its mooring lines

intact – with the same case 57 but with mooring L18 Failure the error becomes 10 times

bigger. The same difference is seen for sway and yaw. There is always a difference in

error score between situations with intact and compromised mooring lines under a certain

environmental condition.

Table 11: RMSE MLP error scores

RMSE surge sway yaw

Case 57 0.257 1.656 5.483 e-04
Case 600 0.300 0.619 2.337 e-04
Case 8818 0.748 0.579 2.066 e-04

Failure L1 Case 57 6.061 6.289 3.594 e-03
Failure L9 Case 57 5.761 10.038 4.594 e-03
Failure L12 Case 57 7.756 5.802 4.523 e-03
Failure L18 Case 57 10.425 1.780 3.241 e-03

Table 12 compares median errors of these six environmental conditions and Table 13

compares the mean errors. The same observations are true for these comparisons. The

error score after a line failure is 10 times higher for cases with a compromised mooring

line when compared to cases with intact mooring systems. A clear difference is noticeable

between the scenario with and without Mooring Line Failure as it was expected.

After calculating all error scores for all simulated environmental conditions the results

are plotted in a 3D scatter plot as described in section 5.1.1.

Figure 45 shows the scatter plot of the RMSE scores of all available training sets . It

can be seen that there is a clear separation between the cases with all Lines intact and

the cases that show a Mooring Line failure. As aforementioned the error score gives no

further information about the location of the Line since the error calculates only positive

error scores.
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Table 12: Median MLP error scores

Median Error surge sway yaw

Case 57 0.232 -0.878 -2.058 e-04
Case 600 -0.264 -0.509 -1.007 e-04
Case 8818 -0.472 -0.546 -1.288 e-04

Failure L1 Case 57 -5.415 -6.225 3.143 e-03
Failure L9 Case 57 5.766 -9.913 -4.827 e-03
Failure L12 Case 57 7.430 5.609 4.512 e-03
Failure L18 Case 57 -10.019 -08.416 -3.102 e-03

Table 13: Mean MLP error scores

Mean Error surge sway yaw

Case 57 0.240 -0.982 -2.445 e-04
Case 600 -0.237 -0.540 -1.311 e-04
Case 8818 -0.438 -0.555 -1.255 e-04

Failure L1 Case 57 -5.296 -6.086 3.097 e-03
Failure L9 Case 57 5.478 -9.869 -4.486 e-03
Failure L12 Case 57 7.430 5.398 4.265 e-03
Failure L18 Case 57 -10.026 -1.010 -3.007 e-03

Figure 46 shows the scatter plot of all calculated Mean error scores. It can be seen

that there is a clear separation between the cases with all Lines intact and the cases that

show a Mooring Line failure. Furthermore the cases can be divided into four groups that

represent the four different cardinal directions.

Figure 47 shows the scatter plot of all calculated Median error scores. It can be seen

that there is a clear separation between the cases with all Lines intact and the cases that

show a Mooring Line failure. Furthermore the cases can be divided into four groups that

represent the four different cardinal directions. The error plot is similar to the mean error

scatter plot as expected.
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Figure 45: RMSE error score of features; surge, sway and yaw indexes for all environmental
conditions in the test set. The red circles represent cases without mooring line failure and
the blue circles represent cases with a mooring line failures. The x axis represents the
error score for surge, the y axis represents sway and the z axis represents the error score
for the yaw feature
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Figure 46: Mean error score of features; surge, sway and yaw of indexes for all environ-
mental conditions. The red circles represent cases without mooring line failure, and the
blue circles represent cases with mooring line failure. The x axis represents the error score
for surge, the y axis represents sway and the z axis represents the error score for the yaw
feature
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Figure 47: Median error score of features; surge, sway and yaw of indexes for all envi-
ronmental conditions. The red circles represent cases without mooring line failure, and
the blue circles represent cases with mooring line failure. The x axis represents the error
score for surge, the y axis represents sway and the z axis represents the error score for the
yaw feature
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5.3 LSTM error Scores

As mentioned in the theoretical chapter 4.1.2 different error scores can be calculated

using the difference between the simulated and predicted platform motion. The following

chapter is showing the calculated error scores for the different error types.

Table 14: LSTM: RMSE Error scores

RMSE Error surge sway yaw
Case 17432 0.196 0.583 3.907 e-04
Case 25856 0.125 0.191 1.088 e-04
Case 25874 0.450 0.163 5.385 e-05
Failure L1 8.306 3.928 2.995 e-03
Failure L9 5.511 4.469 3.102 e-03
Failure L12 5.116 4.706 3.353 e-03
Failure L18 5.206 4.333 2.104 e-03

The RMSE error scores for different cases can be seen in Table 14. The shown cases are

the selected environmental conditions from the chapter before, where case 8818 represents

a rough environmental condition and 376 a calmer situation. Since RMSE calculates

always the square error there can be no statement made regarding the direction of the

offset. It can be clearly seen that there is a big gap between the scenarios with and

without line failure.

The Mean error scores for different cases can be seen in Table 15. It can be observed

that the error score after a line failure is 10 times higher than in cases without a line

failure. It can also be observed that line failures from different groups lead to different

signs of the error score.

Table 15: LSTM: Mean error scores

Mean Error surge sway yaw
Case 17432 -0.149 -0.182 -5.675 e-05
Case 25856 -0.105 0.047 -2.254 e-05
Case 25874 -0.129 0.049 -2.165 e-05
Failure L1 -7.241 -2.175 2.956 e-03
Failure L9 5.041 -3.650 -2.963 e-03
Failure L12 3.569 3.630 2.997 e-03
Failure L18 -4.612 3.821 -1.954 e-03

The Median error scores for different cases can be seen in Table 16. It can be observed

that here the error score after a line failure is also 10 times higher than in cases without a

line failure. It can also be observed that line failures from different groups lead to different

signs of the error score.



73

Table 16: LSTM: Median error scores

Median Error surge sway yaw
Case 17432 -0.151 -0.120 -5.499 e-05
Case 25856 -0.110 0.041 -2.440 e-05
Case 25874 -0.151 0.056 -2.166 e-05
Failure L1 -7.666 -2.177 2.817 e-03
Failure L9 5.750 -4.204 -3.134 e-03
Failure L12 2.898 3.375 2.7081 e-03
Failure L18 -4.401 3.294 -2.086 e-03

After calculating all error scores for all simulated environmental conditions the results

are plotted in a 3D scatter plot as described in section 5.1.1.

Figure 48 shows the scatter plot of all calculated RMSE scores. It can be seen that

there is a clear separation between the cases with all Lines intact and the cases that show

a Mooring Line failure. As aforementioned the error score gives no further information

about the location of the Line since the error calculates only positive error scores.

Figure 49 shows the scatter plot of all calculated Mean error scores. It can be seen

that there is a clear separation between the cases with all Lines intact and the cases that

show a Mooring Line failure. Furthermore the cases can be divided into four groups that

represent the four different cardinal directions.

Figure 50 shows the scatter plot of all calculated Median error scores. It can be seen

that there is a clear separation between the cases with all Lines intact and the cases that

show a Mooring Line failure. Furthermore the cases can be divided into four groups that

represent the four different cardinal directions. The error plot is similar to the mean error

scatter plot as expected.
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Figure 48: Scatter plot of RMSE error score of features; The red circles represent cases
without mooring line failures, and the blue circles represent cases with a mooring line
failure. The x axis represents the error score for surge, the y axis represents sway and the
z axis represents the error score for the yaw feature.



75

Figure 49: Scatter plot of Mean error score of features. The red circles represent cases
without mooring line failure, and the blue circles represent cases with a mooring line
failure.The x axis represents the error score for surge, the y axis represents sway and the
z axis represents the error score for the yaw feature.
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Figure 50: Scatter plot of Median error score of features; surge, sway and yaw of indexes for
all environmental conditions. The red circles represent cases without mooring line failure,
and the blue circles represent cases with a mooring line failure.The x axis represents the
error score for surge, the y axis represents sway and the z axis represents the error score
for the yaw feature.
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5.4 Discussion

As it was already confirmed in the discussion section of chapter 4, both models were

capable of predicting the motions of the platforms. This was also confirmed by comparing

the error scores of both models for the same test data. The MLP error scores in Tables

11, 12 and 13, and the LSTM error scores in Tables 14, 15 and 16 show the LSTM errors

are always smaller than the MLP error score in all test scenarios.

The in chapter 4 discussed difficulty to predict the platform motion after a line break-

age can also be observed, resulting in a high error score after a mooring line failure, due

to a high disparity between the simulation and prediction.

In this chapter the predictor error scores of the test units were used to generate 3D

scatter plots of the 3 motion variables, sway, surge and yaw. The scatter plots generated

based on the RMSE error scores show a clear separation between the cases with all mooring

lines intact and the cases that had mooring line failures for both models, showing the

applicability for binary classification. As this error depends on the quadratic difference

between the measurements, it is not possible to assess the signs of changes when a line

fails, meaning that the information of the direction of offset change is lost. The mean and

median errors still keep this information.

The scatter plot generated with the mean and median error scores for both models

also show a clear separation between the cases with all of its mooring lines intact and the

cases with mooring line failures. In Figures 46, 47 for MLP, and Figures 49, 50 for LSTM,

five different data groupings can be seen. One group of data in red for cases with intact

mooring lines for both models, and the remaining four data groupings in blue indicating

the cases with mooring line failure.

It can be further seen that these blue data points were separated into the four different

cardinal directions. The result of the scatter plot indicate the mean and median error

scores can be used to detect which side of the platform shows a mooring line failure, i.e.,

which group of mooring lines shows a failure. It can be concluded that using the mean

and median error a multi-group mooring line failure detection can be done, and that the

RMSE error can be used for binary mooring line identification.
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6 CLASSIFIER

Classification is the problem of identifying the group or subset to which a new observa-

tion belongs. In Appendix A.1 different classifiers were introduced and their fundamental

functioning were explained. In this report, classifiers are used to define whether a simu-

lated platform motion contains a line failure or not, having as inputs the error scores of

the NN predictors, as shown in the Figure 51.

Figure 51: Figure showing the classifier module as part of the modular system structure

Different classifiers were tested against each other to assess which classifier more

accurately predicts line failures based on the error scores calculated by the comparator.

These classifiers are illustrated in Figure 52: the K-nearest neighbour (KNN) classifier,

decision tree (DT) classifier, and support vector classifier (SVC).

Figure 52: Types of classifiers used.



79

Classifiers are trained based on training sets. Each training set consists of an input

and a desired output. In this work, the input consists of the calculated error scores

(RMSE, mean and median errors) from the difference between predicted and simulated

platform motion for different environmental conditions. The desired output consists of

the class the platform motion belongs to, either line failure or no line failure. These labels

are defined by designers for each input.

To train and test the classifiers, a subset of all the available simulated platform motions

listed in Table 17 was used. It can be seen in this table that the amount of simulated

platform motions is imbalanced. Platform motions labeled no-failure, failure L9 and

failure L12 have a greater number of simulated motion data from the platform than those

with other line failures.

Table 17: All simulated platform motions from Dynasim. Dates indicate which periods
of actual environmental conditions were used to generate the simulated data.

Line From To Number of platform motions

No Failure 03.11.2003 31.12.2009 18000
Failure L1 01.01.2006 31.12.2006 2920
Failure L5 01.01.2006 31.12.2006 2920
Failure L6 01.01.2006 31.12.2006 2920
Failure L9 03.11.2003 31.12.2009 18000
Failure L10 01.01.2006 31.12.2006 2920
Failure L12 03.11.2003 31.12.2009 18000
Failure L15 01.01.2006 31.12.2006 2920
Failure L18 01.01.2006 31.12.2006 2920

Total number of platform motions 71520

6.1 Training set balancing

To balance the number of platform motions, methods such as over-sampling or under-

sampling of data can be employed. Over-sampling of data is an approach that aims to

balance class distribution by replication of minority class samples until an equal number

of the minority class samples and the majority class samples is obtained. On the other

hand, making the data balance while under-sampling aims to balance class distribution by

random deletion from the majority class samples [25]. In this project, the under-sampling

approach is adopted to balance the number of platform motions. The platform motions

– No Failure, Failure L9 and Failure L12 – with 180000 conditions are under-sampled to

2920 platform motions to make it the same as the minority class platform motions which

are the platform motions with line failures (See Table 18).
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An analysis of data from all simulated platform motions was made and the platform

motions of the year 2006 were selected for presenting fast platform movements and also

for showing more stormy conditions when compared to the rest of the years measured.

Since both models were good at predicting the motion of the platform under mild and

calm environmental condition with intact mooring lines (See section 4.2.4 for the MLP

prediction results and section 4.3.4 for the LSTM prediction results) and both models

found it difficult to predict the motion of the platform with stormy environmental condi-

tion, we chose to test the classifier on platform motion of this year (2006), to gauge the

performance of the classifier since our predictor models found it difficult to predict the

motions of the platform. The error scores for this data, provided by the predictors, are

then used as input to the classifiers.

The whole year was decomposed into 3 hour sections, starting from January, 1st of 2006

to December, 30th of 2006. The data with line failure had one of its specified mooring

line failure at 4000 seconds of simulation (the first 100 seconds of each simulation are

neglected to avoid initial simulator instability). From this pool of data with different

platform motions a subset with 2000 elements (see Table 19) is selected for training the

classifier and the rest is used to test the classifiers. Based on the results of the classification

made in the test set, a confusion matrix is created and the data for which the classifiers

erroneously classified the data is investigated in more detail.

Table 18: Balanced simulated platform motions

Line From To Number of simulated platform motions

No Failure 01.01.2006 31.12.2006 2920
Failure L1 01.01.2006 31.12.2006 2920
Failure L5 01.01.2006 31.12.2006 2920
Failure L6 01.01.2006 31.12.2006 2920
Failure L9 01.01.2006 31.12.2006 2920
Failure L10 01.01.2006 31.12.2006 2920
Failure L12 01.01.2006 31.12.2006 2920
Failure L15 01.01.2006 31.12.2006 2920
Failure L18 01.01.2006 31.12.2006 2920

Total number of simulated platform motions 26280

The classifier classifies platform motions into two groups, failure and no-failure. The

ratio of training data between the failure group and the no-failure group is kept equal,

which means 1 : 1 and the classifier is trained on all the different line failures seen in

Table 18. There are 8 different line groups with simulated line failure, that are lines 1,

5, 6, 9, 10, 12, 15, and 18. To keep the data ratio equal, the no-failure group needs 8

times more cases than that of individual line failure groups. Also, to keep the line failure

cases balanced, the same number of platform motions is selected for each mooring line
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failure. An example of how the training data is selected can be seen in Table 19. Here

125 platform motions with line failure are used and to keep it balanced 1000 platform

motions without line failure are selected.

Table 19: Example of Training data for the binary classification

Line platform motions by index group

No Failure 1-1000 no failure
Failure L1 1-125 failure
Failure L5 1-125 failure
Failure L6 1-125 failure
Failure L9 1-125 failure
Failure L10 1-125 failure
Failure L12 1-125 failure
Failure L15 1-125 failure
Failure L18 1-125 failure

Total number of platform motions 2000

For testing, all the remaining platform motions of the year 2006 were then classified

using the trained classifiers. Table 20 shows the platform motions used for testing.

Table 20: Example of Test data for the binary classification

Line platform motions by index group

No Failure 1000 - 2920 no failure
Failure L1 1000 - 1240 failure
Failure L5 1000 - 1240 failure
Failure L6 1000 - 1240 failure
Failure L9 1000 - 1240 failure
Failure L10 1000 - 1240 failure
Failure L12 1000 - 1240 failure
Failure L15 1000 - 1240 failure
Failure L18 1000 - 1240 failure

Total number of platform motions 3840

Three classifier algorithms were trained and tested. The results of the classifiers for

binary classification are shown. For each model, MLP and LSTM, the result of the three

classifiers are shown together with their accuracy, precision and recall. In the following

section the result of the MLP error classifiers are shown, after which the LSTM error

classifiers are also shown.
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6.2 MLP classifier results

In this section, the results of three classifiers which used the error scores gotten by

the MLP predictor shown in section 4.2 are presented.

The classifiers implemented were all trained on 2000 platform motion errors as men-

tioned before (see Table 19). For testing, 1920 platform motions without line failure and

1920 platform motions with line failure were used. In total, the classifiers implemented

make prediction of 3840 platform motions (see Table 20. The different classifier results

are presented in the following sections.

6.2.1 K-nearest neighbour (KNN) classifier result

A K-nearest neighbour (KNN) classifier is implemented (See Appendix A.1.5 for de-

tails) which uses K = 100 nearest neighbours to classify platform motions into two groups:

“failure” and “ no-failure” groups. The distance metric the KNN classifier used is the

euclidean distance metric.

Result of the KNN classifier prediction on 3840 platform motions are presented in

a confusion matrix in Figure 53. It can be seen the KNN classifier classified the 1920

platform motions with mooring line failure accurately into the group “ Failure” while for

the “No-Failure” group, out of 1920 conditions it misclassified 10 platform motions into

the “ Failure” group. The overall prediction accuracy of the KNN classifier was 99% (See

Table 21).

The error scores are then calculated with the formulas introduced in Section A.1.5. If

we consider no failure as positive and failure as negative it can be seen that the algorithm

shows a precision of 99.5%, and a recall score of 100% (See Table 21).

Table 21: K-nearest neighbour (KNN) classifier metrics

Accuracy 0.997
Precision 0.995

Recall 1

Figure 53 shows the KNN classifier is classifying 10 platform motions wrongly. Analy-

sis of environmental conditions used to simulate these platform motions in Table 22 shows

the wave heights (hs1) measured was greater than 4 meters. The peak to peak wave height

(tp1) measured was greater than 8 meters and the wind speed (vento vel) measured was

greater than 7 meters per second. The 10 platform motions wrongly predicted occurred
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Figure 53: K-nearest neighbour (KNN) classifier prediction on mooring line status using
MLP predictor.

within a 2 day span, starting from the 11th of November to 13th of November. The en-

vironmental conditions of these 10 platform motions are presented in Table 22 and the

index of these environmental conditions are 25907, 25909, 25910, 25911, 25912, 25913,

25914, 25915, 25916 and 25917.

As shown the KNN classifier was predicting 10 platform motion erroneously. This

could be an artifact of the MLP predictor, because as it was mentioned in section 3.4.3.4,

the MLP model was not able to predict the motions of a platform in environmental con-

dition with rapid oscillations adequately and since the error scores of the MLP predictor

for each platform motion are the inputs used by the classifiers, this inadequacy manifests

here.

6.2.2 Decision Tree classifier result

A Decision Tree (DT) classifier was implemented (See Appendix A.1.5 for details),

and it uses binary decision rules to classify platform motion into two groups, “failure”
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Table 22: Environmental condition of the 10 platform motions, the K-nearest neighbour
(KNN) classifier classified wrongly.

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir
25907 13/11/2006 09:00:00 4.24 9.26 136.4 0.00 0.00 0.0 4.24 140.3 0.49 229.69
25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 4.64 119.1 0.50 233.14
25910 13/11/2006 18:00:00 4.70 9.77 120.9 0.00 0.00 0.0 4.70 116.6 0.50 234.81
25911 13/11/2006 21:00:00 4.70 9.77 120.9 0.00 0.00 0.0 4.70 116.6 0.51 236.44
25912 14/11/2006 00:00:00 4.68 9.77 118.3 0.00 0.00 0.0 4.68 114.1 0.51 238.02
25913 14/11/2006 03:00:00 4.66 9.10 112.6 0.00 0.00 0.0 4.66 104.9 0.50 234.01
25914 14/11/2006 06:00:00 4.63 8.88 103.4 0.00 0.00 0.0 4.63 95.2 0.48 229.55
25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 4.57 100.5 0.47 224.61
25916 14/11/2006 12:00:00 4.18 10.72 121.1 0.00 0.00 0.0 4.18 68.3 0.45 219.19
25917 14/11/2006 15:00:00 3.15 10.83 135.4 2.19 7.39 64.4 3.84 35.7 0.44 213.35

and “no-failure” groups. The attribute selection metric the DT classifier is using is the

gini index measure and the DT approach uses the Classification and Regression Tree

algorithm (CART). The DT classifier was trained on the proposed platform motions in

the introductory part of this chapter. Hence, a total of 2000 platform motions were used

for training the classifier and all available platform motions were then used for testing,

resembling 1920 platform motion without line failure and 1920 platform motion with line

failure.

Result of the DT classifier on 3840 platform motions are presented in Figure 54. It

can be seen, the DT classifier was accurately classifying 1920 platform motions without

mooring line failure accurately into the group “ No-Failure” while for the “Failure” group,

out of 1920 conditions it misclassified 8 condition into the “No-Failure” group. The overall

prediction accuracy of the DT classifier was 100%.

The error scores are then calculated with the formulas introduced in section A.1.5. If

we consider no failure as positive and failure as negative, it can be seen that the algorithm

shows a precision of 99%, and a recall score of 100% (See Table 23).

Table 23: Decision Tree (DT) classifier metrics

Accuracy 0.997
Precision 0.996

Recall 1

Figure 54 shows the DT classifier is classifying 8 platform motions wrongly. The

environmental conditions used to simulate these platform motions are provided in Table

24. Analysis of the environmental conditions in Table 24 shows the wave height measured

(hs1) was greater than 3 meters. The peak to peak wave height (tp1) measured was greater

than 8 meters and the wind speed (vento vel) measured was greater than 7 meters per

second. These 8 platform motions wrongly predicted all occurred within a 2 day span,
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Figure 54: Decision Tree (DT) classifier prediction on mooring line status using MLP
predictor.

starting on the 13th of November to the 14th of November. The environmental conditions

of these 8 platform motions are presented in Table 24 and the index of these environmental

conditions are 25909, 25911, 25912, 25913, 25914, 25915, 25916 and 25917.

Table 24: Environmental condition of the 8 platform motions the decision tree (DT)
classifier classified wrongly.

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir

25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 4.64 119.1 0.50 233.14
25911 13/11/2006 21:00:00 4.70 9.77 120.9 0.00 0.00 0.0 4.70 116.6 0.51 236.44
25912 14/11/2006 00:00:00 4.68 9.77 118.3 0.00 0.00 0.0 4.68 114.1 0.51 238.02
25913 14/11/2006 03:00:00 4.66 9.10 112.6 0.00 0.00 0.0 4.66 104.9 0.50 234.01
25914 14/11/2006 06:00:00 4.63 8.88 103.4 0.00 0.00 0.0 4.63 95.2 0.48 229.55
25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 4.57 100.5 0.47 224.61
25916 14/11/2006 12:00:00 4.18 10.72 121.1 0.00 0.00 0.0 4.18 68.3 0.45 219.19
25917 14/11/2006 15:00:00 3.15 10.83 135.4 2.19 7.39 64.4 3.84 35.7 0.44 213.35

As shown the DT classifier was predicting 8 platform motion erroneously. As it was

mentioned in section 3.4.3.4, the MLP model was not able to predict the motions of a

platform in environmental condition with rapid oscillations adequately and since the error

scores of the MLP predictor for each platform motion are the inputs used by the classifiers,
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this issue manifests here.

6.2.3 Support Vector Classifier (SVC) result

A Support Vector Classifier (SVC) is implemented (See Appendix A.1.5 for details)

which classifies platform motions into two groups, “failure” and “no-failure” groups. The

SVC classifier was trained on a total of 2000 platform motions and all available platform

motions were then used for testing, resembling 1920 platform motion without line failure

and 1920 platform motion with line failure.

Result of the SVC classifier on 3840 platform motions are presented in Figure 55. It

can be observed that the SVC classifier was accurately classifying 1920 platform motions

with mooring line failure accurately into the group “failure” while for the “no-failure”

group, out of 1920 conditions it misclassified 28 conditions into the “failure” group. The

overall prediction accuracy of the SVC classifier was 99.3% (See Table 25).

Figure 55: Support Vector Classifier (SVC) prediction on mooring line status using MLP
predictor.

The error scores are then calculated with the formulas introduced in section A.1.5. If
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we consider no failure as positive and failure as negative, it can be seen that the algorithm

shows a precision of 99%, and a recall score of 100% (See Table 25).

Table 25: Support vector classifier (SVC) metrics

Accuracy 0.993
Precision 0.985

Recall 1.0

Figure 55 shows the SVC classifier is classifying 28 platform motions wrongly. The

environmental conditions of these platform motions are provided in Table 26. Analysis

of the environmental conditions used for simulating platform motions in Table 26 shows

the wave heights (hs1) measurements ranged from 2 meters to 5.22 meters. The peak to

peak (tp1) measurements were all greater than 7 meters and the wind speed (vento vel)

was greater than 7 meters per second.

Out of the 28 platform motions classified wrongly, 16 platform motions were all from

the month of November and it occurred within a 3 days span starting on the 13th of

November to the 15th of the November. The environmental conditions of these 16 platform

motions are presented in Table 26 and the index of these environmental conditions are

25907, 25908, 25909, 25910, 25911, 25912, 25913, 25914, 25915, 25916, 25917, 25919,

25921, 25925, 25926 and 25927 (See Table 26)

Out of the 12 remaining platform motions wrongly predicted, 2 platform motions

whose environmental conditions indexes are 24428, 24429 were from the 12th of May and

another 2 platform motions were from the month of December and their environmental

conditions indexes in Table 26 are 26069,26149. These occurred on separate days, 3rd of

December and 13th of December.

In the remaining 8 platform motions, 3 platform were from the 28th of June and the

environmental conditions indexes of the platform motions are 24802, 24803 and 24804.

Another 3 platform motions were from the 25th of September and their indexes are 25357,

25358 and 25359 while the remaining 2 platform motions occurred on the 1st of July with

environmental condition index 24827 (See Table 26) and on the 28th of October with

environmental conditions index 25778.

All the platform motions the SVC classifier classified incorrectly occurred between

May to December. As it was described in Section 3.4.3.4, the MLP model was not able to

predict the motions of a platform with rapid oscillations adequately and since the error

scores of the MLP predictor for each environmental condition are the inputs used by the
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classifiers, this may have caused these misclassifications.

Table 26: Environmental condition of the 28 platform motions the Support Vector Clas-
sifier (SVC) classified wrongly.

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir

24428 12/05/2006 12:00:00 2.72 7.53 245.1 1.07 8.59 102.3 2.92 250.8 0.15 159.28

24429 12/05/2006 15:00:00 2.66 7.39 240.1 0.94 8.62 94.3 2.82 240.7 0.16 161.26

24802 28/06/2006 06:00:00 5.21 14.78 208.9 0.00 0.00 0.0 5.21 195.2 0.13 285.27

24803 28/06/2006 09:00:00 5.22 14.81 208.4 0.00 0.00 0.0 5.22 193.2 0.12 284.05

24804 28/06/2006 12:00:00 5.20 14.98 206.9 0.00 0.00 0.0 5.20 189.0 0.11 282.68

24827 01/07/2006 09:00:00 2.37 14.47 157.4 1.97 6.60 97.0 3.08 95.1 0.37 219.12

25357 05/09/2006 15:00:00 5.08 9.16 202.0 0.00 0.00 0.0 5.08 194.6 0.19 250.46

25358 05/09/2006 18:00:00 5.08 9.16 202.0 0.00 0.00 0.0 5.08 194.6 0.18 263.89

25359 05/09/2006 21:00:00 4.96 8.94 198.8 0.00 0.00 0.0 4.96 192.4 0.17 276.45

25778 28/10/2006 06:00:00 4.11 13.89 203.2 0.00 0.00 0.0 4.11 238.6 0.28 214.90

25907 13/11/2006 09:00:00 4.24 9.26 136.4 0.00 0.00 0.0 4.24 140.3 0.49 229.69

25908 13/11/2006 12:00:00 4.50 9.04 131.5 0.00 0.00 0.0 4.50 129.3 0.49 231.43

25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 4.64 119.1 0.50 233.14

25910 13/11/2006 18:00:00 4.70 9.77 120.9 0.00 0.00 0.0 4.70 116.6 0.50 234.81

25911 13/11/2006 21:00:00 4.70 9.77 120.9 0.00 0.00 0.0 4.70 116.6 0.51 236.44

25912 14/11/2006 00:00:00 4.68 9.77 118.3 0.00 0.00 0.0 4.68 114.1 0.51 238.02

25913 14/11/2006 03:00:00 4.66 9.10 112.6 0.00 0.00 0.0 4.66 104.9 0.50 234.01

25914 14/11/2006 06:00:00 4.63 8.88 103.4 0.00 0.00 0.0 4.63 95.2 0.48 229.55

25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 4.57 100.5 0.47 224.61

25916 14/11/2006 12:00:00 4.18 10.72 121.1 0.00 0.00 0.0 4.18 68.3 0.45 219.19

25917 14/11/2006 15:00:00 3.15 10.83 135.4 2.19 7.39 64.4 3.84 35.7 0.44 213.35

25919 14/11/2006 21:00:00 2.61 10.86 138.1 2.43 6.91 51.1 3.56 42.3 0.41 200.73

25921 15/11/2006 03:00:00 2.91 7.67 66.1 1.96 10.40 140.7 3.51 54.7 0.43 191.79

25925 15/11/2006 15:00:00 2.39 9.61 109.9 2.04 6.80 64.1 3.14 59.6 0.56 184.93

25926 15/11/2006 18:00:00 3.04 9.61 108.0 0.00 0.00 0.0 3.04 59.1 0.60 183.71

25927 15/11/2006 21:00:00 2.48 8.15 65.3 1.80 9.80 130.8 3.06 50.8 0.63 182.62

26069 03/12/2006 15:00:00 2.15 9.38 134.3 0.00 0.00 0.0 2.15 93.0 0.33 185.83

26149 13/12/2006 15:00:00 2.35 7.43 74.3 0.55 7.51 147.5 2.41 74.7 0.49 193.51

6.3 LSTM classifier results

The section is comparing the results of the different classifiers using the error scores

obtained from the LSTM predictor shown in section 4.3. The different classifiers are

presented in the following sections.
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6.3.1 K-nearest neighbour classifier results

A K-nearest neighbour (KNN) classifier was implemented (See Appendix 7.1.5.1 for

details), and it uses K = 200 nearest neighbours and the euclidean distance as distance

metric to classify environmental conditions into two groups: “failure” and “no-failure”

groups.

The training was done using the proposed files in the introductory part of this chapter.

A total of 2000 platform motions was used for training the classifier. All available platform

motions were then used for testing, resembling 1920 platform motions without line failure

and 1920 with line failure. Out of these 3840 platform motions, the KNN classifier scored

an accuracy of 99.77%. The confusion matrix can be seen in Figure 56. It can be observed

that the classifier never predicted wrongly the platform motions without a line failure,

and predicted only 9 times that there was no-failure when there was one.

Figure 56: K-nearest neighbour (KNN) prediction on mooring line status using LSTM
predictor.

The error scores are then calculated with the formulas introduced in Section A.1.5. If

we consider no-failure as positive and failure as negative, it can be seen that the classifier



90

shows a high recall score with 100%, while the precision score is a little lower with 99.53%.

Table 27: Error rating of K-nearest neighbour (KNN) classifier based on LSTM predictor

Accuracy 0.9977
Precision 0.9953

Recall 1

It can be seen that a high overall accuracy was scored using the predictor and the

classifier configuration. The 9 error platform motions come all from the same period of

time and can be seen in Table 28.

This could be an artifact of the LSTM predictor, because as it was mentioned in

Section 4.3, the LSTM model was not able to predict the motions of a platform in envi-

ronmental condition with rapid oscillations adequately and since the error scores of the

LSTM predictor for each environmental condition are the inputs used by the classifiers

this inadequacy manifested here. The platform motions the KNN classifier predicted

wrongly belong to these environmental condition with rapid oscillations.

Table 28: Environmental condition of the 9 platform motions the K-nearest neighbour
(KNN) classifier classified wrongly

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir

25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 12.87 119.1 0.50 233.14
25911 13/11/2006 21:00:00 4.70 9.77 120.9 0 0 0.0 12.86 116.6 0.51 236.44
25912 14/11/2006 00:00:00 4.68 9.77 118.3 0 0 0.0 12.84 114.1 0.51 238.02
25913 14/11/2006 03:00:00 4.66 9.10 112.6 0 0 0.0 12.44 104.9 0.50 234.01
25914 14/11/2006 06:00:00 4.63 8.88 103.4 0 0 0.0 12.07 95.2 0.48 229.55
25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 13.17 100.5 0.47 224.61
25916 14/11/2006 12:00:00 4.18 10.72 121.1 0 0 0.0 7.55 68.3 0.45 219.19
25357 05/09/2006 15:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.19 250.46
25358 05/09/2006 18:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.18 263.89

6.3.2 Decision Tree classifier results

A decision tree (DT) classifier was implemented (see Appendix 7.1.5.1 for details),

and it uses binary decision rules to classify environmental conditions into two groups:

“failure” and “no-failure” groups. The training was done using the proposed files in the

introductory part of this chapter. A total of 2000 platform motions were used for training

the classifier. All available platform motions were then used for testing, resembling 1920

platform motions without mooring line failure and 1920 with mooring line failure. Out

of these 3840 platform motions, the DT classifier scored an accuracy of 99.77%. The

confusion matrix is shown in Figure 57 and it can be observed that the classifier never
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classified the platform motions without a line failure wrong and only 9 times it predicted

that there was no-failure when there was one.

Figure 57: Decision Tree (DT) classifier prediction on mooring line status using LSTM
predictor

The error scores are then calculated with the formulas introduced in Section A.1.5. If

we consider no-failure as positive and failure as negative, it can be seen that the classifier

shows an excellent recall with 100%, while the precision score is a little lower with 99.53%.

Table 29: Error rating of Decision Tree (DT) classifier based on LSTM predictor.

Accuracy 0.9977
Precision 0.9953

Recall 1

It can be seen that a high overall accuracy was scored using the LSTM predictor and

the DT classifier configuration. The 9 error platform motions come all from the same

period of time and can be seen in Table 30.

As described in Section 4.3, the LSTM model has difficulties in making good predic-

tions in conditions of rapid motions and, therefore, these difficulties are reflected in the
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results of the classifier. The platform motions the DT classifier predicted wrongly belong

to the environmental condition with rapid oscillations.

Table 30: Environmental conditions of the 9 platform motions the Decision Tree (DT)
classified wrongly

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir

25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 12.87 119.1 0.50 233.14
25911 13/11/2006 21:00:00 4.7 9.77 120.9 0 0 0 12.86 116.6 0.51 236.44
25912 14/11/2006 00:00:00 4.68 9.77 118.3 0 0 0 12.84 114.1 0.51 238.02
25913 14/11/2006 03:00:00 4.66 9.10 112.6 0 0 0 12.44 104.9 0.50 234.01
25914 14/11/2006 06:00:00 4.63 8.88 103.4 0 0 0 12.07 95.2 0.48 229.55
25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 13.17 100.5 0.47 224.61
25916 14/11/2006 12:00:00 4.18 10.72 121.1 0 0 0 7.55 68.3 0.45 219.19
25357 05/09/2006 15:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.19 250.46
25358 05/09/2006 18:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.18 263.89

6.3.3 Support Vector Classifier (SVC) results

A Support Vector classifier (SVC) is implemented (See Appendix 7.1.5.1 for details)

and classifies environmental conditions into two groups: “failure” and “no-failure” groups.

The training was done using the proposed files in the introductory part of this chapter. A

total of 2000 platform motions were used for training the classifier. All available platform

motions were then used for testing, resembling 1920 platform motions without mooring

line failure and 1920 with mooring line failure. Out of theses 3840 platform motions, the

SVC classifier scored an accuracy of 99.69%. The confusion matrix can be seen in Figure

58. It can be observed that the classifier never classified the platform motions without a

line failure wrong and only 12 times did it predicted that there was no-failure when there

was one.

The error scores are then calculated with the formulas introduced in Section A.1.5. If

we consider no-failure as positive and failure as negative, it can be seen that the classifier

shows a high precision of 99.37%, while the recall score was 100%.

Accuracy 0.9969
Precision 0.9937

Recall 1

Table 31: Error rating of support vector classifier (SVC) based on LSTM predictor

It can be seen that a high overall accuracy was scored using the predictor and the

classifier configuration. The 12 wrongly classified platform motions come all from the

same period of time and can be seen in Table 32.
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Figure 58: Support vector classifier (SVC) prediction on mooring line status using LSTM
predictor.

As it was mentioned in Section 4.3, the LSTM model was not able to predict the

motions of a platform in environmental condition with rapid oscillations adequately, and

since the error scores of the LSTM predictor for each environmental condition are the

inputs used by the classifiers, this issues are manifested here. The platform motions

the SVC classifier predicted wrongly belong to the environmental condition with rapid

oscillations.
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Table 32: Environmental condition of the 12 platform motions the support vector classifier
(SVC) classified wrongly.

Index data hora hs1 tp1 dir1 hs2 tp2 dir2 vento vel vento dir corr vel corr dir

24802 28/06/2006 06:00:00 5.21 14.78 208.9 0.00 0.00 0.0 11.82 195.2 0.13 285.27

24803 28/06/2006 09:00:00 5.22 14.81 208.4 0.00 0.00 0.0 11.40 193.2 0.12 284.05

24804 28/06/2006 12:00:00 5.20 14.98 206.9 0.00 0.00 0.0 10.56 189.0 0.11 282.68

25909 13/11/2006 15:00:00 4.03 9.47 124.7 2.31 14.20 174.4 12.87 119.1 0.50 233.14

25911 13/11/2006 21:00:00 4.7 9.77 120.9 0 0 0 12.86 116.6 0.51 236.44

25912 14/11/2006 00:00:00 4.68 9.77 118.3 0 0 0 12.84 114.1 0.51 238.02

25913 14/11/2006 03:00:00 4.66 9.10 112.6 0 0 0 12.44 104.9 0.50 234.01

25914 14/11/2006 06:00:00 4.63 8.88 103.4 0 0 0 12.07 95.2 0.48 229.55

25915 14/11/2006 09:00:00 4.02 9.71 105.4 2.19 11.21 154.8 13.17 100.5 0.47 224.61

25916 14/11/2006 12:00:00 4.18 10.72 121.1 0 0 0 7.55 68.3 0.45 219.19

25357 05/09/2006 15:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.19 250.46

25358 05/09/2006 18:00:00 5.08 9.16 202.0 0.00 0.00 0.0 14.18 194.6 0.18 263.89

6.4 Discussion

In this section the results of the classifiers based on MLP and LSTM predictor error

scores are discussed.

Results of the classifiers based on the MLP predictor error scores showed that the three

classifiers implemented had a combined accuracy of 99.6%. Out of the three classifiers,

the Decision Tree (DT) algorithm had the lowest misclassification rate, followed by the K-

nearest neighbour (KNN) classifier and the Support Vector Classifier (SVC) classifier. The

DT classifier miscategorized 8 platform motions out of 1920 platform motions classified

with “no-failure” into the “failure” group.

Analysis of the environmental conditions of the platform motions each classifier pre-

dicted wrongly was conducted. For the classifier with the best results, the DT classifier,

the wave height measured (hs1) was greater than 3 meters for all of the environmental

conditions of the platform motions, while the peak to peak wave height (tp1) measured

was greater than 8 meters and the wind speed (vento vel) measurement was greater than

7 meters per second.

Analysis of the platform motions each classifier categorized wrongly revealed there

was an overlap of 8 platform motions which all the classifiers predicted wrongly. The

index of the environmental conditions of these platform motions are 25909, 25911, 25912,

25913, 25914, 25915, 25916 and 27917. All the classifiers were classifying these platform

motion with intact mooring lines into the “failure” group. The environmental conditions
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of these 8 platform motions revealed they occurred in November of 2006 and they all had

wave heights (hs1) that were greater than 4 meters and wind speed (vento vel) that was

greater than 7 meters per second.

The classifiers misclassified these data because the data they received at their input

already showed inconsistencies, since the MLP had difficulties to correctly predict motions

in these environmental conditions, as explained in Section 4.2.4.

Results of the classifiers based on the LSTM predictor error scores showed that the

three classifiers implemented had an average accuracy of 99.9%. Out of the three clas-

sifier’s, the Decision Tree (DT) and the K-nearest neighbour (KNN) classifiers had the

lowest misclassification rate, while the Support Vector Classifier (SVC) had the highest

misclassification rate.

The DT and the KNN classifiers misclassified 9 out of 1920 platform motions without

mooring line failure into the group “failure”. Analysis of the environmental condition of

the platform motions each classifier predicted wrongly was conducted, and both, DT and

KNN, misclassified the same platform motions.

The joint analysis of the motions incorrectly classified by the three classifiers revealed

that there was an overlap of 9 platform motions that all were wrong. The index of

the environmental conditions of these platform motions are 25909, 25911, 25912, 25913,

25914, 25915, 25916, 25357 and 25358 (see in Table 30). The environmental conditions

of these 9 platform motions showed they occurred in November of 2006 and they all had

wave heights (hs1) that were greater than 4 meters and wind speed (vento vel) that was

greater than 7 meters per second.

A joint comparison of the MLP and LSTM classifiers showed the DT classifier had

the best accuracy for both. In addition, the comparison revealed that the LSTM-based

classifier was better as expected, since the LSTM predictor obtained better results.

For both, MLP- and LSTM-based classifiers, 7 misclassified platform motions were

present for all classifiers implemented in this project. The index of the environmental

condition of these platform motion are 25909, 25911, 25913, 25914, 25915, 25916 and

25917 (see in Table 30). It can be observed that the environmental conditions of these

misclassified platform motions showed similar environmental conditions and they indicate

a rough sea state.

In this project, having a low number of false-negative classification is very important,

because in the event there is mooring line failure and the classifier predicts there isn’t,
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it could be disastrous for the safety of the personnel on the platform and the structural

integrity of the platform. Both the MLP-based and LSTM-based classifiers had no false-

negative prediction.
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7 CONCLUSION

Mooring systems give stability to floating platforms against environmental conditions

by anchoring the platform with mooring lines attached to the seabed. These systems are

among the main components that guarantee the safety of staffs and the various operations

carried out on the platforms.

Petrobras has many platforms installed, which encompass a large number of mooring

lines. Thus, the rapid detection of failure of a mooring system is very important, as

this failure can result in damage or loss of property, environmental pollution, personnel

endangerment and depending on the severity of failure, in some cases oil production

shutdown.

Two different Neural networks were proposed to detect mooring line failure:

MLP, a feed-forward neural network, described in Section 4.2.

LSTM, a recurrent neural network, described in Section 4.3.

A predictor module based on neural networks performs the prediction of future platform

motion considering that there are no breakage in the mooring lines. Sensors measure the

motion effectively performed by the platform. The difference between the two signals,

predicted and measured, indicates whether or not there was a failure, which is detected

by a classifier.

It can be seen that both MLP and LSTM were able to predict the platform’s motion

in a wide variety of environmental conditions. The LSTM network was able to predict a

longer period than the MLP network, while also showing a higher accuracy. Different clas-

sifier networks were then trained to identify line breakage based on the difference between

prediction and measured data. It could be seen that the classification was able to identify

line breakages with an accuracy around 99 percent in balanced data. While it classified

all cases of line failure correctly, it showed false positives under stormy conditions.

It is important to note that, in this first phase of the project, an architecture was
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proposed to tackle the problem, following two distinct approaches that have the potential

to be complementary. The architecture was implemented and preliminary tests with

simulated data were performed, achieving very positive results. However, it should be

noted that more tests with simulated data should be performed, in order to better identify

the positive and negative points of the two approaches and the situations at which they

can complement each other. In addition, it cannot be overlooked that the use of real data

will bring many more challenges, which will need to be treated with care.
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A APPENDIX

This appendix explains the fundamental machine learning techniques used in this

work and gives an overview over the Python environment and additional tools used in

the implementation. Furthermore it emphasizes the development process using Docker

and continuous integration. It describes the creation of the code documentation and the

implementation of web services.

A.1 Machine Learning

Machine learning (ML) is a subset of artificial intelligence, in which a machine learns

from data without being issued explicit instruction on how to solve a given task [26]. ML

over the decade has expanded rapidly into many subject domains: in the business sector

it is used for fraud detection [27], in the health sector it is used for medical diagnostic [28]

and in the automotive sector it is used for autonomous driving (self-driving cars) [29].

ML can be divided into three categories: supervised learning (SL), unsupervised learn-

ing (UL) and reinforcement learning (RL) [26,30].

Supervised Learning involves training an algorithm to be able to generate a mapping

function that can predict output for a given input. The algorithm trains on labelled

data until it achieves a reasonable level of accuracy in making accurate prediction. SL

can be sub-divided into two categories namely: classification and regression. Supervised

classification algorithms attempt to generate a mapping function that classifies input

into categorical output based on input features, while regression algorithms attempts

to generate a mapping function that predicts numeric or continuous output from input

variables.

Unsupervised learning (UL) searches for patterns previously not explicit in the data

and allows the modeling of probability densities over inputs. Unlike what happens in SL,

UL dispenses with data labels and human supervision.
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Reinforcement learning is learning from a dynamic environment in which it must

perform a certain goal. The feedback is done in form of rewards which the algorithm tries

to maximize.

In this work machine Learning will be used in a supervised manner to make a Time

series prediction of an offshore platform motion. Further details on the ML area can be

found in [26,30,31].

A.1.1 Neural Network Principles

Most ML algorithms are based on neural networks, implementable in different forms.

Although the basic function of them is always similar. Neural networks are able to change

some parts of their structure based on received internal or external information. The

basic ability to change their structure enables neural networks to learn patterns in data

structures. Most commonly a unit known as perceptron is used as basic unit. Figure 59

presents a unit of perceptron.

Figure 59: A single unit of a perceptron.

A single unit of perceptron takes in inputs x, given by x1, x2, x3, .., xn, to generate an

output ŷ. Each input (i) is connected to a node (j) with weights w, with w1, w2, w3, .., wn

assigned to each input respectively. These weights determine the strength of a connection

to node (j). The node (j) generates a weighted sum of all the inputs values plus bias:

mj =

(
n∑
i=1

wi.xi + b

)
, (A.1)

where the n is the number of nodes in the input, xi is the input value in node i, wi is the

weight in the connection from i to j, b is the bias. The result of the weighted sum (mj)

is passed through an activation function k to generate an output lj

lj = k(mj), (A.2)
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where if lj is an input to another perception it becomes x or ŷ if it is the final output.

The activation function k can be referred to as a gate which allows information to flow

through or not. There are different types of activation functions available. However for

brevity, threshold activation function also known as step function whose output is binary

0 or 1, sigmoid activation function whose output is between 0, 1 or −1, 1 and Rectified

Linear Unit function (ReLU) whose output is between 0, ∞ are explained.

The threshold activation function works as follows; if the output from the weighted

sum plus bias (mj) is above a specified threshold, the threshold activation function ac-

tivates and 1 is given as output or 0 is given as output if it is less than the specified

threshold. With this, a supervised binary classification problem can be done where the

target output is either 1 or 0.

For neural networks to handle complex data, non-linear activation function such as

sigmoid activation function and ReLU are commonly used among other types of activation

function. Sigmoid activation function whose formula equals:

k(z) =
1

1− e−z
(A.3)

is governed by the following, the value coming from weighted sum (here z = mj) is

squashed to be in the range of 0, 1 and it is propagated forward. Figure 60 illustrates a

sigmoid function.
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Figure 60: Sigmoid function plot.

ReLU whose formula equals k(z) = maxz(0, z) is governed by the following, if the

weighted sum (z = mj) is greater than zero the information from the input is allowed to

pass while if z = mj is 0 or negative it is clipped at 0 and 0 is passed as output [32].
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Figure 61 shows the ReLU function.
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Figure 61: ReLU function plot.

Depending on the decision taken by the activation function k the output ŷ is gotten.

The perceptron learns by using the error difference between the perceptron output and

the actual value to improve. The learning process is done in three steps:

Forward pass: involves the flow of information from input to the activation function to

produce an output ( Figure 59).

Loss function calculation: the output of the perceptron ŷ is compared against the

actual value y, given this is a supervised learning where the actual output (also

called label) is known before hand in a training set consisting of pairs < x, y >.

Backward pass: the error difference is then back propagated to adjust the weights of

the perceptron. Starting from the output layer back to the hidden(s) layer(s) and

back to the input layer.

These three steps are done recursively until a stopping criteria is met. The stopping

criteria can either be allowing the network to iterate n number of epochs or when the

error difference between the network predictions and the true label is minimal. Epoch

refers to the number of times the network is instructed to cycle through the whole data

set. These learning steps are what is referred to as backpropagation.

During training of a neural network the objective function is to minimize the error

between a networks prediction and the true label. The goal is to have a model that is

able to predict with good accuracy on unseen data. To achieve this goal the model must

not over-fit or under-fit on the training data as both of these situations affect the models
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accuracy when predicting on unseen data. A model is said to be over-fitted when the

model is trained on to much data. That is, the model predicts too good on data included

in the training set but predicts very bad on a test set. While a model under-fit is the

inverse of a over-fitted network. Here the model is unable to learn the underlying features

of a training set thus when it is given a test data it predicts very bad. In order to have a

good model capable of predicting good on unseen data a balance between these situations

is needed. The model needs to learn just enough underlying representation of the training

data features. Some ways of addressing this is by using techniques such as early stopping

technique, where the model is instructed to stopping training when it starts to over-fit.

In the case of an under-fitting network more training data should be provided, or more

layers to the network should be added.

A.1.2 Multi- Layer perceptron

A multi-layer perceptron (MLP) is a feed forward neural network that is created

when multiple perceptrons are structured in layers to solve complex problems. In feed

forward networks information propagates in one direction. Information moves from the

input layer to the hidden layer to the output layer. These network do not posses the

ability to use a feedback loop in which the outputs of the networks is cycled back into

itself.

The MLP follows the single perceptron principle but on a larger scale. To construct

an MLP network, perceptron are structure in layers. These layers are the input layer

(I) , hidden layer (H) and an output layer (O) and in these layer perceptron units are

found. Following the same principle of a unit of perceptron, information flows from the

input layer through the hidden layer after which it passes to the output layer to make a

prediction. Figure 62 presents an 2 x 2 x2 MLP with one input layer, 1 hidden layer and

an output layer.

To improve the accuracy of a perceptron or MLP or NN, training is done using back

propagation algorithm. The back propagation algorithm functions by using the error

difference between the MLP output and the expected output to make adjustments to the

weights in each layer of the network, starting from the output layer backwards to the

input layer with the objective of reducing the error difference of the MLP output and the

actual output. A common performance metric used to gauge the difference between the
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Figure 62: Multi-layer Perceptron

models prediction and the actual value is the Mean Square Error (MSE)

Loss function = Error =
1

2
(ŷ − y)2

which can be regarded as the loss function.

Using the loss function, the weights and bias of the network can be adjusted with

the aim of reducing the loss function. To reduce the loss function, gradient descent is

employed to find the slope of the loss function by using partial derivative with respect to

each weight in a layer, after which the weights and bias are updated until the loss function

is lower. To further improve a neural network model, optimizer algorithm’s are used. Since

a neural network learns by adjusting its internal weights and biases. Optimizer algorithm

are used to adjust the internal weights of the network with aim of minimizing the loss

function.

There are different optimizer available, three will be explain in here. Gradient descent

(GD), Stochastic Gradient Descent (SGD) optimizer and Adaptive Moment Estimation

Algorithm (Adam) optimizer. Gradient descent optimizer is the basic optimizer found in

neural networks. It functions by using a whole set of training data set of n data samples to

calculate the gradient of the slope that leads to the local mimina where the loss function

is reduced.

Stochastic Gradient Descent (SGD) optimizer is a variant of gradient descent opti-

mizer. In SGD instead of using the entire training data set to compute the gradients.

Each data point in a training set of n data samples is used to compute the gradient.

Adaptive Moment Estimation Algorithm (Adam) optimizer , a method for efficient

stochastic optimization that only requires first-order gradients with little memory require-

ment. The method computes individual adaptive learning rates for different parameters

from estimates of first and second moments of the gradients [33] By using the available
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optimizer a neural network performance and accuracy can be improved.

Learning rate (LR) is a parameter of the optimizer which is used to indicate by

how much should a gradient descent make. During training the objective function is to

minimise the error the neural network makes and this is done by calculating the gradient

of loss w.r.t each of weights of the network. The weights of the model are then multiplied

by Lr. Lr is normally a small positive number between 0.0 and 1.0 doing this ensures

the values of the gradient are small. The values of the gradient with Lr is then used to

update the weights over several small step.

Batch size is a hyper-parameter of gradient descent that controls the number of train-

ing samples to work through before the model’s internal parameters are updated.

Building a neural network involves finding the right sets of hyper-parameter which

will lead to the best error loss. Hyper-parameters are user specified parameters whose

values are used to control the learning process and are not derived via training. The pro-

cess of fine-tuning a machine learning model consists in the determination of appropriate

hyper-parameters for the desired application, resulting in faster convergence time, higher

prediction accuracy, model generalization capability and efficient use of computational re-

sources. Usually a trial and error approach is followed and different models’ performances

on a validation dataset are compared in order to determine appropriate hyperparame-

ters,as they are highly dependant on the desired application. These hyper-parameters

are

1. Finding the number of nodes to use for the model. Having too many neurons in

a layer leads to the network to over-fitting and having a small number of neurons

leads to under-fitting.

2. Finding the number of layers to use. Layer composition can be either shallow or

deep. Shallow network means a small number of layer while deep network means

layers greater than 3 hidden layer. A shallow network may or may not be adequate

to get the best error loss and a deep network can lead to the network to over-fit.

3. Choosing the right activation function.

4. Choosing the right optimizer. Currently, the Adam optimizer is used in the ML

community.

5. Choosing the right learning rate for the optimizer

6. Choosing the right number of training epochs to use.
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Figure 63: Basic RNN unit

7. Choosing the batch size to use.

Methods used to find the right sets of hyper-parameter values includes the use of grid

search, random search and Bayesian search method. More on these method can be found

in [34,35]

In the next section A.1.3 a variant of neural network different from feed foreword

network is introduced.

A.1.3 Recurrent Neural Networks

The human way of learning is based a lot on memory and prior experiences. Our

decision taking is based on what we experienced before. Recurrent Neural Networks

(RNN) try to copy this approach by giving the network persistent information’s that the

network can use for classification. Traditional neural networks do not show this kind of

persistence and perform therefor relatively poor in situations that they never encountered

in the exact same manner before.

Recurrent Neural Networks build upon the principles of feed forward networks, intro-

ducing a further loop back mechanism where information from previous time step t−1 is

reused in the current time step t to produce an output. This in turn gives RNN the ability

to retain information it has seen. This ability can be considered as memory, therefore

RNN networks are known to have a better performance with sequence to sequence data.

Examples of applications of RNN include language translators such as Google trans-

lator or personal assistant on mobile devices such as Siri from apple and Google assistant

or in time series forecasting such as stock market prediction.
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In figure 63 the network receives a input and based on this input it will give an output.

The loop adds a time component to this output.

For better understand the structure could be replicated by a traditional neural network

by just unrolling the structure into multiple nodes like seen in figure 64. Figure 64 presents

the basic structure of an RNN, where sequential inputs x1, x2, x3, x4 are fed to the RNN

reproducing outputs y1, y2, y3, y4. o1, o2, o3, o4 refer to the output of node in which

information after its has passed through an activation function is shared between the

nodes. By sharing information of the previous output between each node in each recurrent

hidden layer, the RNN is able to learn the order of temporal data.

Figure 64: A recurrent neural network (RNN)

The left image shows an RNN with one input layer x, one hidden layer h, one output

y and ot represents the loop back of output into the hidden layer which becomes the new

hidden state of the layer. While the image in the right shows the hidden layer unfolded,

where the boxes represents nodes in the hidden layer and the colors refers to how much

information is remembered by each node at time t = 1, t = 2, t = 3, t = 4 after training.

The vanishing gradient problem occurs during training, when the weights of the RNN

network are being adjusted. This occurs due to the back propagation algorithm whose

objective function is to reduce the error between what the network gives as output and

the true output the network is supposed to give. The back propagation algorithm uses

gradient descent to adjust the weights with respect to each layer. Each node in a layer

calculates it’s gradient with respect to the effect of the gradient in the layer prior to it.

Meaning when the adjustments to prior layer is small, the current layers nodes weights

will be even smaller when it is adjusted. As the changes to the weights in each layer are

being conducted backwards, this causes the gradients to continuously become smaller.

Thus the vanishing gradient problem is encountered.
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Figure 65: long short term memory (LSTM) diagram

A.1.4 Long Short Term Memory

Long Short Term Memory (LSTM) is a variant of RNN, which was developed to

solve the vanishing gradient problem. The RNN structure is improved upon by having 3

gates and a cell memory in each node. These gates are: the input gate; forget gate; output

gate and memory cell which all together make up an LSTM unit. Figure 65 presents an

LSTM diagram which may aid better understanding of how the LSTM network functions.

For LSTM the chain like structure is more advanced and consists of four layers. Every layer

is designed to interact with the other layers and is explained in the following paragraphs

individually.

Cell state

LSTM is keeping the cell state by a belt like structure. This cell state is shared

by a LSTM cells equally and each cell has the option to manipulate its cell state in 4

different manners, also known as gates. Outer events have no influence on the cell state.

A visualization of this state can be seen in figure 66.

Gates are used for manipulating the cell state. They are activated by a sigmoid

layer and consist of a pointwise multiplication operation. Sigmoids layer can take a value

between 0 and 1, where 0 means that the gate is closed and with 1 the influence of this

gate is maximal. A LSTM consists of 3 gates.

1. The entrance gate of a LSTM unit is the forget gate. Its activation function defines

the amount of information that should be forgotten or kept in the cell state. The
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Figure 66: Cell state of a LSTM Cell

gate decides based on the previous output ht − 1 and the input xt, the activation

function creates a vector for each feature of the cell state Ct− 1.

The forget gate (ft) decides what amount of information to forget from the memory

of the LSTM cell. By using a sigmoid activation function (σ) where by it

combines the prior state (ht−1) .i.e the information from the previous output of a

LSTM cell, and the information of the current input (Xt) .i.e. information coming

from the input layer, and squashes these two information to outputs 0 or 1. Where

1 denotes retain the information and 0 denotes forget the information stored.

ft = σ(Wfx .xt +Wfh .ht−1 + bf ) (A.4)

A visualization of the the forget gate is shown in figure 67

2. The input gate (it) of the LSTM cell decides the information to be allowed into

the memory of the LSTM cell. Two copies of the current input (xt) and prior

state (ht−1) information’s are created where one copy goes to a sigmoid activation

function (σ) whose values are 0, 1 where 1 means allowing information into the

memory and 0 denies information flow into the LSTM cell. And the second copy

made goes through a tanh activation function whose output (c̃t) are -1, 1 which is

used to help regulate the LSTM cell. The product of the two activation functions

are found and stored as q in equation 9 A.5.
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Figure 67: Forget gate of a LSTM Cell

it = σ(Wix .xt + [Wih .ht−1] + bi)

c̃t = tanh(Wc.[ht−1, xt] + bc)

q = it.c̃t

(A.5)

3. For example one value of the cell state vector could be remembering the country of

the scene for giving country specific predictions. Everytime one cell would receive

another country information, the old information could be forgotten and if the

information is unrelated to the location the gate would be kept close, meaning a

value of the sinuide of 0.

The second gate is responsible for the updating of the cell state It consists of two

parts a layer that creates possible candidates, which is implemented a tanh layer

and a sigmoid layer which decides on the values of the vector state that should be

updated.The two outputs are combined and added to the cell state. In the previous

example the new country information would be updated. The process consists of

two steps, first the state is multiplied by the forgetting state to get rid of the invalid

information’s and then the updated values are added to the sector.

4. The last step is necessary to decide what information to give to the next cell. Since

we just found out about the country or region we would be expecting the end of

the phrase or a new subject. So the cell state would encode this information in the

output. The output gate (ot) therefore, decides what information is stored in the

memory of the LSTM cell. By either choosing to preserve the information already

in the LSTM memory or adding more information to the memory. The output is
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Figure 68: Update gate of a LSTM Cell
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Figure 69: Output gate of a LSTM Cell

the new hidden state (ht) of the LSTM unit which is sent to the next LSTM in the

hidden layer as (ht−1). The output gate take the new memory cell (Ct) information

and passes it through a tanh activation function and also takes the prior hidden

state (ht−1) .i.e the information from the previous output of a LSTM cell, and the

information of the current input (Xt) and passes it through a sigmoid activation.

The outputs of these two activation functions; sigmoid and tanh are multiplied

together to produce the new hidden state (ht.)

ot = σo(Wox .xt +Woh .ht−1 + bo) (A.6)

Figure 69 visualizes the paths that are responsible for creating a cell output.
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A.1.5 Classifiers

This section focuses on different classifier implementations and their usage.

K-nearest neighbor (KNN) classifier

K-nearest neighbor (KNN) is a supervised learning algorithm used for classification of

categorical or continuous data. It functions by classifying an unknown data sample based

on known data samples group, meaning the KNN calculates the distance of an unknown

sample to a known samples closest to it and classifiers the unknown data sample to the

closest known data sample. To calculate the distance, Euclidean distance metric

Euclidean distance =

√√√√ n∑
i=1

(xi − yi)2 (A.7)

or Manhattan distance metrics defined by:

Manhattan distance = d(X, Y ) ≡ |Xx − Yx|+ |Xy − Yy| (A.8)

are commonly used.

The k-NN classifier is an easy to use classifier. There are only two parameters a user

has to make: (1) decide the number of nearest neighbour K the classifier takes in to

account when classifying an unknown data sample. (2) decide the distance metric to use.

Decision tree (DT) classifier

Decision tree (DT) algorithms is another type of algorithm used in supervised clas-

sification of categorical or continuous data. The decision tree algorithm has a tree like

structure consisting of nodes, branches and leafs. An example of DT is illustrated in

figure 70. The node/s of a decision tree represent a feature or attribute of a dataset,

the branches represents the decision rules made at the node and the leaf represents the

outcome of the nodes where there is no further decision that can be made. The leaf is

also known as the terminal node which means the data points present in this leaf node

belong to a group of similar values [23].

When building a tree the algorithm aims at splitting a set of data set based on some

attribute or feature. This splitting decision is made in every node. Starting from the top

which is called the root node, where all the data points of a data set provided is found.

An attribute or feature is chosen and a binary question is asked, based on the response
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Figure 70: Decision Tree structure

the data set are split into two groups of similar attribute or features forming a node.

This process of binary questioning is then recursively carried out until a sub set of

group where all the data points present are of similar values is reached. The sub set of

group where all the values are of similar attribute becomes the leaf node. To build a tree,

splitting decision are made in the decision node and in order to find the best attribute

or feature on which a splitting decision for dividing the dataset is made. A attribute

selection measures such entropy, information gain, and gini index are used [23].

Entropy whose formula :

Entropy(D) =
c∑

1=i

−Pi ∗ log2 pi (A.9)

where D is the number of classes in a node and P is the distribution of the class i in

the node.

The entropy metric is used to measure how pure or impure a set of class with data

points are. That is, when entropy is one or zero this indicates the data points in leaf or in

that group contains similar values or also known are homogeneous while if it is between

zero and one .e.g. 0.75, this normally means the group can be further split.

Information gain whose formula:

Gain(D, l) = Entropy(D)−
∑

k∈V alues(l)

|Dk|
|D|

Entropy(Dk) (A.10)

where V alues(l) is the set of all the possible values for feature or attribute l and Dv is

subset of D for which feature l has value k (i.e., Dk = d ∈ D—l(d) = k). Entropy (D)

in the first part of the Equation A.10 refers to entropy of the training data set (D) and
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second part ∑
k∈V alues(l)

|Dk|
|D|

Entropy(Dk)

refers to sum of the entropies of every subset Dk, weighted by the fraction of data points
|Dk|
|D| belonging to Dk. By using the information gain for each attribute of training data D

a measure of how much reduction in entropy for using the selected attribute for making a

splitting decision is gotten. which is then used to select the best attribute that will lead

to a subset of group with similar values [23].

Gini Index (GI) is another way used to decide on which attribute to use for getting

the best splitting of the data set that leads to the correct classification of a data point.

It is used to determine the homogeneity of a splitting decision. Gini Index (GI) whose

formula:

Gini index(D) = 1−
c∑

1=i

P (ki|D)2 (A.11)

measures the degree of probability of a data point being wrongly assigned to a group when

it is random selected. If a split is pure or of similar values, then the probability of the

majority class becomes one and the probability of remaining classes is zero. and thus the

GI is zero. However, if each class is represented equally, with probability P (ki|D) = 1
c
,

the GI then has value c−1
c

.

In GI the goal is to have a low GI value which means the data points is correctly

classified [36].

To build a tree, DT algorithm such as Iterative Dichotomiser 3 algorithm (ID3), C4.5

(successor of ID3) and Classification and Regression Tree algorithm (CART)are employed.

ID3 uses a top-down, greedy search method to split and build trees. The ID3 employs

entropy and information gain when deciding on which attribute or feature to split a

dataset and it is the core algorithm most decision tree are built using. And Classification

and Regression Tree algorithm (CART) uses Gini Index (GI) as attribute selection metric

for building a tree [37].

Support Vector Classifier (SVC)

An Support vector classifier is a discriminative classifier defined by a separation hyper-

plane. Given the labeled input data, i.e., the correct label for each observation, the

training algorithm, in a SL approach, generates an optimal hyper-plane that separates

observations (inputs) in categories based on its features. In two-dimensional space, this

hyper-plane is a line that separates each class, where each class lay in either side.



116

Given a known training set T of n observations, each one represented by p features

and y labels. In a binary linear SVC classifier each observation belongs to two classes

either −1 or 1,

T = {(xi, yi), ..., (xn, yn)},with xi ∈ Rp, and yi ∈ {−1, 1},

the goal of the algorithm is to find a hyper-plane that separates the observation correctly.

In this case the hyper-plane can be described as: w · xTi + b = 0, with w meaning weight

and b meaning bias. The observation that falls to the right side of the hyper-plane has

label 1:

w · xTi + b > 0, if yi = 1,

and the observation that falls to the left side of the hyper-plane has label −1:

w · xTi + b < 0, if yi = −1.

However, since there can be more than one hyper-plane that separates the data, SVM

algorithm finds the support vector for each hyper-plane. Support vectors are the closest

observations to a hyper-plane from both classes. SVM computes the distance between

each hyper-plane and its respective support vector, known as margin. The hyper-plane

with the maximum margin is chosen as the optimal hyper-plane.

Figure 71 presents a binary linear SVM, illustrating training observation separated

into classes. However, in cases where the problem being solved is non-linear, a kernel

function can be implemented to transform the problem into a linear one by implicitly

mapping the inputs into high-dimensional feature spaces [30].
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Figure 71: Binary linear Support Vector Machine. There are two classes of training
observations, presented in black and gray. The hyper-plane is presented as a solid line
separating the classes. Observations on the dotted lines (unfilled circles) are the support
vectors.

A.1.6 Confusion matrix

A Confusion matrix is a table used to access the performance of a classification model

on a set of test data-set in which the true value (actual class/ group) are known, this is

generally used in supervised learning problem. Each column of the matrix table represents

the instances in an actual group while the rows represents the instances of the predicted

class. Table 33 present a binary classification confusion. The confusion matrix table is

not limited to binary class classification it is also used for multi-class classification. Here

binary class classification is shown [36].

Table 33: Confusion Matrix for two classes

Actual Group

True (t1) False (t2) Total

Predicted Group
True (t1) True Positive (TP ) False Positive (FP ) TP + FP

False (t2) False Negative (FN) True Negative (TN) FN + TN

Total TP + FN FP + TN N

The confusion matrix puts data in to classes, there are four groups in the table which

together are used to measure the accuracy of a classifier. These four groups are:

1. True positive (TP) : number of data correctly predicted by the classifier as positive.

TP = {Xi|ŷi = yi = t1}
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2. True Negative (TN): number of data correctly predicted by the classifier as Negative.

TN = {Xi|ŷi = yi = t2}

3. False Positive (FP): number of data predicted by the classifier to be positive, which

in reality belongs to the negative group.

FP = {Xi|ŷi = t1and ŷi = t2}

4. False Negative (FN): number of data predicted by the classifier to be negative, which

in reality belongs to the positive group.

FN = |{Xi|ŷi = t2 and ŷi = t1}|

By combining this groups; accuracy, precision , recall of a classifier can be measured.

The accuracy metric in machine learning can be misleading when used only. For example

in cases where there is miss-balance of data, where one class has more instances of data

than other class. To prevent this metrics such as recall and precision are used to measure

the model performance. Accuracy: is the portion of correctly predicted test results of the

total dataset. Its formula is:

(TP + TN)

(TP + FP + FN + TN)
∗ 100%

Precision : is the fraction of relevant instances among the reclaimed instances. It is

used to gauge how accurate the classification is .i.e., out of those predicted positive, how

many of them are actual positive. Its formula is given as:

TP

TP + FP

Recall : is the fraction of relevant instances that have been reclaimed over the to-

tal number of instances. It calculates how many of the Actual Positives instances the

classification result classified, it belongs to the True positive class.

Its formula is:
TP

TP + FN
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A.2 Dynasim simulator

Dynasim is a numerical simulator application which was developed and is maintained

by University of São Paulo (USP), Federal University of Alagoas (UFAL), Petrobras and

Ponticical Catholic University of Campinas (PUC). The application was developed for the

purposes of studying the dynamic behavior of moored platforms and analysis of offloading

with dynamic position system.

Dynasim uses sea environment conditions .i.e. wind, current and waves to produce

times series motion of a platform position, acceleration and speed (in relation to the 6

degree of freedom of floating platform). Furthermore, Dynasim allows for coupled analysis

of floats and mooring lines attached to the floaters where in the dynamics of how the

floater affects the line dynamic can be conducted. The mooring lines are modeled using

the lumped mass method. Figure 72 shows the Dynasim interface.

Figure 72: Dynasim Interface source: User manual- Dynasim

A.2.1 Coordinate systems

Dynasim uses two co-ordinates system (figure 73) with six degree of freedom to model

the dynamics of a platform motion. The co-ordinate systems are as follows;

• Global or inertia co-ordinate system, OXYZ which is fixed to the ground/earth. In

which the trajectory of the platform’s motion over time is described in relation to

this coordinate system.
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Figure 73: platform Co-ordinate System Source: User manual- Dynasim

• Local co-ordinate system, Oxyz, which is centered at the same point as the global

co-ordinate system, but rotated according to the platform’s heading so that the

local x-axis is parallel to the platform’s main length (stern to bow), the local y-axis

points towards the platform’s port (left side when facing forward) and the local z-

axis remains vertical (parallel to the global Z-axis). This reference frame is used to

describe the platform’s surge, sway, heave, roll, pitch and yaw positions respectively,

as well as the corresponding velocities and accelerations.

• Body-Fixed co-ordinate system, Obxbybzb, which is centered at the platform’s center

of gravity or another point of interest and is fixed to the platform. The body-fixed

axes are chosen to coincide with the principal axes of inertia: xb is the longitudinal

axis (directed from stern to bow), yb is the transversal axis (directed to starboard)

and zb is the normal axis (directed from top to bottom). This reference frame is

mainly used to describe the positions of relevant points within the platform, such

as fairlead connections.

The six degree of freedom of platform (figure 73) are the surge which is the linear

motion along x, sway; linear motion along y, heave; linear motion along z, pitch; rotational

motion around y, roll; rotational motion around x and yaw; rotational motion around z.
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Unit Hull dimension
Length between prep. (m) 320

Length overall (m) 337.359
Lateral area (m²) 16800
Frontal area (m²) 2041

Draft (m) 16
Beam (m) 54.5
Depth (m) 27.8

Number of riser 79
Number of mooring lines 18

Table 34: platform dimension and setup

A.2.2 Platform model

In Dynasim the platform model with all Mooring Lines and risers can be represented

in a P3d file. Which describes the area and positional characteristics of each platform.

Figure 73 shows a rigid body’s 6DOF. The model used in this work was a P50 FPSO in

front. The platform characteristics as mass, dimensions, number of risers and mooring

lines are taken into consideration during simulation and can be found in 34.

A.2.3 Environmental Conditions

For the platform motion simulation it is necessary to define the environmental con-

ditions of the sea. This chapter will give an overview over all necessary environmental

conditions and their simulation in Dynasim.

Waves

Water waves are propagating on the surface of the ocean, they are a direct result of

the interaction between wind and the fluid surface of the ocean. During the onset of a

storm, intense winds provide energy to the waves short (high-frequency, short wavelength)

that absorb the most of the energy supplied by the wind. So at the beginning of the storm

there is a concentration of energy at high frequencies, and the sea is said to be developing.

Next, these waves grow too big and break, dissipating energy to longer waves(lower fre-

quencies). At this moment, with the developed sea, the energy is distributed more evenly

by frequencies. To model the alteration in wave height and peak to peak times spectrum’s

were developed. One of the most commonly used wave spectrum in this context is the

JONSWAP (Joint North Sea Wave Project), introduced in the 17th International Towing
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Tank Conference (ITTC, 1984). The spectrum was developed by extensive measurements

of the northern sea in the years 1968 and 1969. The model can be described with the

formula;

S(ω) =
α0g

2

ω5
exp(−5

4
∗ ω0

ω

4

)γexp(−(ω−ω0)2/(2σ2ω2
0)) (A.12)

Since the simulator was based on the environment in Rio de Janeiro the basic JON-

SWAP spectrum was adapted to use specific parameters that where measured by the

company Petrobras. Dynasim simulation uses local waves and global waves(swell) to sim-

ulate the platform motion. Swell usually have a long wavelength and are faster. Swells

and local waves can be defined by the Peak to Peak times, by the direction and the average

weight height.

Wind

Wind is the flow of air on a large scale. It consists of the bulk motion of air. The

wind is defined with the parameters velocity and direction. Wind speed, however, is

not constant over time. It can be considered to have a slowly varying portion in time,

responsible for quasi-static efforts on the system, and a high frequency oscillating portion.

This portion, known as gust, is described statistically by means of wind spectra. One of

the most widely used spectral formulations for wind gusts is the so-called Harris spectrum

(Harris, 1971), given by:

SV (ω) = 1146 ∗ C ∗ V ∗ (2 +
286ω

V

2

)−
5
6 (A.13)

Current

An ocean current is a continuous, directed motion of sea water generated by a num-

ber of forces acting upon the water, including wind, the Coriolis effect, breaking waves,

cabbeling, and temperature and salinity differences. The current is defined by the param-

eters velocity and direction. Conventional current force models were initially proposed

by Abkowitz (1964). It is based on a taylor series with the most important parameters

velocity and direction of the swell. Since the floating platforms can be considered static

other components can be neglected.
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A.2.4 File Structure

Dynasim stores the Data in a binary file with the structure seen in fig ??. Where x

represents the surge which ,y the sway, z the heave, xx the roll,yy the the pitch and zz

the yaw.

Dynasim is generating position values for a predefined step size, which defaults to

0.5s. In our project a simulation step size of 1 second is used.

A.3 Standardization of Measurements

Since different features come with different value ranges it is important to standardize

the value ranges before working with them. In statistics, standardization is the process of

putting different variables on the same scale. This process allows you to compare scores

between different types of variables. The standardization process we use is very simple,

here called scaling. If no scaling is done different characteristics gains more influence than

others.

To equalize differences in the dimensions of the characteristics, the values are stan-

dardized to a value range between zero and one. This is done for each column I.e., each

feature) individually. First the Peak to Peak value is calculated by finding the minimum

and maximum value of each individual column and calculating their difference, using

PP = Max−Min. (A.14)

Then the values are scaled by

Xout = Xin −Min/PP (A.15)

By doing so the minimum value becomes 0 and the maximum value becomes 1. There-

fore scaling distributes not only the values to a standardized range but also get rids of

possible offsets.

Table 35 shows example Data in different value ranges. It can be observed that the

value ranges are different and each feature can have other offsets. Table 3 shows the

resulting values after scaling. After each Column is scaled individually it can be observed

that each individual column is now standardized. Additionally the scaling got rid of the
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Table 35: Unscaled Dataset

x y z

30 0 -20
40 0.5 -25
35 1 -30

Table 36: Scaled Dataset

x y z

0 0 1
1 0.5 0.5
0.5 1 0

offsets.
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A.4 Specifications

This section focuses on the tools used in this project for the code implementation and

the mechanics used for easier deployment. Some of those best practices have already been

implemented, as we now describe.

A.4.1 Git

The tool Git is part of any serious code development. Git enables team work around

the same code base, keeps track of coding development and allows developers to have a

flexible workflow. There are many different ways to interact with Git as a team using

Git Worflows or Branching Models. There is a myriad of Git Workflows available to use,

each of them with different goals and application. Although there is not a set of rules to

define a Git Workflow, the following considerations should be taken while choosing one,

according to Atlassian’s article on Git Workflows [38]:

• Does the workflow scales with team-size?

• Is it easy to undo mistakes and errors with this workflow?

• Does this workflow impose any new unnecessary cognitive overhead to the team?

Following those principles, the most suitable workflow for our project is the Feature

Branch Workflow [2].

A.4.1.1 Branch Workflow

The branch workflow assumes there is a central repository, usually named main or

master. The main repository represents the official project history, but instead of commit-

ting code directly to main, developers create a new branch every time they start to work

on a new feature.

After finishing their work, developers issue a pull request; in other words, they request

their code to be merged into main. The request is then analyzed by other developers of

the project that decide on merging the code or not.

The reasons that support the choice of this workflow are:

• Its simplicity and ease of implementation, avoiding an unnecessary overhead;
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Figure 74: The main repository and a new branch [2].

(a) After completing the
work, a pull request is created.

(b) The code in the pull re-
quest is analyzed by other de-
velopers in the project.

(c) If the code is approved, it
is merged to main repository.

Figure 75: The pull request concept on the feature branch git workflow [2].

• It enhances the interaction between the team members, because of the pull request

concept;

• It makes easier to track code evolution and to undo errors and mistakes.

In any case, the adoption of a Git Workflow is not definitive, and it can be modified as

the project evolves in other to adapt to new scenarios.

To enforce this workflow, pushes to the main branch are prohibited in the project

settings.

A.4.1.2 Continuous integration

To ensure high code quality and full code functionality, continuous integration scripts

are implemented in the git workflow. Continuous integration runs different scripts after

each individual push request online. The scripts in this projects control code structure

using the python script flake8 and run Unit tests using the script pytest. Flake8 verifies

that the code does not have unnecessary imports and that the structural form of the code

like line length and indent are equal for all the different files. Unit tests is testing 95 %
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Figure 76: Containerized applications.

of all the code in this project, testing the functionality of the single code blocks.

To further reduce the risk of push requests of nonfunctional code, pre-commit scripts

are executed locally before new code can be committed. If the unit tests or the layout

tests fail the new code is rejected and can not be committed.

Merge requests can only be completed when the continuous integration completed

without errors.

A.4.2 Containerization

Containerization refers to the process of building software that package up code and

all its dependencies, allowing the application to run quickly and reliably in different

computing environments [39]. There are many containerization engines; the most popular

are Docker and Kubernetes. The main difference between them is that Kubernetes is

meant to run in a computer cluster, while Docker runs in a single computer. That said, it

is possible to use them together for scaling and delivery containerized applications. The

Figure 76 illustrates the layers involved in containerization.
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At the current stage, our project is still on its experimentation phase. Hence the

Docker engine is the better choice for containerization (as scaling is not a concern at

the moment). Nonetheless, it will be possible to integrate with Kubernetes when scaling

becomes relevant issue.

All ML applications developed in our project run inside Docker containers. Depen-

dencies needed to run the ML applications are defined through Docker Images, which

are fully described and configured with text files named Dockerfiles [40]. This practice

improves control over the computing environments used on development.

A.4.3 Software specifications

The chapter addresses the used software components as well as the implemented

mechanics.

A.4.3.1 Python and libraries

Python is the most commonly used high level programming language for machine

Learning problems, since it comes with a lot of libraries for machine Learning. It is object

oriented and relatively simple to learn due to its unique syntax and dynamic binding

options for variables. The most commonly Machine Learning library is Keras which is

presented in the following chapter.

Keras is a python library for neural network development. It is open-source and

focused on easy usability, due to its modular extension structure. Due to its open source

structure and huge community Keras nowadays is one of the most commonly used machine

Learning library. Frameworks like TensorFlow build on Keras and facilitate the complex

data flow implementations, by integration further mathematical functionality to the Keras

library. Moreover, given the great adherence of the community to Keras, there is a great

abundance of support and examples available on the Internet, which reduces the learning

curve necessary for the practical application of neural networks.

Pandas is a data processing library written in Python. Panda allows easy data Loading

and manipulation from different sources. Data is loaded in so called Dataframes which

represented the data in form of an 2 Dimensional array, from which it is possible to perform

several functions such as re-sampling, grouping and several other functions necessary for

data processing. The library is widely used by the community and there is a large volume

of support material available on the internet, making it extremely simple to use.
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Numpys a library written in Python, which adds multi-dimensional matrices support.

It incorporates a lot of high-performance and high-level mathematical functions to op-

erate on the multi-dimensional arrays. NumPy is open-source software and has many

contributors. This library is widely used in any data manipulation driven programs with

a large community and a lot of usage examples online, which facilitates the usage.

A.4.3.2 Website

The website was created using react with material-ui components for the front end.

React is an open source JavaScript library focused on creating user interfaces on web

pages. It is maintained by Facebook, Instagram, other companies and a community of

individual developers.

The back end was for project integration purposes developed using flask. Running on

a simple rest api for generating simulations and requesting information.

The API back end contains interactive graphics the code documentation and the

testing overview.

A.4.4 System Specification

The Training and Simulation was executed on four Desktop working stations with Intel

Icore-7 CPU@ 3.40GHz located in the University of São Paulo. The four workstations

were equipped with a GTX 1080 GPU and the Training process was done using the Keras

GPU library and the GPU capabilities of the system. The access to the systems was

established via SSH and Jupyter Notebooks.
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Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[25] Aleksander Ko lcz, Abdur Chowdhury, and Joshua Alspector. Data duplication: An
imbalance problem? 2003.



132

[26] Pedro Domingos. A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10):78–87, 2012.

[27] Arezoo Aghaei Chadegani, Hadi Salehi, Melor Yunus, Hadi Farhadi, Masood Fooladi,
Maryam Farhadi, and Nader Ale Ebrahim. A comparison between two main academic
literature collections: Web of science and scopus databases. Asian Social Science,
9(5):18–26, 2013.

[28] Alexander Selvikv̊ag Lundervold and Arvid Lundervold. An overview of deep learning
in medical imaging focusing on MRI. CoRR, abs/1811.10052, 2018.

[29] Mohammed Al-Qizwini, Iman Barjasteh, Hothaifa Al-Qassab, and Hayder Radha.
Deep learning algorithm for autonomous driving using googlenet. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 89–96. IEEE, 2017.

[30] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduc-
tion to statistical learning, volume 112. Springer, 2013.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[32] A. Gensler, J. Henze, B. Sick, and N. Raabe. Deep learning for solar power forecasting
— an approach using autoencoder and lstm neural networks. In 2016 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pages 002858–002865,
2016.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[34] Pushparaja Murugan. Hyperparameters optimization in deep convolutional neural
network / bayesian approach with gaussian process prior. CoRR, abs/1712.07233,
2017.

[35] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13(null):281–305, February 2012.

[36] Mohammed J Zaki and Wagner Meira Jr. Data Mining and Machine Learning:
Fundamental Concepts and Algorithms. Cambridge University Press, 2019.

[37] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(1):14–23, 2011.

[38] Atlassian Blog. Comparing-Git-Workflows. https://www.atlassian.com/git/

tutorials/comparing-workflows/, 2020. Accessed at 2020-10-06.

[39] Docker. What-is-a-Container? https://www.docker.com/resources/

what-container, 2020. Accessed at 2020-10-07.

[40] Rodrigo Cunha. Dockerfile-Reference. https://git.tpn.usp.br/

grupo-ai-amarracao/sgs/, 2020. Accessed at 2020-10-07.


