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Abstract. This paper presents an algorithm that augments a previ-
ous model known in the literature for the automatic segmentation of
monocular videos into foreground and background layers. The original
model fuses visual cues such as color, contrast, motion and spatial priors
within a Conditional Random Field. Our augmented model makes use of
bidirectional motion priors by exploiting future evidence. Although our
augmented model processes more data, it does so with the same time
performance of the original model. We evaluate the augmented model
within ground truth data and the results show that the augmented model
produces better segmentation.

Keywords: bilayer segmentation, computer vision, image understand-
ing.

1 Introduction

The image segmentation problem (the extraction of elements of interest in images
or videos) has been under research since the beginning of the last century with
the industry [24]. The industry of film and television productions traditionally
use methods which extract one or more elements from an image or a video frame
– most of these elements are people in the foreground – to create scenes from the
combination of them with a new background [20,21]. Until the late 1970s such
extraction was based on optical analog technology [5].

Traditional methods for image segmentation assume that the video frame was
captured in a controlled environment, with a single color as background (usually
blue or green) and with the environment lights configured to keep that color
uniform [6,14,21]. By assuming a known background color, segmentation can be
done in real-time and with low error.

Since the 1980s, new methods based on digital technology [6] have been devel-
oped and today there are methods able to extract elements not only in real-time
but also from natural images (without a single color background) [2,4,18,22,26].
This possibility has boosted research in new areas of application, especially those
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in which the elements of interest are people in the foreground. Videoconferenc-
ing, videochat [4,18,26,25] and other systems [17] are examples of applications
which can replace an original background before sending each video frame to
remote users.

In this paper we address the efficient extraction of foreground layer (bilayer
segmentation) to background substitution applications in which input streaming
is captured in a natural environment by a monocular camera. The algorithm
proposed here extends the segmentation model presented by Criminisi et al. [4].
The segmentation problem is modeled by a Conditional Random Field (CRF)
which fuses color, temporal and spatial information. The temporal information
is considered as a prior and it is conjugated with color and spatial models of
observation in order to determine an a posteriori information. We improve on
such a model by augmenting it with one future frame in the CRF model.

The rest of this paper is organized as follows: section 2 presents some previous
researches related to bilayer segmentation and section 3 illustrates the methods
which use temporal information. Section 4 introduces the basic model used in
our solution, whereas the section 5 describes our augmented model. Section 6
discusses experimental results, and section 7 concludes the papper.

2 Related Work

Layer extraction [2,4,8,10,15,18,19,25] has long been an active area of research
in computer vision. In recent approaches, a common characteristic is to treat
the segmentation problem as an energy minimization problem. In a binary seg-
mentation task each pixel of the processing frame is labeled as background or
foreground (0 or 1), without considering fractional values to represent trans-
parency. Briefly, from a set of pixels P and a set of labels L (in this case two
labels), the goal is to find a label function f : P � L which minimizes a specific
energy function [9]1.

In order to classify pixels, recent work in bilayer segmentation area has pro-
duced algorithms based on either depth [7,22] or motion [4,26]. Other algorithms
require initialization in the form of a clean image of background [18].

Stereo-based segmentation [7] seems to achieve the most robust results for
layer extraction with depth information. However, binocular video can be re-
strictive for some applications as well as approaches based in time-of-flight sen-
sors for depth estimation [22]. In a teleconferencing or a videochat most users
have only a single conventional web camera [18] and the necessity for calibration
of two cameras for stereo is inconvenient [4].

Motion-based segmentation can be achieved by estimating optical flow [1],
but, in the context of natural environments, the foreground motion cannot be
described well by such rigid models. In addition, the optical flow computation is
expensive [26].

1 Determination of fractional transparency of pixel is necessary for precision in layer
extraction. However, it can be determined after the binary segmentation, by tech-
niques such as border matting [16].
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Interactive color/contrast-based segmentation techniques have been demon-
strated to be effective [3,16]. However, as demonstrated in [4], segmentation
based on color/contrast alone is beyond the capability of fully automatic
methods.

On the other hand, recent approaches show that fusing a variety of cues, for
example, color, contrast and spatial priors [4,18,25,26] can produce segmentation
computable in real-time with accuracy similar to the one obtained from stereo-
based segmentation. Whereas some of those systems assume static background
[4], others support distracting events and require no initialization [26].

In our model, visual cues such as color, contrast, motion and spatial priors are
fused together within a CRF model, where the motion cue exploits bidirectional
evidence in order to improve bilayer segmentation.

3 Temporal Information in Bilayer Segmentation
Approaches

In applications where the bilayer segmentation is performed in controlled en-
vironments the misclassification of pixels can be avoided by user interventions.
The environment light can be configured and the elements in the scene can be
positioned so that the single background color remains constant. This can avoid
the occurrence of shadows, reflections or noise on the background which are
potential sources of error.

However, in natural environments, the background is arbitrary and any prob-
lematic situation must be handled by segmentation algorithm, avoiding user
intervention. In such cases, as there is no prior knowledge about the background
color, other information that can be obtained from the frame sequence become
necessary, especially for segmentation methods based on monocular video.

Automatic and computationally efficient methods for real-time segmentation
make use of these information as a set of cuts [4,26]. Color, contrast and motion
are examples of cuts which are probabilistically combined by a framework of
energy minimization.

As demonstrated in [4,18,25,26], information obtained from previous frames
have proved important to aid the estimation current-frame labels. In those work,
the temporal information is a cut in the energy minimization framework and it
was used to identify pixels in movement. Due to the real-time restriction, the
temporal information has been based only on the evidence from its past.

Although considering evidence from future (or bidirectional) may be prohib-
ited in many applications, real-time ones in which some delay is already ex-
pected, the delay of one frame may be imperceptible. We demonstrate that this
information is relevant for segmentation algorithms.

4 Notation and Basic Model

This section describes notation regarding frame observations and the probabilis-
tic model for foreground/background segmentation proposed in [4] to which we
refer as the basic model.
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4.1 Notation

Given an input sequence of images, a frame is represented as a matrix

z �

�
����

z1,1 z1,2 � � � z1,Y
z2,1 z2,2 � � � z2,Y
...

...
. . .

...
zX,1 zX,2 � � � zX,Y

�
���� (1)

of pixels in the YUV color space. A frame at time t is denoted zt. Temporal
derivatives are denoted �z � � �zx,y�X�Y and are computed as

�zt � �G�0;σT �� zt 	G�0;σT �� zt�1� (2)

at each time t, where G�0;σT � is a 2D centralized Gaussian kernel with standard
deviation σT and � is the convolution operator. Spatial gradients g � �gx,y�X�Y

are computed by convolving the frames with first-order derivative of Gaussian
kernels with standard deviation σS , i.e.,

gt �

��

G�0;σS�


x
� zt

	2

�

�

G�0;σS�


y
� zt

	2

. (3)

As in [4], we use σS � σT � 0.8. Spatio-temporal derivatives are computed
on the Y channel only. Motion observation at time t is denoted mt � �gt, �zt�.
Given a sequence of image data z1, z2, . . . , zt and a sequence of motion data
m1,m2, . . . ,mt, the segmentation task is to infer a binary label αt

x,y � F,B� for
every pixel in the current frame. F and B denote foreground and background,
respectively.

4.2 Basic Model

The probabilistic model for layer extraction proposed in [4] uses an energy
minimization framework and extends previous energy models for segmentation
[3,7,16]. The model is a Conditional Random Field (CRF) [12] with indepen-
dent terms that are set discriminatively, i.e., instead of working with join dis-
tributions, conditional distributions are considered [11]. The CRF models the
conditional probability:

p�α1, . . . , αt�z, . . . , zt,m1, . . . ,mt�� exp	



t�

t��1

Et�

�
(4)

where Et � E�αt, αt�1, αt�2, zt,mt�.
The energy Et associated with time t is a sum of terms in which likelihood

and prior are not entirely separated. The energy decomposes as a sum of four
terms:
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E�αt, αt�1, αt�2, zt,mt� � (5)

ηV T �αt, αt�1, αt�2� � γV S�αt, zt�

�ρUC�αt, z� � φUM �αt, αt�1,mt�,

in which the first two terms are “prior-like” and the second two are observation
likelihoods. η, γ, ρ and φ are normalizing parameters.

Temporal prior term V T ��� imposes a tendency to temporal continuity
of segmentation labels. Second-Order Markov chain is used in the energy min-
imization framework to incorporate the intuition that a pixel that was in the
background at time t 	 2 and in the foreground at time t	 1 is far more likely
to remain in the foreground at time t than to go back to the background. The
temporal transition priors are learned from labeled data. The temporal prior
term is denoted

V T �αt, αt�1, αt�2� �
X�

m�1

Y�
n�1

�	 log p�αt
x,y�α

t�1
x,y , α

t�2
x,y ��. (6)

Spatial prior term V S��� is an Ising term, imposing a tendency to spatial
continuity of labels, and the term is inhibited by high contrast. Let C be the
set of pairs of neighboring pixels in a frame2; and zi and αi be the values of
pixel i in the YUV color space and the binary label to be attributed to pixel
i respectively, i.e., i indexes a pixel in the matrices z and α. The Ising term is
represented by an energy of the form

V S�α, z� �
�

i,j�C

�αi � αj�


ε� e�µ��zi�zj��

2

1� ε

�
. (7)

The contrast parameter μ is chosen to be μ � �2���zi 	 zj ��
2���1, where ���

denotes expectation over all pairs of neighbors in an image sample.
The energy term V S�α, z� represents a combination of an Ising prior for label-

ing coherence together with a contrast likelihood that acts to discount partially
the coherence terms. The constant ε is a “dilution” constant for contrast. We
set ε � 1 as it was done in [7].

Color likelihood term UC��� evaluates the evidence for pixel labels using
the color distributions in foreground and background. Likelihoods are modeled
as histograms in the YUV color space. This term is defined as:

UC�α, z� � 	
X�

m�1

Y�
n�1

log p�zx,y�αx,y�. (8)

In our experiments the foreground color likelihood model is learned from a first
ground-truth segmented frame. The likelihoods are then stored in 3D look-up

2 Here we work with a neighborhood of 4 neighbors, i.e., neighbors in each cardinal
direction.
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tables. The distribution is represented as a smoothed histogram to avoid over-
fitting within initialization.

Motion likelihood term UM ��� uses spatial and temporal derivatives m �
�g, �z� to capture the characteristics of the features under foreground and back-
ground conditions.

According to [4], the immediate history of the segmentation of a pixel falls
into one of four classes: FF , BB, FB and BF . The observed image motion
features mt

x,y � �gtx,y, �z
t
x,y� at time t is conditioned on those combinations of the

segmentation labels αt�1
x,y and αt

x,y. Temporal derivative �ztx,y is computed from
frames t	 1 and t, so it should depend on segmentations of those frames.

The motion likelihood is learned from some labeled ground-truth data and
then stored as 2D histograms to use in likelihood evaluation. The likelihoods are
evaluated as part of the total energy, in the term

UM �αt, αt�1,mt� � 	
X�

x�1

Y�
y�1

log p�mt
x,y�α

t
x,y, α

t�1
x,y �. (9)

4.3 Energy Minimization

Before minimizing energy Et some considerations are done. First, parameters zt

and mt are observations and, since they are extract from the current frame and
the previous frame, they are not considered when minimizing energy Et and we
make it clear by writing Et � E�αt, αt�1, αt�2�zt,mt�. Second, at time t � 1
parameters αt�1 and αt�2 are meaningless. Third, at time t � 2 parameter αt�2

is meaningless. Then, when labeling a frame at time t � 1, only terms V S and
UC are meaningful and we have an energy E1 � E�α1�zt,mt�, and when labeling
a frame at time t � 2, only terms V S , UC and UM are meaningful and we have
an energy E2 � E�α2, α1�zt,mt�.

Given the previous considerations, the labeling of pixels proceeds as follows:

– at time t � 1 minimizes energy E1 � E�α1�zt,mt� and obtains α̂1;
– by considering α̂1 as an observation, at time t � 2 minimizes energy E2 �

E�α2�α̂1, zt,mt�; and
– by considering α̂t�2 and α̂t�1 as observations, at any time t � 3 minimizes

energy Et � E�αt�α̂t�1, α̂t�2, zt,mt�.

The simplification of considering α̂t�2 and α̂t�1 as observations decreases the
neighborhood of a pixel when minimizing the energy function. Temporal depen-
dences are solved by doing so and only spatial dependences are need to be solved.
Since the energy Et models a CRF, we can describe it as [11]:

Et �
�
i�S

�
Ai�α

t
i,o

t� �
�
j�Ni

Iij�α
t
i, α

t
j ,o

t�

�
,

where S is the set of pixels in a frame, o � �α̂t�1, α̂t�2, zt,mt� is the observation
at time t, Ni is the neighborhood of pixel i, Ai is the association potential and
Iij is the interaction potential.
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Finally, to minimize energy we considered the implementation of graph cut
done by Kolmogorov and Zabih [9].

5 Augmenting the Basic Model

Although Criminisi et al. [4] make use of motion characteristics in the motion
term UM , Criminisi et al. make use of motion characteristics only related to past
frames. Since the labels αt influences temporal derivatives, we can consider such
derivatives backwards and forwards in time. In [4] only the first derivative is
explored. Although considering evidence from future may be prohibited in many
applications, if some delay is already expected in some real-time applications, the
user would not perceive the delay of one more frame. Fig. 1 shows the relation
between each variable considered in the CRF.

Fig. 1. Augmented CRF Model

The model by Criminisi et al. defines the observation mt � �gt, �zt� and min-
imizes the likelihood p�gt, �zt�αt, αt�1�. However, if we wait for one more frame,
another evidence �zt�1 can be observed, given the opportunity of minimizing the
likelihood p�gt, �zt, �zt�1�αt, αt�1�. If the delay in one frame is acceptable, such
evidence may improve the segmentation of the foreground layer.
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In order to evaluate the value of such evidence, we calculate the entropy when
labeling sequence of images in videos which simulates videochat interaction.
Given observations αt�1, �zt, �zt�1 and gt, we combined them to classify labels αt.
In order to test the influence of each one of the observations, we grouped them
into four groups and classified labels αt with the maximum likelihood criteria.
The likelihood was obtained from a grounded dataset and tested against itself.
Table 1 shows our results: entropy and error rate for each group. Combining only
two derivatives evidences ( �zt, �zt�1 or gt) gives similar values, but combining all
of them together increases the classification based only on motion significantly
if observation αt�1 is correct. Note that we cannot obtain the same results from
table 1, since in our framework αt�1 is classified in previous steps and may
present errors.

Table 1. Entropy Analysis

Entropy Error Rate

gt, �zt, αt�1 0.2100 0.033
�zt, �zt�1, αt�1 0.2013 0.031
gt, �zt�1, αt�1 0.2628 0.045

gt, �zt, �zt�1, αt�1 0.1252 0.017

Since p�gtn, �z
t
n, �z

t�1
n �αt

n, α
t�1� is kept in a look-up table and the future tem-

poral derivative �zt�1
n should be calculated anyway at time t� 1, our augmented

algorithm calculates it in advance and no difference in computational time is
observed. However, the size of the look-up table is multiplied by the spectrum
of �zt�1, increasing considerably the size of the look-up table.

If the size of the table is larger, we must also collect more data in order to learn
the conditional probabilities p�gtn, �z

t
n, �z

t�1
n �αt

n, α
t�1�. Again, we analyze labeled

videos in order to determine a better use of the look-up table, decreasing its
size and improving its generalization when learning. Fig. 2 shows the histogram
for the variable �z. It is clear the concentration around small values and the
sparseness when values get large. Analyzing g proved to be similar.

Instead of using uniform discretization of the derivative spectrum, following
our analysis, we divide the spectrum of derivatives in 39 bins. Around zero, bins
are smaller, whereas bins increases as they are distant from zero. The size of
bins from zero values to larger one are: five bins with size 1, six bins with size
2, twelve bins with size 4, eight bins with size 8, and eight bins with size 16.

6 Experiments

In order to experiment our ideas we compared both Criminisi et al. algorithm
and our augmented version. We used a database of video images with 38 labeled
video sequences which are available in [13]. In the experiments we derive our
augmented version of Criminisi et al. from [23].
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Fig. 2. Distribution of �zt values for a video

Since frames are labeled from 10-to-10 or 5-to-5 frames, we opted to use only
such frames in our experiments. The labels of the first frames of each video is
considered to be known in order to initialize the color likelihood model as well as
initializing the prior regarding foreground layer. First, we obtained the temporal
prior and the motion likelihood within all of the 38 labeled video sequences.
In order to tune the parameters of segmentation models, we sampled randomly
a hundred tuple of parameters �η, γ, ρ, φ� and chose the tuple that obtained
the best evaluation. Since the absolute values of parameters are irrelevant, we
normalized parameter values by fixing γ � 1 and we sorted η, ρ and φ from
interval �0.0, 0.2� uniformly. Because γ proved to be more relevant in preliminary
experiments, we sorted the parameters η, ρ and φ smaller than the parameter γ.

The evaluation of tuples was obtained by calculating the mean error among
frames in every sequence. The error per frame was simply calculated as the error
rate when compared to ground truth data, i.e., at frame t, given the ground
truth αt and the estimated label α̂t, the error rate at frame t is given by

εt � ε�αt, α̂t� �

X�
x�1

Y�
y�1

�αt 	 α̂t�

XY
.

Remember that labels are binary, then �αt	α̂t� � 1, 0�. By considering all of the
38 video sequences we obtained the parameters η � 0.0018, γ � 1, ρ � 0.0338,
φ � 0.0413.

Because of our small database of video sequences, instead of using the same
parameters to evaluate all of the video sequence, we opted by using leave-one-out
method to training/testing video sequences. When evaluating the performance
of each method regarding a video sequence, we took it out of the set of samples
and chose the best parameters for the other 37 video sequences. In Fig. 3 fore-
ground and background of a video sequence were separated automatically by our
augmented model.
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(a) (b)

(c) (d)

Fig. 3. Binary Segmentation. (a) A frame from the MS test sequence. (b,c and d) Au-
tomatic foreground extraction results for three frames by our augmented method.
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Fig. 4. Comparison between Criminisi et al. method and our augmented method. (a)
IU test sequence and (b) AC test sequence. Note that the model parameters η, γ, ρ e
φ were fully optimized for best performance.

We used the labeled video sequences for experimenting our augmented version
against Criminisi et al. algorithm. Our approach had a mean error rate through
the whole video of 0.041 whereas the basic approach presented a mean error rate
of 0.054. Despite our small database, by applying t-student test we observed that
our method was better than the original one with a significance of 0.18. Fig. 4
shows our results in IU and AC test sequences3. We found that the IU sequence

3 The name of sequences IU, AC and MS are given in [13].
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exhibit high illumination variation. Our best relative result were observed in this
test sequence.

As a final example, Fig. 5 shows the results of our augmented method on a
frame sequence. The original background was replaced with a new one. In this
demonstration, the colour likelihood model was initialized manually.

(a) (b)

(c) (d)

Fig. 5. A final example of Binary Segmentation and Background Substitution. (a) A
frame with original background; (b, c and d) automatic background substitution for
several frames by our augmented method. Note that no method for transparency of
pixel was applied.

7 Conclusion

This paper has addressed the problem of bilayer segmentation of monocular
video sequences. We extend the model presented in [4] to improve segmentation
without incurring in more computational time. We accomplish it by extending
the spatio-temporal coherence considering bidirectional evidence from a frame
without losing real-time characteristic.

Although the delay of one frame can be prohibited in some high-performance
application, most interactive applications accept small delays. If a high frame
rate is considered, this delay can even be imperceptible.

The results show that an improvement was obtained, however more specific
experiments must be done in order to detect in which kind of situation it is
fruitful considering future frames.
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